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Abstract: Conductive fibers are essential building blocks for implementing various functionalities in
a textile platform that is highly conformable to mechanical deformation. In this study, two major
techniques were developed to fabricate silver-deposited conductive fibers. First, a droplet-coating
method was adopted to coat a nylon fiber with silver nanoparticles (AgNPs) and silver nanowires
(AgNWs). While conventional dip coating uses a large ink pool and thus wastes coating materials,
droplet-coating uses minimal quantities of silver ink by translating a small ink droplet along the
nylon fiber. Secondly, the silver-deposited fiber was annealed by similarly translating a tubular heater
along the fiber to induce sintering of the AgNPs and AgNWs. This heat-scanning motion avoids
excessive heating and subsequent thermal damage to the nylon fiber. The effects of heat-scanning
time and heater power on the fiber conductance were systematically investigated. A conductive fiber
with a resistance as low as ~2.8 Ω/cm (0.25 Ω/sq) can be produced. Finally, it was demonstrated
that the conductive fibers can be applied in force sensors and flexible interconnectors.

Keywords: sintering; conductive fiber; silver nanowire; silver nanoparticle; force sensor

1. Introduction

Recently, conductive fibers have attracted great attention for various potential appli-
cations such as electromagnetic interference shielding [1], fiber-type sensors [2,3], energy
storage devices [4,5], and other multifunctional devices that require a highly flexible fil-
amentous structure for electrical signals or power transmission [6]. The convergence of
textiles and electronics has yielded e-textiles, which feature the integration of electronic
components and interconnections into fabrics [7]. In an e-textile, the conductive fiber plays
a pivotal role as a one-dimensional building block. For the commercial use of conductive
fibers, not only should the fabrication cost be affordable, but the fibers should also maintain
high conductance and functionality under severe mechanical deformation. Especially for
wearable devices, the overall performance of the devices often depends on flexibility and
stability against external deformation.

For the fabrication of conductive fibers, conductive materials have been integrated
with polymeric fibers because pure metallic wires are heavy and vulnerable to repeated
large-strain deformation [8]. The uses of conductive polymers or carbon nanomaterials
as conductive materials have been explored [9–11]. However, although such materials
exhibit excellent flexibilities, which indicate stable electrical conduction under mechanical
deformation, they have much lower conductivities than metals. Thus, various techniques
have sought to fabricate high-performance conductive fibers by combining metals and
polymeric fibers, which exploits the high conductivities of metals and excellent flexibility
of polymers. For example, metal wires can be physically mixed with polymeric filaments
by winding or spinning as yarn [12,13]. However, this method presents limitations akin to
those of pure metal wires. Specifically, small metal particles or thin layers of metal can be
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precipitated in polymer fibers via vapor deposition [14], metal plating, or other chemical
processes that involve the reduction and sorption of metal precursors [2,15–18]. Although
the resultant fibers exhibit enhanced mechanical flexibilities, the fabrication method is
complicated and requires the use of harmful chemicals.

The reasons mentioned above motivate the use of simple dip coating methods to
deposit metallic nanomaterials in polymeric fibers. This involves dipping polymeric fibers
into an ink-like solution that contains dispersed metal nanoparticles [19]. By this method,
the contact resistance between deposited individual nanomaterials is high due to the small
contact area and capping agents added for solubilization. Thus, sintering is an indispens-
able process to fully access the high conductivity of the metal. Various sintering techniques
have been developed, most of which use heat to induce sintering [20–25]. Annealing metal-
deposited fibers by using an oven heater should be the most straightforward approach
for sintering. However, because the supporting polymers are unstable at the sintering
temperatures required for metals (except for specialized heat-resistant polymers) [26,27],
annealing with conventional heaters is not an option, especially for small-diameter polymer
fibers. The use of metal nanomaterials of smaller sizes may lower the sintering temperature,
but this can increase material costs. Low-temperature sintering techniques, which exploit
local heating by lasers [22,23], intense pulsed light [24], and plasma [21,28], can sinter
metal particles with minimal damage to polymers. However, the non-planar geometry of
polymeric fibers limits the applicability of these methods.

In this study, droplet-coating and heat-scanning methods were developed to fabricate
flexible and conductive metal-deposited polymer fibers. Silver nanoparticles (AgNPs)
and silver nanowires (AgNWs) were used as conductive elements because of their high
conductivity and chemical resistance to corrosion. The AgNP and AgNW composite films
show excellent conductance and flexibility when implemented on a flexible substrate [29].
The surface of a nylon monofilament (a single fiber) was coated with silver (Ag) nano-
materials by using a Ag ink droplet, and the coated fiber was subsequently subjected to
heat scanning to induce sintering of the deposited Ag nanomaterials. The heat-scanning
method provided uniform heating along the periphery of the fiber with minimal thermal
damage. Finally, the conductive fiber was used to fabricate fiber-type force sensors and
flexible interconnectors, which can be incorporated into e-textiles.

2. Materials and Methods
2.1. Coating of Ag Nanoparticles and Ag Nanowires

Commercial nylon monofilament fibers (diameter: ~280 µm; Justron DPLS, Daiwa
Co., Tokyo, Japan) were cleaned in a solution of isopropyl alcohol (IPA) and deionized (DI)
water (1:1 in volume) by using an ultrasonic cleaner (UP-02, Jeio Tech, Inc., Seoul, Korea)
for 1 min and dried in a convection oven (forced convection type, SH-DO-90FH, Samheung
Co., Seoul, Korea) at 50 ◦C for 10 min. To promote the adhesion of AgNPs and AgNWs
to the fiber surface, the nylon fiber was submersed in a solution of ethyl acetate (99.9%,
HPLC, Fisher) and resorcinol (≥99.0%, ACS reagent, Sigma Aldrich, St. Louis, MO, USA)
(weight ratio = 91:9) for 2 min and then dried in air [19]. The fiber was then coated with
AgNPs and/or Ag NWs via the droplet-coating method developed in this study. For the
coating, AgNP ink (10 wt.% of nanoparticles in IPA, avg. diameter: 50 nm, SNP-050c, SG
Flexio Co., Daejeon, Korea) and AgNW ink (0.5 wt.% of nanowires in IPA, avg. diameter:
40 nm, avg. length: 20 µm, SNW-006b, Flexio Co.) were used. For droplet-coating, the fiber
was horizontally suspended and translated through the droplet (vol: ~10 µL) by using a
motorized linear stage at 2.5 mm/s. The linear stage passed the fiber back and forth eight
times (16 sweeps in total). Finally, the coated nylon fiber was dried in a convection oven at
50 ◦C for ~1 h.

2.2. Heat-Scanning System

A coil-type Joule heating element was prepared by winding a nichrome wire (diameter:
0.5 mm) around a cylindrical rod 15 times. The nichrome coil was ultrasonically cleaned
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in a mixture of IPA and DI water (1:1 in volume) for 15 min and then in 1 M sulfuric acid
(H2SO4) for 5 min. The wire was cleaned again in the same IPA/DI water mixture for 15
min. To prevent the nichrome wire from oxidizing in air at high temperatures, a mixture
of alumina cement (Insultemp cement no. 10, Sauereisen, Inc., Pittsburgh, PA, USA) and
water (weight ratio of 25:4) was applied to the nichrome wire surface. The nichrome coil
was then annealed at 80 ◦C for over 10 h to harden the alumina cement. The dimensions
of the final tubular heater, in which the nichrome coil was embedded, were 4.7 mm in
outer diameter, 3.4 mm in inner diameter, and 10 mm in length. This nichrome heater
was installed in a motorized linear stage and connected to an adjustable direct current
(DC) power supply (1687B, B&K Precision Co., Yorba Linda, CA, USA). In this study, the
heat-scanning time (in min/cm) was calculated by dividing the overall heat-scanning time
by the fiber length.

2.3. Characterization

The morphologies of the Ag nanomaterials were investigated by using field emission
scanning electron microscopy (FE-SEM) (SIGMA, Carl Zeiss AG, Oberkochen, Germany).
For cross-sectional SEM imaging, a fiber sample was cut by using a cross-section polisher
(IB-19520CCP, JEOL, Ltd., Tokyo, Japan). A digital multimeter (34450A, Keysight, Santa
Rosa, CA, USA) was used to measure the electrical resistance of conductive fibers. Electrical
resistance per unit fiber length (Ω/cm) was calculated by dividing the measured resistance
by the fiber length (6 cm). For force-sensor fibers, the force was determined from the
applied force that was measured by using a force gauge (DTG-10, Digitech Co., Osaka,
Japan). The capacitance of a fiber sensor unit was measured by using an LCR meter (9216A,
GS Instech Co., Incheon, Korea).

2.4. Bending Tests

Static and cyclic bending tests were conducted to evaluate the flexibilities of the fibers.
For static bending, 5 cm-long fiber samples were wrapped around circular objects with
different radii. For the cyclic bending test, the 5 cm-long fiber was repeatedly subjected
to bending by linearly translating one end of the fiber by 2 cm at a rate of 5 cm/s with
the opposite end of the fiber fixed. This motion resulted in a bending radius of 7 mm at
the fiber center. For both tests, the change in electrical resistance caused by bending was
evaluated by using the digital multimeter. A strip of copper tape was attached to both
ends of the fiber, and a small amount of silver paste (ELCOAT P-100, CANS Co., Tokyo,
Japan) and liquid metal (gallium–indium eutectic, Sigma-Aldrich, St. Louis, MO, USA)
was applied to the silver–copper interface to enhance electrical contact.

2.5. Fabrication of Force Sensor

A solution of 5 mM of (3-mercaptopropyl)trimethoxysilane (MPTMS, 95%, Sigma-
Aldrich) in ethanol (99.8%, HPLC, Sigma-Aldrich) was used to enhance adhesion between
Ag and polydimenthylsiloxane (PDMS, Sylgard 184 silicone elastomer kit, Dow, Inc.,
Midland, MI, USA) [30,31]. The heat-scanned fiber was immersed in this solution for
1 h, rinsed in ethanol, and dried in air. For hydrolysis and condensation, the fiber was
immersed in 0.1 M hydrochloric acid (HCl, ACS reagent, 37%, Sigma Aldrich) for 1 h,
followed by rinsing with DI water and then drying in air [32]. Finally, the fiber was coated
with PDMS (silicone elastomer base: curing agent = 10:1) via dip coating. A fiber-type
force sensor was then fabricated by stacking two conductive fibers such that they were
oriented perpendicularly.

3. Results and Discussion
3.1. Heat-Scanning Fabrication of Conductive Monofilament Fibers

For the fabrication of conductive monofilament fiber, a nylon fiber was coated with
a thin layer of Ag nanomaterials by using a droplet of Ag ink [5]. Figure 1a shows a
schematic of the droplet-coating method that was developed here to coat nylon fibers with
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AgNPs or AgNWs. The AgNP or AgNW ink was supplied via an injection needle with
the needle tip holding an ink droplet (volume of 0.01 mL) that partially wetted the nylon
fiber. Simultaneously, the needle was linearly translated along the longitudinal direction of
the fiber, with the droplet continuously wetting the fiber surface. By this method, the fiber
surface could be coated with conductive materials by using a minimal amount of Ag ink.
Moreover, the amount of deposited Ag could be tuned by varying the number of sweeps,
enabling control over the conductance of the resulting fiber (Figure S1).
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Figure 1. (a) Schematic of droplet-coating method (inset: microscopy image of the Ag ink droplet); (b)
schematic of the heat-scanning process (inset: SEM images of sintered AgNPs (left) and as-deposited
AgNPs (right), scale bar: 100 nm); (c) schematic of the heat transfer process (left) and the cross-
sectional SEM image of an AgNP-deposited nylon fiber (right); and (d) digital images of fibers that
were annealed by using a convection oven (150 ◦C) (left) and heat-scanning method (right).

As described in Figure 1b, the deposited Ag nanomaterials were sintered into a thin
conductive layer by using the home-built nichrome heater. At sintering temperatures,
the insulating polyvinylpyrrolidone (PVP) layer that covered the Ag nanomaterial was
removed. The Ag-deposited nylon fiber was installed in alignment with the center axis
of the nichrome heater. The application of DC power to the nichrome heater caused its
temperature to rapidly increase by Joule heating. While the heat transferred from the hot
nichrome heater induced the sintering (Figure 1c), a motorized linear stage translated the
hot nichrome heater back and forth along the fiber at a speed of 5 cm/s. This heat-scanning
motion was necessary not only to induce sintering of the Ag materials along the entire
length of the fiber, but also to avoid thermal damage to the nylon fiber. Fibers prepared
without this scanning motion were subjected to a steady heat flux that severely deformed
the nylon fiber. Changing the direction of the heat scanning involved deceleration of the
heater. Thus, the ends of the fiber were exposed to heat for a longer time than the center of
the fiber, which eventually caused the fiber to fracture. For this reason, both ends of the
fiber were protected with copper tape. The thickness of the sintered AgNP layer (7.2 W,
0.5 min/cm) was measured to be ~700 nm by using SEM (Figure 1c).

The heat-scanning method was effective in sintering the coated AgNP layer with
minimal thermal deformation of the core nylon fiber, as compared to conventional bulk
heating methods. For instance, when heated by using a convection oven for 10 min, a
10 cm-long nylon fiber coated with AgNPs was deformed even at a threshold temperature
for sintering of the AgNPs (~150 ◦C, see Figure S2), which is higher than the glass transi-
tion temperatures of nylon (45–70 ◦C). While this deformed fiber exhibited a resistance
of 12.9 Ω/cm, an AgNP-deposited fiber that was annealed by using the heat-scanning
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method (7.2 W, 0.5 min/cm) was straight and had minimal deformation (Figure 1d), and
its resistance was relatively lower (6.3 Ω/cm on average).

The above findings suggest that heat scanning induces sintering at the fiber surface
without excessively heating the nylon core. The mechanism for this heat transfer can be
explained based on thermal radiation, conduction, and convection. While the translation
speed for heat scanning mainly affects conductive and convective heat transfer, radiative
heat transfer is determined by the emissivity values of the fiber and heater surfaces, as
well as the temperature difference between the two surfaces. For a AgNP film prepared by
coating with a dispersed AgNP solution or AgNP ink, multiple studies reported a stark
decrease in the absorption of IR for sintered films. For instance, Gao et al. found a significant
decrease in the IR emissivity (from 0.79 to 0.02) of a AgNP film after sintering [33], and
Reenaers et al. reported a similar decrease in emissivity and increase in near-IR reflection
after sintering [34]. This mechanism suggests that subjecting a AgNP film to predominantly
IR radiation efficiently heats the AgNPs at the initial stage of sintering, whereas heat
absorption rapidly diminishes as sintering proceeds. This self-limiting absorption of NIR
in a AgNP layer can account for the sintering of the AgNPs deposited on the nylon fiber.
Initially, thermal radiation from the inner surface of the tubular heater quickly induces
sintering of the deposited AgNPs. However, as the nanoparticles are sintered with repeated
sweeps, the sintered Ag film protects the nylon core from excessive heating by reflecting
radiative heat.

Sintering of the AgNPs was established by using FE-SEM, as shown in the inset
of Figure 1b, and the size distribution of the sintered AgNPs was obtained (Figure S3).
Energy-dispersive X-ray spectroscopy (EDX) analysis of the AgNP layer revealed that
Ag occupied ~98% of the material weight (Figure S4). The electrical conductance of the
coated fiber markedly increases with heat scanning because the neck structure generated
by sintering improves NP-to-NP connectivity. The fiber conductance was controlled by the
heat-scanning parameters. Figure 2a shows the variation of electrical resistance with heater
power and heat-scanning time at a fixed scanning speed of 5 cm/s. These results indicate
that the electrical resistance of the AgNP-deposited nylon fiber decreases with increasing
sintering time and heat-scanning power. Figure 2b shows the variation in resistance with
different heat-scanning powers for 6 min/cm of heat scanning. This reveals that the
minimum electrical resistance is obtained at heating powers of ~7.2 W. Specifically, a fiber
with a resistance of 5.7 Ω/cm was produced by using a heating power of 7.2 W. At this
power, the temperature on the inner surface of the heater was approximately 410 ◦C. Fibers
fractured during heat scanning when powers above 7.8 W were used, due to excessive heat
input to the core nylon.

The conductance of the fibers was further improved by additionally depositing Ag-
NWs onto the fiber surface via the same droplet-coating method but using a AgNW ink.
Four types of Ag-deposited fibers were examined, including AgNP, AgNW, AgNP/AgNW,
and AgNW/AgNP nylon fibers, to elucidate the effects of adding the AgNWs. Fibers
with AgNP/AgNW coatings, in which a AgNP layer was deposited first followed by
a AgNW layer, exhibited a bilayer structure. Reversing the order of AgNP and AgNW
coatings produced AgNW/AgNP nylon fibers with the same bilayer structures. To enhance
the adhesion of the Ag nanomaterials (which are covered with hydrophilic PVP) to the
hydrophobic surface of nylon, an ethyl acetate/resorcinol adhesion promotor (denoted as
ER) was applied to the fiber surface prior to coating with Ag nanomaterials [35]. For each
type, five samples were prepared by heat scanning with the nichrome heater at a power of
7.2 W and a speed of 5 cm/s, and their resistances were measured.

Figure 3a shows the changes in electrical resistance of the sample that exhibited the
smallest resistance of each Ag-deposited nylon fiber, and Figure 3b compares the electrical
resistances of the ER-applied fibers. Figure 4 shows representative SEM images of the
fibers. For all samples, the resistance decreased with heat-scanning time. The ER treatment
significantly reduced the resistance for the AgNP nylon fiber. Figure 4a,b reveal that this
arose from crack generation, which was caused by the poor adhesion of AgNPs to the
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underlying nylon surface, that was suppressed by the ER treatment (Figure 4b). When
a pristine nylon surface was directly coated with AgNWs, the density of the deposited
AgNWs was too low for the AgNWs to form a conductive layer (Figure 4c). However, the
ER treatment dramatically improved the adhesion of AgNWs (Figure 4d). The resistances
of ER-treated fibers were markedly reduced within 0.5 min/cm of heat-scanning time (inset
of Figure 3b) and specifically exhibited resistances below ~10 Ω/cm after 0.5 min/cm of
heat-scanning time, except for the fiber coated with AgNWs only (~95 Ω/cm on average).
The lowest resistance of 2.8 Ω/cm (0.25 Ω/sq in sheet resistance) was obtained from one of
the ER-AgNP/AgNW samples. Additional heat scanning could gradually, but moderately,
decrease resistance.
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For ER-AgNP/AgNW nylon fibers, the addition of AgNWs to the deposited AgNP
layer moderately reduced the resistance of the fiber. For instance, the resistance of the
ER-AgNP/AgNW nylon fiber was 5.6 Ω/cm on average after 0.5 min/cm of heat-scanning
time, which is lower than that of the ER-AgNP nylon fiber (6.3 Ω/cm). Inspection by
SEM (Figure 4e) revealed that the AgNWs bridged the cracks of the supporting AgNP
layer, resulting in increased conductance. A similar effect could be expected for the ER-
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AgNW/AgNP nylon fibers (Figure 4f), but the conductance of such fibers was lower than
that of the ER-AgNP/AgNW nylon fiber. SEM micrographs (Figure S5) revealed severe
cracking in the AgNP layer of ER-AgNP/AgNW nylon fiber, when compared to ER-AgNP
or ER-AgNP/AgNW samples, which possibly explains the reduced conductance. This
effect arose because the adhesion of the AgNP layer was hindered by the AgNWs, which
were deposited prior to AgNP deposition and covered the ER-treated surface.
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Comparing the resistances of ER-AgNP and ER-AgNW (Figure 3b), coating with
AgNPs was more effective to obtain fibers with high conductance values. This can be
ascribed to the higher coverage and loading of AgNPs per coating sweep than AgNWs.
The conductance of a AgNP layer increased with the number of droplet-coating sweeps;
therefore, the conductance of the ER-AgNW nylon fiber could be enhanced simply by
increasing the number of coating sweeps with a AgNW ink droplet, or the loading of
AgNWs (Figure S6a). For instance, the density of the deposited AgNWs increased from
~8.9 to ~15.9 µg/cm2 by increasing the number of coating sweeps from 16 to 42. As a result,
the resistance was reduced to 17.3 Ω/cm by 0.5 min/cm of heat-scanning time (Figure S6b).
However, this approach was not explored further, because increasing the number of coating
sweeps leads to lengthy processing times. As a solution, we envision the installation of
multiple droplet-coating spots along the fiber translation path, which could be realized in
a large-scale production system.

3.2. Bending Performances of the Ag-Deposited Fibers

The addition of AgNWs and use of the adhesion promotors (i.e., ER treatment) not only
reduced fiber resistance, but also significantly improved the flexibility of the conductive
fiber. This effect was investigated by using cyclic bending tests to evaluate the flexibility of
Ag-deposited fibers (5 cm long) prepared at a heater power of 7.2 W and a heat-scanning
time of 0.5 min/cm. Repeated bending at a radius of ~7 mm was applied to the fibers
(Figure 5a). The electrical resistance of each fiber was measured in an unbent state during
the test, and the change in resistance was considered to be an indicator of its flexibility. The
change in resistance was calculated by using the equation: (R − R0)/R0, where R and R0 are
the resistance values measured after cyclic bending and the initial resistance, respectively.

Figure 5b shows the changes in resistance of various Ag-deposited fibers with bending
cycles. The results reveal that the addition of AgNWs markedly suppresses changes
in resistance because the flexibility of the AgNW is superior to that of sintered AgNPs.
The effect of the ER treatment was more dramatic. While the AgNP and AgNP/AgNW
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nylon fibers prepared without ER treatment exhibited serious increases in resistance during
bending tests, the changes in resistance for ER-treated Ag-deposited fibers were maintained
below 20% for 10,000 cycles. For instance, the electrical resistances of ER-AgNPs, ER-
AgNP/AgNW, and ER-AgNW/AgNP nylon fibers were changed by 18.8%, 6.7%, and
9.6%, respectively. Figure 5c shows optical microscopy images of the AgNP/AgNW and
ER-AgNP/AgNW nylon fibers that were bent for 10,000 cycles. The images show that,
without ER, the intrinsic adhesion between nylon and the Ag nanomaterials was not high
enough to withstand repeated strains, resulting in delamination of the deposited Ag layer.
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The enhanced flexibility for fibers added with AgNWs was pronounced at high
curvatures (1/r). Figure 5d shows the results of the static bending tests, in which 180◦

bending was imposed on the ER-treated fibers at a range of radii, as described in the inset.
The electrical resistance exponentially increased with decreasing bending radius. For the
ER-AgNP nylon fiber, large resistance changes were observed at small radii. For example,
the resistance change increased by over 50% at a 5 mm bending radius. By comparison, for
the ER-AgNW/AgNP and ER-AgNP/AgNW nylon fibers, the changes in resistance were
approximately 1.9 and 5.9%, respectively, even at a 1 mm bending radius.

The Ag-deposited fibers were coated with a protective PDMS layer (avg. thickness:
~27 µm), and their bendability was evaluated. The protective layer is necessary because the
deposited Ag layer is vulnerable to abrasion, which commonly occurs in practical applica-
tions. Cyclic bending of PDMS-coated ER-AgNP/AgNW and ER-AgNW/AgNP nylon
fibers (denoted as ER-AgNP/AgNW-PDMS and ER-AgNW/AgNP-PDMS, respectively)
resulted in slightly reduced changes in resistance, from 6.7% to 4.6% and from 9.6% to
8.5%, respectively (Figure 5b). For static bending, the PDMS coating did not reduce the
resistance, but in fact increased the resistance (Figure 5d). This possibly arises from the
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increased fiber diameter as a result of the PDMS coating. Figure 5e shows the change in the
resistance of this fiber as it was wound multiple times around a 1 mm-radius column.

3.3. Application in Fiber-Type Force Sensor

Conductive fibers were examined for applications as fiber-type force sensors. Two
identical conductive fibers (ER-AgNP/AgNW-PDMS) were prepared by heat scanning at a
heater power of ~7.2 W for a heat-scanning time of 0.5 min/cm and stacked perpendicularly,
as described in the inset of Figure 6a. The PDMS layers mediated contact between the
conductive fibers in the crossed configuration. PDMS is a dielectric elastomer that is
widely used as a dielectric material for soft capacitors [3]. Thus, an external force on the
fibers and the resulting compressive deformation of the PDMS decreased the distance
between the two Ag electrodes and yielded an increase in capacitance. Figure 6a shows the
measured relationship between the capacitance and applied force in a normal direction,
which agrees with this mechanism. The change in capacitance was calculated by the
equation (C − C0)/ C0, where C and C0 indicate the capacitance with and without a load,
respectively. Figure 6b shows the dynamic change of the response signal as a gentle force
was repeatedly applied (by pressing on the device with a finger) to the sensor junction.
Multiple force sensors (3 × 3 sensor arrays) could be installed in an embroidery fabric,
as shown in the inset of Figure 6c. When a 5 mm-thick acryl block was placed on the
sensor arrays, the capacitance changes for the loaded points were immediately detected
(Figure 6c).
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Figure 6. (a) Changes in the capacitance of a fiber sensor unit under applied force in a normal direction. The inset describes
the cross section of the sensor unit. (b) Changes in the capacitance of the sensor unit when it was repeatedly and gently
pressed with an index finger, as shown in the inset. (c) Changes in capacitance at each point of 3 × 3 sensor arrays when an
acryl block was placed on the sensors. (d) Infrared thermal images of an ER-AgNP/AgNW-PDMS nylon fiber that was
heated for 4 s. (e) Photographs of the light-emitting device (LED) powered through the conductive fiber that was subjected
to bending.

The conductive fiber could separately serve as heater filaments and flexible intercon-
nects. Figure 6d shows a series of fiber images captured using an IR camera (FLIR A655sc,
FLIR Systems, Inc., Wilsonville, OR, USA). A current of 70 mA was applied to the fiber,
and it reached steady state temperature within 4 s. Figure 6e shows a series of photographs
of the light-emitting device (LED) that was activated by electrical power delivered by an
ER-AgNP/AgNW-PDMS nylon fiber woven in a fabric. The excellent flexibility of the fiber
enabled device operation to be maintained even when the fabric was deformed.
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4. Conclusions

In summary, Ag-deposited conductive nylon fibers were fabricated by using novel
droplet-coating and heat-scanning methods. A nylon monofilament fiber was coated with
a layer of Ag nanomaterial by linearly sweeping the fiber with a droplet of AgNP or
AgNW ink. This droplet-coating method enabled the minimal use of Ag nanomaterials
for coating. The deposited Ag layer was successfully sintered by heat-scanning the fiber
with a nichrome wire-embedded tubular heater. As a result, a conductive fiber with a
resistance as low as ~2.8 Ω/cm and outstanding flexibility was produced. The coating and
sintering processes can be combined by translating the fiber sequentially through multiple
coating droplets and tubular heaters. Moreover, these processes can be performed under
ambient conditions. Thus, these methods are amenable to an in-line fabrication scheme that
resembles roll-to-roll fabrication for printed electronics and that could realize large-scale
production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13091405/s1, Figure S1. Changes in electrical resistance for AgNP-deposited nylon fibers
prepared by using different numbers of AgNP coating sweeps (3 min/cm, 7.2 W); Figure S2. The
resistances of AgNP films (size: 0.5 cm × 2 cm) sintered at different temperatures for 10 min, which
reveals a threshold temperature for sintering at ~150 ◦C; Figure S3. Size distribution of sintered
AgNPs (7.2 W, 0.5 min/cm) on a nylon fiber; Figure S4. EDX spectrum of the deposited AgNP
layer (left) and the calculated elemental composition (right); Figure S5. Optical microscopy images
and SEM images for (a,c) ER-AgNP/AgNW and (b,d) ER-AgNW/AgNP; Figure S6. (a) Changes
in resistance for ER-AgNW nylon fibers prepared by using different numbers of coating sweeps
(0.5 min/cm, 7.2 W). (b) Changes in resistance across heat scanning time for the ER-AgNW nylon
fibers prepared with 16 and 42 coating sweeps.
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