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ABSTRACT

Background: A measles outbreak involving 60 cases occurred in Yamagata, Japan in 2017. Using two different mathematical
models for different datasets, we aimed to estimate measles transmissibility over time and explore any heterogeneous
transmission patterns.

Methods: The first model relied on the temporal distribution for date of illness onset for cases, and a generation-dependent model
was applied to the data. Another model focused on the transmission network. Using the illness-onset date along with the serial
interval and geographical location of exposure, we reconstructed a transmission network with 19 unknown links. We then
compared the number of secondary transmissions with and without clinical symptoms or laboratory findings.

Results: Using a generation-dependent model (assuming three generations other than the index case), the reproduction number
(R) over generations 0, 1, and 2 were 25.3, 1.3, and <0.1, respectively, explicitly yielding the transmissibility over each
generation. The network data enabled us to demonstrate that both the mean and the variance for the number of secondary
transmissions per primary case declined over time. Comparing primary cases with and without secondary transmission, high
viral shedding was the only significant determinant (P < 0.01).

Conclusions: The R declined abruptly over subsequent generations. Use of network data revealed the distribution of the number
of secondary transmissions per primary case and also allowed us to identify possible secondary transmission risk factors. High
viral shedding from the throat mucosa was identified as a potential predictor of secondary transmission.
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INTRODUCTION

Measles, a highly infectious disease, is caused by a virus
belonging to the Morbillivirus genus in the Paramyxoviridae
family.1 Typical symptoms and clinical signs of measles include
fever, maculopapular rash, and catarrhal manifestations (such as
conjunctivitis, coryza=runny nose, pharyngeal pain, and cough),
usually following an incubation period of 10 days (range, 8 to
23 days) after exposure.2–7 Owing to its substantial capacity for
airborne transmission, the virus can be transmitted in an open
space, yielding a large basic reproduction number; the average
number of secondary cases generated by a single primary case in a
fully susceptible population has been documented to range from
10 to 20.8–11 Immunization with the measles-containing vaccine
(MCV) is an effective and promising preventive option, but the
disease has yet to be eliminated from many parts of the world. The
main difficulties in achieving disease control include high viral
transmissibility, vaccination failure (both primary and secondary
failure), heterogeneous transmission patterns over geographic
space (eg, persistent transmission in underdeveloped countries and

exportation to highly vaccinated industrialized countries), and
insufficient vaccination coverage, making it difficult to anticipate
when this virus might be eventually eliminated.3,7,12–26

MCV was initially introduced in the mid-1960s in Japan with
public subsidy. Vaccination against measles has been accepted as
part of the routine immunization program since 1978. With this
effort, the persistent chains of transmission for the local D5 strain
were interrupted, with the last isolation of this genotype in May
2010.4,27,28 Japan was verified as measles-free in 2015. Never-
theless, importations coupled with clustered susceptible individ-
uals can easily allow outbreaks to occur, sometimes accompanied
by multiple transmission chains. Moreover, the scientific validity
of the definition of elimination has been debated.29–32 Epidemics
outside of Japan and multiple introductions of imported cases
have led to multiple cases of local transmission, as highlighted in
recently published studies.4,27,28,33–36

In the present study, we analyzed a measles outbreak that
occurred in Japan in 2017. The outbreak began with a clustering
of cases at a driving school in Yamagata Prefecture, in
northeastern Japan. The datasets offered us the opportunity to
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reconstruct a transmission network, which we used to determine
who acquires infection from whom (WAIFW). Whereas this type
of reconstruction has been reported in previous studies for a
variety of diseases (eg, plague, influenza, Middle East respiratory
syndrome, and measles35,37–40), use of such an analysis for
evaluating control programs has yet to be established. Whereas
some studies show the serial interval, which is defined as the time
interval from illness onset in a primary case to illness onset in a
secondary case, and have also estimated the effective reproduc-
tion number over time,37,38,40,41 the differential usefulness of
the temporal distribution alone and the network data in a public
health context has yet to be discussed. Compared with the
epidemic curve (or temporal distribution of cases) alone, we
might ask what the transmission network can offer in terms of
additional insights into the control of an infectious disease.

In the present study, we aimed to estimate measles trans-
missibility over time and explore any heterogeneous transmission
patterns, clarifying different aspects of the information that can be
extracted from analyzing the epidemic curve and the transmission
network. For the purpose of exposition, we chose to analyze the
abovementioned 2017 measles outbreak in Yamagata, Japan,
which included 60 confirmed cases of measles. As the local
government of Yamagata performed contact tracing and raised
public awareness via swift media announcements, we evaluated
the control measures by estimating the generation-dependent
reproduction number (R), which we defined as the average
number of secondary cases produced by a single primary case in
each respective generation, using our original generation-depend-
ent model. Moreover, because of the practice of intensive
contact tracing, the transmission network was mostly known
(ie, epidemiologically traced). For a small number of unobserved
parts of the network, we could partially reconstruct the trans-
mission tree by quantifying the weight of edges for each of the
unobserved potential links. By reconstructing the network of
WAIFW, we explored the possible determinants for the primary
cases causing secondary transmissions.

METHODS

Epidemiological data
Adhering to the Infectious Disease Law of Japan, physicians are
mandated to notify all diagnosed measles cases to the government.
Such notified cases include those confirmed by laboratory testing
(ie, reverse-transcriptase polymerase chain reaction [RT-PCR]) or
with elevated IgM antibody levels using paired serum, or clinically
diagnosed patients who exhibit all three clinical signs or symptoms
(fever, rash, and catarrhal symptoms).42 In addition, laboratory-
confirmed modified measles cases that do not satisfy all the
aforementioned triad of typical measles are also notified in the
surveillance system. For each case, the so-called “line list” is
publicly announced by the local municipal government. The report
for each case includes the date of onset, date of diagnosis, sex, age
group (10-year age groups), residential city and prefecture, and the
estimated place of infection (or traced link to an earlier case).

In the present study, we used two independent information
sources for the 2017 outbreak in Yamagata.43,44 One is the
abovementioned line list announced by Yamagata City, the
capital of Yamagata Prefecture in Northeast Japan.44 However, by
relying only on Yamagata City data, the transmission tree was
incomplete. Specifically, the data mostly included the documen-
tation of links that arose from the index case only. Therefore, we

also explored another data source that provided more detailed
information of the transmission tree and also laboratory test
results using real-time RT-PCR to quantify the viral load in throat
swab samples.43 The presence of clinical signs and symptoms for
each case were referenced from a published study.43 Even using
both data sources, several links to the primary case were missing
for 19 of the observed cases; therefore, we sought the possible
primary cases for these cases and reconstructed the transmission
tree in the following analysis.

Description of the outbreak
Here, we briefly describe the outbreak. The index case was a
Japanese man in the age group 20–29 years who had just returned
from a short trip to Bali, Indonesia, on February 26, 2017. His
symptoms started on March 3, 2017, one day following his
temporary relocation to Yamagata (approximately 300 km north
of Yokohama), to which he traveled by bullet train to attend a
short course at a driving school to obtain his driving license.
Of the 59 secondary cases, the links (or primary cases) for 19
remained unknown. However, among the other secondary cases,
25 were traced and belonged to the first generation (ie, they were
directly infected by the index case or were generation zero)
whereas 15 were second-generation cases (ie, infected by the first
generation). All 25 first-generation cases were exposed either at
the driving school or at a hotel where the index case and driving
school participants stayed and shared the same indoor air space.

The temporal distribution of measles cases in Yamagata
Prefecture is shown in Figure 1. The epidemic curves in three
discrete regions (Okitama, Shonai, and Murayama districts) of
Yamagata Prefecture are shown in Figure 2 (in which the bar
patterns represent the generations); 46, 9, and 4 cases occurred in
these districts, respectively, except for the index case.

Model 1: Temporal model
We used two different modeling approaches to the two different
types of datasets, namely, temporal distribution-only data and
transmission-network data, to clarify the practical importance of
the transmission network data. In the first model, we performed
an analysis of the temporal distribution of the cases alone.
Subsequently, using the second model, we partially reconstructed
the network, to show what information could be additionally
extracted compared with the temporal data alone.

Before conducting analysis using the temporal model, we first
estimated the serial interval distribution. For this purpose, using
the line list with known illness onset dates, we allocated a unique
case number, i, to each of the 60 cases according to the order of
the reporting date, with i = 1 being the index case. We divided
the 60 cases into two groups: (i) cases whose links to the primary
case were known, denoted by W, and (ii) cases without known
links to the primary case, denoted by U. Letting the date of illness
onset in the index case be t0 = 0, the time of illness onset in case i,
ti such that i 2 [2,60] can be interpreted as the number of days
since illness onset of the index case. The serial interval between
the primary case v(i) and the secondary case i is expressed as
ti − tv(i). The serial interval distribution for other infectious
diseases (eg, plague and foot and mouth disease40,45) have been
empirically fitted to the gamma distribution; for example,
Klinkenberg and Nishiura have used the gamma distribution for
the generation time of measles.46 Similarly, the serial distribution
g(.) of case i (i > 1) in the Yamagata outbreak was assumed to be
governed by the following gamma distribution:

Kobayashi T, et al.

J Epidemiol 2022;32(2):96-104 j 97



Figure 1. Temporal distribution of measles cases in Yamagata, Japan in 2017. Bars represent confirmed cases as a function of
the date of illness onset; continuous lines represent the predicted number of cases. A temporal model (Model 1) was
used; assuming there were two and three generations excluding the index case, differing results are shown. For an
assumed number of generations, a joint estimation of the generation-dependent reproduction numbers and the
parameters governing the serial interval distribution was considered whereas the other model estimated only the
generation-dependent reproduction numbers and fixed parameters for the serial interval. Different lines are used for
two- and three-generation models with and without use of network data for estimation of the serial interval distribution.

Figure 2. Epidemic curves of 2017 measles outbreak in Yamagata, Japan, by geographic region. A. Epidemic curve for all of
Yamagata Prefecture. B. Cases diagnosed and notified in Okitama, C. Shonai and Murayama districts. In all panels,
bars are shown in different patterns according to generation.
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gðti � tvðiÞ; k; �Þ ¼ ðti � tvðiÞÞk�1 expð�ðti � tvðiÞÞ=�Þ
�ðkÞ�k ð1Þ

where k and θ are the shape and scale parameters, respectively.
Next, we estimated the generation-dependent reproduction

number from the temporal distribution. Specifically, we estimated
Rn, which represents the average number of secondary cases
generated by a single primary case in generation n. This type of
generation-dependent formulation has been used elsewhere,41,47

and we discuss the derivation process in eMaterials 1. Together
with the parameters used for the serial interval distribution, the
total likelihood function for estimating the reproduction numbers
is:

Lð�; tiÞ ¼
Y
i2W

gðti � tvðiÞÞ
Y

i2½1;60�

IðtiÞZ 1

0

IðsÞds
: ð2Þ

It should be noted that the function I(ti) also contains two
parameters (k and θ) that were originally required for describing
g(ti − tv(i)). It should also be noted that the normalization constant
for the incidence function is equal to the cumulative number of
cases, excluding the index case (ie, equal to 59). In addition to the
likelihood (2), we also considered circumstances where there is
no access to the serial interval data. In such circumstances,
estimation of parameter Θ relies on the epidemic curve alone.
That is, estimation using (2) is based on the epidemic curve and
the transmission network data whereas the use of likelihood
without network data for g(.) relies on the epidemic curve only.
Subsequent to the estimation, we computed the epidemic curve
described by I(ti) and visually compared the solution against the
observed epidemic curve.

Model 2: Network-based model
Here, we partially reconstructed the transmission tree. To do so,
we took into account both the serial intervals and the Euclid
distance between the residence of the potential primary case and
that of the secondary case, as measured in kilometers. Let xiv(i) be
the measured Euclidian distance between i and v(i). Assuming
that the dependence mechanism of secondary transmission on the
geographic distance is sufficiently captured by an exponential
decay model with a decay rate of distance, λ, the likelihood
function to estimate the serial interval distribution and λ is then
written as

Lðk; �; �jti � tvðiÞ; xivðiÞÞ
¼
Y

j≠i

Y
i2W

gðti � tvðiÞjk; �Þ expð��xivðiÞÞX
gðti � tjjk; �Þ expð��xijÞ

ð3Þ

Using the estimated values of k, θ, and λ, we calculated the
probability, Pj(i), that a secondary case j {j 2 U} is linked to a
potential primary case i, such that:

PjðiÞ ¼ gðtj � tijk; �Þ expð��xjiÞX
i≠j

gðtj � tijk; �Þ expð��xjiÞ
ð4Þ

To deterministically reconstruct the transmission network, we
took the highest probability algorithm, selecting the link that
yields the highest value of Pj(i) among all possible candidates for j.

Subsequently, we used the tree to directly calculate the number
of secondary transmissions generated by each of the 60 cases
during the outbreak, visually counting the reproduction number
of each generation.

Exploring the risk factors for secondary trans-
mission
Using the reconstructed transmission tree, symptom data, and
viral shedding status (see eTable 1) of each case, we explored the
possible epidemiological variables that could explain the number
of secondary transmissions per single primary case. To examine
the potential association between a symptom and secondary trans-
mission, we divided the 60 cases into two groups, specifically,
cases with or without a particular symptom. For each symptom
and for each laboratory testing result that could potentially
explain transmissibility, we performed Wilcoxon’s rank-sum test
to compare the number of secondary transmissions per primary
case between the two groups. We used the non-parametric test
here, because the distribution of the number of secondary cases
per single primary case was highly skewed. When the link for
secondary transmission was not deterministically reconstructed
and there were two equally plausible primary case candidates,
we allocated 0.5 as the weight for each candidate edge, for
comparative purposes.

Ethical considerations
The present study examined publicly available data that lacked
any personally identifiable information. As such, ethical approval
was not required for the present study.

Data sharing statement
The case series data used in this study are available as online
supporting material (https:==www.jstage.jst.go.jp=browse=jea=).

RESULTS

When model 1 (ie, the temporal model) was used, the epidemic
curve was modeled to involve two main humps, one reflecting the
first generation and the other the second generation (Figure 1).
The curve drawn in the three-generation model (in which case R
of the second generation, R2, takes a non-zero value) shows a
very small peak as the third generation at around day 42 to day
50. The three-generation model yielded estimates of the reproduc-
tion numbers of generations 0, 1 and 2, each denoted by R0, R1,
and R2, respectively, at 25.3 (the 95% confidence interval [CI]
was not calculable), 1.3 (95% CI, 0.7–2.2), and <0.1 (95% CI,
0.0–0.2) (Table 1), which implied that the outbreak was brought
under control by the second generation. The mean and variance of
the serial interval distribution were estimated to be 14.8 days
(95% CI, 14.2–15.4) and 9.1 days2 (95% CI, 6.7–12.9), respec-
tively. Estimated mean and variance in the other models are
summarized in Table 1. When the two-generation model was
used, R0 and R1 were estimated at 25.5 (95% CI not calculable)
and 1.3 (95% CI, 0.8–2.3), respectively; again, the outbreak was
ongoing at the first generation and subsequently brought under
control by the second generation (because R2 was assumed to be
zero by definition). Applying model 1 (ie, temporal model) with
two and three assumed generations (except for the index-case
generation) and using network data, the Akaike information
criteria (AIC) for the three-generation model with four parameters
(AIC = 611.3) was slightly lower than that of the two-generation
model with three parameters (AIC = 611.7), and this finding was
independent of the use of network data for estimating the serial
interval (Table 1). No improvement in the AIC was observed
by assuming four or more generations (results not shown). When
the serial interval distribution was quantified from the epidemic
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curve alone (ie, when we did not jointly use the transmission
network data), the resulting estimate of Rn for all n did not
significantly deviate from that using both the epidemic curve
and transmission network data for all generations n (for n ≥ 0)
(Table 1).

The transmission network was then reconstructed in another
analysis using model 2 (Figure 3). It is remarkable that we were
able to calculate not only the number of secondary cases per
individual, but that we could trace the secondary transmissions by
the most plausible place of transmission (eg, the driving school),

Table 1. Parameter estimates of model 1 with assumed two and three generations (except for index case), each with simultaneous serial
interval estimations

Model description R0
R1

(95% CI)
R2

(95% CI)
k
(95% CI)

θ
(95% CI)

Mean SI
(95% CI)
days

Variance of SI
(95% CI)
days2

Model
parameters

AIC

Three-generation model using network data 25.3
1.3
(0.7, 2.2)

<0.1
(0.0, 0.2)

24.1
(17.2, 32.2)

0.6
(0.5, 0.9)

14.8
(14.2, 15.4)

9.1
(6.7, 12.9)

4 611.3

Two-generation model using network data 25.5
1.3
(0.8, 2.3)

N=A
21.5
(15.6, 28.5)

0.7
(0.5, 1.0)

14.9
(14.3, 15.6)

10.4
(7.8, 14.4)

3 611.7

Three-generation model without using network data 25.7
1.2
(0.7, 2.1)

<0.1
(0.0, 0.2)

29.8
(18.5, 43.8)

0.5
(0.3, 0.8)

14.9
(14.2, 15.7)

7.5
(5.0, 12.3)

4 403.3

Two-generation model without using network data 26.0
1.3
(0.7, 2.2)

N=A
23.5
(15.0, 34.2)

0.6
(0.4, 1.0)

15.2
(14.4, 16.0)

9.8
(6.7, 15.6)

3 404.4

Rn represents the average number of secondary cases generated by a single primary case in generation n. k, scale parameter and θ, shape parameter of the serial
interval.
It should be noted that the dataset of transmission network was used for the two models “using network data” whereas this was not the case for the two models
“without use of network data”; therefore the AIC cannot be compared among them. Abbreviations: SI: serial interval; AIC: Akaike information criteria; CI:
confidence interval; R2, coefficient of determination.

Figure 3. Reconstructed transmission tree for the 2017 measles outbreak in Yamagata, Japan. Each black square represents an
individual confirmed measles case who was allocated a unique number from 1 (index) to 60, according to the
notification order (model 2). The transmission network, based on the observed contact data (eg, sharing a confined
space or verified family contact), is shown by solid arrows. Reconstructed transmission network based on our
inference, using the time-lag of illness-onset times and geographic area of residence, as shown by the dotted arrows.
When a single primary case was not identified, two or more dotted arrows were drawn for all possible networks,
followed by a question mark. The driving school acted as the focal area for transmission in the beginning of the
epidemic; the traced contacts within the driving school are grouped using large black squares. Variable-sized dotted
squares represent the grouping of a cluster of cases that was generated from an identical primary case.

Measles Transmission in Yamagata, 2017
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by geographic district, and also by generation. As for the
geographic distance, the likelihood equation (3) yielded the
maximum likelihood estimate of decay rate, λ, at 0.02 (95% CI,
0.00–0.03) per kilometer. Deterministically reconstructing the
transmission network among 19 secondary cases without known
primary cases, by choosing for each secondary case a single link
with the highest probability out of all possible links, we identified
the “likeliest” primary cases for 17 secondary cases. Only two
cases (ie, cases 54 and 59), in whom the illness developed on day
32 and day 40, respectively, were not linked to a single unique
case (and had two or more possible primary cases). Within the
network, it was considered that the outbreak was terminated at
generation three. In addition to the primary case who generated
an extraordinarily large number of secondary cases, there were
two superspreaders: (i) the index case who contributed to
transmissions at the driving school, and case 13 who acquired
the infection from the index case and became ill on day 12. The
AIC value of model 2 (ie, network-based model) was 442.5 (with
three parameters, ie, two for serial interval distribution and one
for decay rate by distance); this was greater than the AIC values
of model 1 that used two- and three-generation models and
network data, which were 403.3 (with three parameters) and
404.4 (with four parameters), respectively.

From the reconstructed transmission tree in model 2, we
extracted the distribution of the number of secondary trans-
missions per primary case (Figure 4A). Overall, the mean number
of secondary transmissions per primary case, irrespective of
generation, was 0.98, which is comprehensible from the analysis
of the entire epidemic curve (ie, the mean should be (n − 1)=n
where n is the cumulative count of cases, amounting to 60 in the
Yamagata outbreak), with a variance of 12.8. For generations
0, 1, 2, and 3, the estimated mean number of secondary trans-
missions was 25.0, 0.8, 0.2, and 0.0 cases (per primary case),
respectively. Similarly, the variance for generations 0, 1, 2, and 3
was estimated at 576.8, 4.4, 0.8, and 1.0 cases2, respectively.
Figure 4B shows the number of secondary transmissions per
primary case as a function of the date of illness onset for the
primary case, indicating that both the mean value and variance
declined over time.

Table 2 summarizes the comparison of the number of
secondary transmissions between primary cases with and without
particular symptoms or laboratory testing characteristics. Cases
with skin rash (P < 0.01) and high viral shedding (P < 0.01)
were more likely to have a greater number of secondary cases
associated with them than cases lacking these characteristics.
Clinical forms of measles being typical or atypical were not
associated with the number of secondary transmissions (P =
0.49). Conditioning the comparison among the primary cases
who had at least one suspected secondary transmission, high
viral shedding was the only significant determinant associated
with heterogeneous patterns of the secondary transmissions
(P < 0.01). In both series of comparisons, cough, runny nose,
sore throat, and headache did not show any significant association
with the number of secondary transmissions.

DISCUSSION

In the present study, we explored the 2017 measles outbreak in
Yamagata, Japan, using two distinct methods for analyzing two
different sets of data. The first analysis relied on the temporal
distribution of the illness-onset dates of cases, enabling us to
capture the generation structure of the epidemic and showing that
the reproduction number of generation 2 was below the value
of 1. This allows us to objectively state that the outbreak was
brought under control by the second generation. The reproduction
number of generation 0 was on the order of 25. The estimated
number of secondary cases per primary case was comparable to
the conventional value of the basic reproduction number, R =
10–20 in a fully susceptible population.8–11 However, the first-
dose vaccination coverage in Yamagata is greater than 98%
(v = 0.98),48 which should have led the effective reproduction
number to take the value of (1 − v)R = 0.2–0.4 in a randomly
mixing population. Thus, the estimated reproduction number of
25 in generation 0 in our study indicated that the outbreak started
with a superspreading event. Comparing two- and three-
generation models (model 1), the latter yielded a slightly lower
AIC value, implying that there were three generations (plus the
index case) in total. However, the difference of AIC values was as

Figure 4. Generation- and time-dependent variations in the number of secondary measles transmissions (all derived from model
2). A. Offspring distributions for the number of secondary transmissions per single primary case are shown by
generation. The vertical axis shows the number of primary cases measuring the frequency; the horizontal axis shows
the number of secondary transmissions per single primary case. B. Time-dependent variations in the number of
secondary transmissions per single primary case. The number of secondary transmissions is shown as a function of
the date of illness onset in each primary case.
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small as <1.0; thus, it is difficult to conclude that the three-
generation model was a better fitted model.

The second part of the analysis focused on the transmission
network. Using the illness onset date along with the serial
interval, and also analyzing the geographic location for an
exposure, a transmission network with 19 unknown links was
reconstructed.37,45,49 Comparing AIC values between models 1
and 2 for the incidence dataset, model 1 yielded a smaller AIC
value than that of model 2 (403.3 vs 442.5, respectively) and was
regarded as better fitted to the observed data. In fact, model 1 is
simple enough to capture the temporal incidence dynamics.
However, the network data in model 2 enabled us to show that the
variance as well as the mean values of the secondary trans-
missions produced by a single primary case declined as a function
of time; the confidence interval calculated in model 1 disregards
the actual distribution of the number of secondary transmissions
that is skewed to zero for all generations. That is, in addition to
the overall success of control by verifying Rn < 1 for n ≥ 2, the
individual-based network reconstruction demonstrates that there
were no superspreaders in the second and third generations.
Overall, the control effort was successful in not allowing the
emergence of a primary case who generated a large number of
secondary transmissions. Moreover, by comparing the number of
secondary transmissions with those who had and those who did
not have clinical symptoms or laboratory characteristics, we were
able to identify high viral shedding from the throat mucosa as a
potential predictor of secondary transmission. The network
reconstruction implied that model 2 could also estimate that
there were three generations of infection following the index case;
however, this idea relies on our probabilistic reconstruction of the
transmission network, and the validity of this finding remains
highly dependent on the validity of our reconstruction algorithms.

In addition to these practical findings, it should be noted that
we were able to clarify the difference in retrievable information
between using temporal data alone and using network data, as an
important technical take-home message. Published studies
usually rely on a single type of data analysis using a single
model.37,49 Relying on the temporal distribution of illness onset, it
is plausible that the outbreak involved a total of four generations,
including the index case. We generated the generation-dependent

reproduction number and interpreted the epidemic dynamics over
the generation; however, such interpretation relied on the mean
estimate of the number of secondary transmissions. Reconstruct-
ing the transmission network, we were able to construct a
stochastic network and measure the heterogeneous patterns of
transmission at individual level. With the individual dataset, we
explored both the mean and variance, and an even higher moment
of the number of secondary transmissions per primary case. The
network also allowed us to verify that generation three was most
likely to be the final generation.

Furthermore, using the additional datasets of clinical
symptoms and laboratory testing results at individual level, we
were able to perform group comparisons to examine the statistical
associations with secondary transmission. High viral shedding
from the throat of the primary case appeared to be a potentially
good transmission predictor, which echoes the main findings
reported elsewhere.43,50 Nevertheless, its use as a routine tool to
find potentially infectious individuals may not be practical
because measuring viral load involves a several-day delay and
incurs a cost. To the best of our knowledge, the present study is
the first to show how different models, applied to the same
outbreak, yield different aspects of results that can be used to
evaluate outbreak control. That is, the reproduction number alone
is retrievable from the temporal distribution of cases (model 1) for
the “overall” evaluation of success in control whereas the trans-
mission network (model 2) can additionally help us understand
the success of contact tracing (by ensuring the absence of
superspreaders). Although the exact mechanism of superspread-
ing events needs to be further elucidated, the network can be used
for identifying possible clinical correlates of infectiousness (eg,
virus shedding in the throat).

Additional technical points regarding the temporal model
(model 1) should be discussed. When the serial interval was
estimated with the reproduction numbers, the mean serial interval
was estimated to be about 15 days, a slightly longer estimate than
the published estimate of around 12 days.46,51 Although the
temporal model can draw a best-fit epidemic curve, the model
missed the stochastic nature of transmission in its equations, and
the branching process or its analogs should ideally be applied to
account for the stochasticity. Despite the model’s simplicity and

Table 2. Comparison of the number of secondary infections per person between those with and without each symptom

Among all cases (absence vs presence of characteristics)
Among cases with at least one secondary case
(absence vs presence of characteristics)

Clinical characteristics Median [interquartile range] Mean P-value
(Wilcoxon)

Median [interquartile range] Mean P-value
(conditioned)

Rash 0.00 [0.00, 0.00] vs 0.50 [0.00, 2.00] 0.23 vs 2.66 <0.01a 1.00 [0.75, 2.50] vs 1.50 [0.50, 6.75] 1.50 vs 5.05 0.71
Stomatitis 0.00 [0.00, 0.50] vs 0.00 [0.00, 0.00] 1.14 vs 0.00 0.56 NC NC NC
Cough 0.00 [0.00, 0.50] vs 0.00 [0.00, 0.50] 1.01 vs 1.79 1.00 1.00 [0.75, 3.00] vs 6.30 [0.50, 12.00] 3.50 vs 6.25 1.00
Runny nose 0.00 [0.00, 0.63] vs 0.00 [0.00, 0.50] 1.24 vs 0.17 0.90 2.00 [1.00, 4.00] vs 0.50 [0.50, 0.50] 4.38 vs 0.50 0.07
Sore throat 0.00 [0.00, 0.50] vs 0.00 [0.00, 1.00] 1.19 vs 0.40 0.67 2.00 [0.50, 4.00] vs 1.00 [1.00, 1.00] 4.31 vs 1.00 0.66
Conjunctivitis 0.00 [0.00, 0.50] vs 0.00 [0.00, 0.00] 1.18 vs 0.00 0.28 NC NC NC
Headache 0.00 [0.00, 0.50] vs 0.00 [0.00, 0.63] 1.23 vs 0.25 1.00 2.00 [0.75, 4.00] vs 0.75 [0.50, 1.00] 4.35 vs 0.75 0.26
Arthralgia 0.00 [0.00, 0.50] vs 0.00 [0.00, 0.00] 1.16 vs 0.00 0.39 NC NC NC
Rash and cough 0.00 [0.00, 0.50] vs 0.50 [0.00, 0.12] 0.93 vs 4.17 0.15 1.00 [0.50, 3.00] vs 6.25 [0.50, 12.00] 3.50 vs 6.25 1.00
High viral shedding
(threshold)

0.00 [0.00, 0.00] vs 8.50 [0.00, 21.8] 0.30 vs 10.50 <0.01a 1.00 [0.50, 2.00] vs 12.00 [5.00, 25.00] 1.31 vs 14.00 <0.01a

Typical measles 0.00 [0.00, 0.00] vs 0.00 [0.00, 0.13] 0.25 vs 2.25 0.05a 1.00 [1.00, 2.00] vs 2.00 [0.50, 8.50] 1.36 vs 5.50 0.55

NC, not calculable.
aSignificant results. Right-hand half of the table shows the same comparison among those who had at least one or more secondary infections. Typical measles is
defined by fever, rash, and catarrhal symptoms (with one or more of the following symptoms: conjunctivitis, coryza, pharyngeal pain, and cough).

Measles Transmission in Yamagata, 2017

102 j J Epidemiol 2022;32(2):96-104



deterministic nature, it should be noted that the small variance-
to-mean ratio of the serial interval for measles enabled us to
identify the generation structure from the epidemic curve, and an
abrupt decline in the reproduction number by generation was
quantitatively demonstrated. As for the reconstructed trans-
mission tree, this also permitted us to calculate the reproduction
number over time, eventually converging to a value of 0. Whereas
variance in the number of secondary transmissions per primary
case was calculable, it should be noted that our method missed
the posterior distribution of the weight on each edge (ie, variance
of linkage at individual level), which could be the subject of
future improvement. Four limitations in this study should be
noted. First, our model did not consider unobserved cofounding
factors that could have affected the transmission dynamics.
For instance, the vaccination history of diagnosed cases was
incomplete and was therefore ignored during the analysis. Thus, it
was not feasible to explicitly account for vaccination history and
vaccine effect in our model. At a minimum, using both models
1 and 2, R1 = 1.3 indicated that the outbreak could have been
brought under control from the first generation, if 23.1% of
susceptible individuals had received prior vaccination. For similar
reasons, there could have been better clinical datasets that defined
modified measles, which might be characterized by a low trans-
mission risk as compared with classical measles.1,33,42,52 Second,
whereas cases were closely traced during the course of the
outbreak, there might have been other individuals involved in the
outbreak that were not identified, including modified measles
cases that did not consult a physician. Third, because the
observation data were incomplete, we had to extrapolate the onset
dates for some of the cases by subtracting a constant reporting
delay from the reported date. Fourth, the virus genotype was not
considered for this small outbreak.53

In summary, we analyzed a measles outbreak in Yamagata
from two different angles using different types of data and
modeling approaches. Whereas both models successfully indi-
cated that the outbreak was brought under control by generation
three and the reproduction number declined over the course of the
outbreak, we have shown that use of network data can yield the
distribution of the number of secondary transmissions; moreover,
the reconstructed tree allowed for the identification of possible
risk factors of secondary transmission. Depending on the study
objectives and available data during an outbreak investigation,
appropriate methods should be chosen to retrieve pertinent
information. That is, if the overall success of interventions must
be evaluated using the reproduction number, use of only the
temporal distribution of cases might suffice. Nevertheless, to
explore individual variations in secondary transmission (and
verify that contact tracing did not allow for the emergence of
superspreaders) or to attribute the transmission to individual
factors (eg, clinical symptoms), we have shown that network data
can serve as a very useful source of information.
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