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Objective: To establish an optimal model to predict the teicoplanin trough

concentrations by machine learning, and explain the feature importance in the prediction

model using the SHapley Additive exPlanation (SHAP) method.

Methods: A retrospective study was performed on 279 therapeutic drug monitoring

(TDM) measurements obtained from 192 patients who were treated with teicoplanin

intravenously at the First Affiliated Hospital of Army Medical University from November

2017 to July 2021. This study included 27 variables, and the teicoplanin trough

concentrations were considered as the target variable. The whole dataset was divided

into a training group and testing group at the ratio of 8:2, and predictive performance was

compared among six different algorithms. Algorithmswith higher model performance (top

3) were selected to establish the ensemble prediction model and SHAP was employed

to interpret the model.

Results: Three algorithms (SVR, GBRT, and RF) with high R2 scores (0.676, 0.670,

and 0.656, respectively) were selected to construct the ensemble model at the ratio of

6:3:1. The model with R2 = 0.720, MAE = 3.628, MSE = 22.571, absolute accuracy

of 83.93%, and relative accuracy of 60.71% was obtained, which performed better in

model fitting and had better prediction accuracy than any single algorithm. The feature

importance and direction of each variable were visually demonstrated by SHAP values,

in which teicoplanin administration and renal function were the most important factors.

Conclusion: We firstly adopted a machine learning approach to predict the teicoplanin

trough concentration, and interpreted the prediction model by the SHAP method, which

is of great significance and value for the clinical medication guidance.

Keywords: machine learning, SHAP, precision medicine, prediction model, model explanation, algorithm,

teicoplanin
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INTRODUCTION

Teicoplanin is a glycopeptide antibiotic for the treatment of
severe infections caused by Gram-positive bacteria, including
methicillin-resistant Staphylococcus aureus (MRSA) (1). As an
alternative to vancomycin, teicoplanin shows comparable clinical
outcomes with fewer occurrences of nephrotoxicity, ototoxicity,
and redman syndrome (2). However, with a very highly bound to
plasma albumin, teicoplanin has a very long terminal elimination
half-life (ranging from 100 to 170 h) and even takes several days
to achieve the effective plasma concentration, which results in
a great individual variability and permitting once daily dose
(3). Therefore, an initial loading dose is required to achieve
effective plasma concentration rapidly (3). Teicoplanin is highly
bioavailable (>90%) and eventually excreted in urine as a
prototype. Because of these pharmacokinetic characteristics, the
fixed dosing regimens of teicoplanin administered to patients
suffering from hypoalbuminemia (3), and/or renal insufficiency,
and/or an expansion of the extracellular fluids might lead to the
wide variations and fluctuations of concentrations (4).

The plasma trough concentration of teicoplanin is closely
associated with its therapeutic efficacy. A large number of
studies have shown that treated with the conventional regimen,
many patients may fail to reach therapeutic targets that lead
to clinical failure. However, repeated exposure to suboptimal
concentrations increases the risk factor of teicoplanin resistance
(5, 6). According to previous studies, 10–30 mg/l was regarded as
the target teicoplanin trough level for successful treatment (5, 6).
The teicoplanin trough concentrations are mainly influenced
by the teicoplanin administration regimen and the patient’s
pathophysiological conditions (such as age, weight, serum
albumin, renal function, concomitant therapy, concomitant
diseases, etc.) (4).

Customization of the antimicrobial dosing regimen is
continuously gaining more relevance in the antimicrobial
stewardship programs (7, 8). In this regard, therapeutic drug
monitoring (TDM), by measuring drug exposure in plasma,
may be helpful in individual therapies (3). TDM is an
effective method that assures adequate trough concentration for
maximum efficacy and thus, prevents adverse effects resulting
from overexposure (8–10). Based on the daily monitoring of
teicoplanin concentration on our TDM platform, individual
variation is evident, with low concentrations of teicoplanin,
most of which are unable to reach an effective plasma trough
concentration. However, some hospitals have no TDM platform
due to the limited medical conditions, and sampling and testing
of TDM cost time and money. In order to bring convenience to
clinicians and save time andmoney for patients, more than TDM,
more powerful drug concentration prediction tools are needed.

Machine learning algorithms, as a subdiscipline of artificial
intelligence, take advantage of large-scale complex algorithms
and datasets to uncover useful patterns, that can evaluate data-
driven estimation when forecasting from multiple variables and
obtain nonlinear variable relations to deliver predicted clinical
outcomes with high accuracy (11, 12). The rapidly developing
machine learning has been widely applied in the biomedicine
field, such as clinical diagnostics, precision treatments, and health

monitoring (13). However, population pharmacokinetic (PPK)
models are adopted by the ongoing research on teicoplanin
trough concentration. It includes certain criteria such as age,
weight, and creatinine/creatinine clearance rate (8, 14). Few
studies on the prediction of teicoplanin trough concentration
have adopted machine learning to model. In this study, the
machine learning approach was employed to establish an
optimal ensemble model to predict the teicoplanin trough
concentrations, which can assist clinicians in guiding the dosage
of medication. Furthermore, the SHapley Additive exPlanation
(SHAP) method was used to explain the feature importance
in our ensemble prediction model, so that our study could
also provide a reasonable explanation for the prediction, which
demonstrated how the relevant factors influenced the teicoplanin
trough concentrations.

METHODS

Patients and Data
A retrospective study was conducted among patients who
underwent teicoplanin intravenously at the First Affiliated
Hospital of Army Medical University from November 2017
to July 2021. Patients were enrolled in this study according
to the following inclusion criteria: (1) age > 14 years;
(2) > 2–3 days of treatment with teicoplanin (steady-state
concentration); and (3) underwent TDM of teicoplanin in which
the trough blood samples were collected immediately before
administering the next dose. The following exclusion criteria
were applied: (1) pregnant women and (2) failed to reach the
lower limit of quantification (LLOQ) for teicoplanin through
concentration assay.

Ethics Approval
This study was approved by the Hospital Ethics Committee of the
Southwest Hospital of ArmyMedical University ([B]KY2021095)
and performed in accordance with the Declaration of Helsinki.
In the ethical approval documents, the informed consent has
been exempted. The procedures in this study are fully compliant
with the ethical standards in accordance with the Institutional
Research Committees.

Measurement of Teicoplanin Trough
Concentration
The teicoplanin plasma trough concentration was measured
by high-performance liquid chromatography (HPLC) (1200
Series, Agilent Technologies Incorporation). Determination
was performed using the Innoval-C18 column (5µm, 4.6mm
× 250mm, Dikma Technologies). The mobile phase was
76% sodium dihydrogen phosphate (0.01 mmol/L) and 24%
acetonitrile (pH 2.9). The UV detection wavelength was 240 nm.
The trough plasma concentration linear range was 3.125–100.000
mg/l (correlation coefficient R2 = 0.9998). Both the intra- and
interday precisions were within 7%.

Data Collection and Processing
The teicoplanin dataset includes teicoplanin administration
(loading dose, time of loading dose, loading intervals,
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maintenance intervals, and total duration of treatment),
demographic information (age, height, weight, gender, and
APACHE II), laboratory parameters [albumin (ALB), estimated
glomerular filtration rate (eGFR), cystatin C (Cys-C), creatinine
clearance rate (CLcr), aspartate aminotransferase (AST), alanine
aminotransferase (ALT), TBIL, NEU%, and PLT], concomitant
therapy (ECMO, CRRT, and co-medication), and concomitant
diseases (AML, hyperproteinemia, sepsis) were obtained from
the hospital’s electronic medical record system (EMRS). After
cleaning up of teicoplanin dataset, the target variable and
relevant crucial covariates were screened subsequently. The rate
of missing data is 3.32%. The mean filling method in Python
(version 3.6, Python Software Foundation) was employed to
fill the missing data, resulting in a dataset of 279 × 27. The
teicoplanin trough concentrations were selected as the target
variable, while the whole dataset was randomly divided into a
training group and testing group at the ratio of 8:2.

Modeling and Validation
The linear correlation between the teicoplanin trough
concentrations and the relevant covariates was evaluated
(Supplementary Table S1). According to the correlation
coefficient, the linear correlation among them was poor.
Therefore, six nonlinear machine learning algorithms for
modeling were employed to predict the teicoplanin trough
concentrations, including support vector regression (SVR),
random forest (RF), Adaptive Boosting (Adaboost), Boostrap
aggregating (Bagging), Gradient Boosted Regression Trees
(GBRT), and eXtreme Gradient BoostingX (XGBoost).

In order to evaluate the single algorithm predictive
performance, the metrics of R-squared (R2), mean square
error (MSE), and mean absolute error (MAE) were used. R2

indicates the explanation degree of the independent variable to
the dependent variable. The proportion of a single algorithm
in the final model was determined through the prediction of
different algorithms. The final result of the ensemble model
is the weighted average based on the ranking of the top three
algorithms. The calculating formulas are as follows:
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R2 represents the goodness of fit of the model,and the value
range is 0–1. The closer R2 gets to 1, the better the goodness
of fit of the model becomes.yo represents the observed value;
yp represents the predicted value. With reference to MSE and
MAE, when their values decrease, the model has improved the
goodness of fit. In addition, the accuracy of predicted trough
concentration compared with the observed concentration was
investigated. The absolute accuracy represented the accuracy of

the predicted trough concentration to be within ± 5 mg/L of
the observed trough concentration, while the relative accuracy
showed that the predicted trough concentration was within ±

30% of the observed trough concentration.
The top three algorithms were selected to establish the

ensemble prediction model of teicoplanin trough concentrations.
In addition, another dataset of 20 patients were collected as
the validation group to corroborate the performance of the
prediction models. The workflow of data processing, algorithm
selection, and modeling were displayed in Figure 1.

Model Interpretation
SHapley Additive exPlanation, is a game-theoretic method that
provides information to machine learning outputs. It determines
and allocates credit for model outputs by means of Shapley
values coming from game theory including all related covariants
(15). As an additive feature attribution method, SHAP value
represents contributions of each feature in a certain sample, in
which each feature is regarded as a “contributor.” A feature with
a positive SHAP value improves the output value, and those larger
numerical values make greater contributions (16, 17). SHAP
values were used to provide the interpretation of our ensemble
prediction model (18), in which the SHAP summary plot, the
importance ranking, and the SHAP dependence plot of the
relevant covariates were demonstrated based on the permutation
explainer provided by the SHAP Python package (version 0.39.0).

Statistical Analysis
Statistical analysis was performed using IBM SPSS version
25.0 (IBM Corporation, Armonk, New York, USA). The
Kolmogorov–Smirnov test was used to evaluate whether the
measurement data were normally distributed. Measurement
data were presented as the median and interquartile range
(IQR) for nonnormal distribution variables and mean ± SD
for normal distribution variables. Measurement data were
analyzed by Mann-Whitney U test (non-normal distribution)
and independent t-test (normal distribution). Categorical
data were expressed as n (%) and analyzed by the chi-
squared test (n ≥ 5) or Fisher’s exact test (n < 5).
The tests were two-sided with a p < 0.05 which deemed
statistically significant.

RESULTS

Baseline Patient Characteristics
This study was performed on 279 TDM measurements obtained
from 192 patients who underwent teicoplanin treatment. The
whole dataset was randomly divided into training group and
testing group at the ratio of 8:2, which were 223 and 56 cases,
respectively. The baseline information of 27 variables and the
comparison between the training and testing groups were shown
inTable 1, without any significant difference between variables of
the two groups (p > 0.05).

Algorithm Selection
According to the linear correlation result
(Supplementary Table S1), the linear correlation between
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FIGURE 1 | The workflow of data processing and algorithm selection.

the teicoplanin trough concentrations and the relevant covariates
was poor. Thus, six nonlinear algorithms were included for the
algorithm selection. The performance metrics of six different
algorithms including R2, MAE, MSE, and accuracy were shown
inTable 2. Among the six algorithms, SVR has the best predictive
performance of prediction, with the highest R2, accuracy, and
lowest MAE, MSE. To select the algorithms to establish the
ensemble prediction model for further promoting stability and
accuracy, R2 was chosen to evaluate the goodness-of-fit of the
model. Among the six algorithms, SVR, GBRT, and RF had high
goodness-of-fit, which is 0.676, 0.670, and 0.656, respectively. As

a result, the top three performing algorithms (SVR, GBRT, and
RF) were chosen to predict teicoplanin trough concentration and
for a subsequent experiment.

Modeling and Validation
To establish the ensemble predictionmodel of teicoplanin trough
concentration, the target parameters were set as the highest
R2, absolute accuracy, and relative accuracy, then the weight
proportion of three candidate algorithms (SVR, GBRT, and RF)
with a high R2 score was adjusted. Based on the automatic
calculations of machine learning, the ensemble model composed
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TABLE 1 | The description of the study samples.

Variables Values P value

Training (n = 223) Testing (n = 56)

Teicoplanin trough concentration (mg/L) 13.32 (8.87,19.12) 11.291 (7.62,22.11) 0.603 a

Teicoplanin administration

Loading dose (mg/kg) 7.91 (6.67, 12.18) 7.45 (6.09, 12.23) 0.149 a

Times of loading dose 0.747 d

< 3 68 (30.49) 14 (25)

3-5 149 (66.82) 41 (73.21)

> 5 6 (2.69) 1 (1.79)

Loading intervals (h) 0.924 d

12 201 (90.13) 52 (92.86)

24 14 (6.28) 3 (5.36)

Others 8 (3.59) 1 (1.79)

Maintenance dose (mg/kg) 8 (6.09, 12.18) 7.08 (5.64, 12.23) 0.086 a

Maintenance intervals (h) 0.249 d

12 13 (5.83) 2 (3.57)

24 196 (87.89) 47 (83.93)

Others 14 (6.28) 7 (12.5)

Total duration of treatment (day) 5 (3, 8) 4 (3, 6.75) 0.079 a

Demographic information

Age (years) 53 (40, 66) 52.5 (38.25, 65.75) 0.823 a

Height (cm) 165 (155.07, 168.27) 165 (155.07, 170) 0.782 a

Weight (kg) 59 (53.44, 65.7) 65 (53.44, 73.75) 0.059 a

Gender, male (n, %) 80 (35.87%) 25 (44.64%) 0.226 c

APACHE II 24(20, 28) 23(19, 26) 0.053a

Laboratory parameters

ALB (g/L) 32.32 ± 4.91 32.40 ± 4.59 0.911 b

eGFR (ml/min/L) 97.06 (61.84, 120.57) 86.63 (50.61, 111.41) 0.063 a

Cys-C (mg/L) 1.52 (0.97, 1.7) 1.6 (1.05, 1.76) 0.453 a

CLcr e (mL/min/1.73m2 ) 85.55 (55.43, 125.25) 78.23 (40.22, 123.97) 0.317 a

AST (IU/L) 41.7 (22.5, 79.9) 34.2 (19.63, 81.6) 0.754 a

ALT (IU/L) 26.5 (14, 49.2) 24.8 (10.78, 69.25) 0.695 a

TBIL (umol/L) 20.4 (12.4, 48.1) 19.25 (13.93, 50.05) 0.984 a

NEU% 77.1 (64.5,87.5) 79.5 (67.53,89.1) 0.457 a

PLT (109/L) 83 (37, 196) 135.5 (40, 252.25) 0.142 a

Concomitant therapy

ECMO (n, %) 11 (4.93%) 2 (3.57%) 1.000 d

CRRT (n, %) 61 (27.35%) 16 (28.57%) 0.855 c

Co-medication f (n, %) 17 (7.62%) 3 (5.36%) 0.774 d

Concomitant diseases

AML (n, %) 30 (13.45%) 8 (14.29%) 0.871 c

Hypoproteinemia (n, %) 143 (64.13%) 34 (60.71%) 0.636 c

Sepsis, (n, %) 80 (35.87%) 14 (25%) 0.110 c

APACHE II, acute physiology and chronic health evaluation II; ALB, albumin; Cys-C, cystatin C; eGFR, estimated glomerular clearance; CLcr, creatinine clearance rate; AST, aspartate

aminotransferase; ALT, alanine aminotransferase; TBIL, total bilirubin; NEU%, the percentage of neutrophils; PLT, platelet count; ECMO, extracorporeal membrane oxygenation; CRRT,

continuous renal replacement therapy, AML, acute myeloid leukemia.

Measurement data were presented as median and interquartile range (IQR) for non-normal distribution variables and mean ± SD for normal distribution variables. Categorical data were

expressed as n (%).
a Mann–Whitney U test.
b Independent t-test.
c Chi-squared test.
d Fisher’s exact test.
e Creatinine clearance was calculated by the Cockcroft formula. CLcr = (140 – age [years]) ×weight (WT, kg) × 0.85 (if female)/0.818 × SCr (µmol/L).
f Comedication included Furosemide, Amikacin Sulfate, Cyclosporine, Isepamicin Sulfate, Amphotericin B liposome and Colistin Sulfate.
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TABLE 2 | The model performance metrics of six different algorithms.

Model R2 MAE MSE Accuracy-1 a Accuracy-2 b

SVR 0.676 3.868 26.071 76.79% 62.50%

GBRT 0.670 4.054 26.568 69.64% 62.50%

RF 0.656 4.410 27.683 62.50% 48.21%

Bagging 0.652 4.440 28.059 64.29% 44.64%

Adaboost 0.610 4.743 31.386 55.36% 48.21%

XGBoost 0.551 4.630 36.186 60.71% 55.36%

SVR, Support Vector Regression; GBRT, Gradient Boosted Regression Trees; RF, Random

Forest; Bagging, Boostrap aggregating; Adaboost, Adaptive Boosting; XGBoost, eXtreme

Gradient Boosting.
a Absolute accuracy, the predict trough concentration was within± 5mg/l of the observed

trough concentration.
b Relative accuracy, the predict trough concentration was within ± 30% of the observed

trough concentration.

TABLE 3 | The model performance metrics of the ensemble model.

Group R2 MAE MSE Accuracy-1 a Accuracy-2 b

Testing group 0.720 3.628 22.571 83.93% 60.71%

Validation group 0.686 3.196 18.260 77.78% 88.89%

a Absolute accuracy, the predict trough concentration was within± 5mg/l of the observed

trough concentration.
b Relative accuracy, the predict trough concentration was within ± 30% of the observed

trough concentration.

of SVR, GBRT, and RF (6:3:1) was determined. Compared to any
single algorithm, the ensemble model had the best performance
with the highest R2, absolute accuracy and lowest MAE, MSE
(Table 3). Based on the testing group’s data, the absolute accuracy
(± 5 mg/l) of the ensemble model was 83.93%, and the relative
accuracy (± 30%) was 60.71%. To validate the ensemble model,
another dataset of 20 patients were collected from the hospital as
the validation group. The results showed that validation group
had higher relative accuracy and lower MAE, MSE than the
testing group (Table 3), indicating that the model has quite good
generalization ability. The exact distribution of predicted and
observed values for teicoplanin trough concentration was shown
in Figure 2.

Interpretation of the Ensemble Model
Based on the selected relevant variables, the SHAP figures
demonstrated the positive or negative correlations between the
relevant variables and the teicoplanin trough concentrations. The
SHAP summary plot of the top 20 relevant variables in the
ensemble model was displayed in Figure 3A. The feature values
ranked the importance of the predictionmodel, with loading dose
and maintenance dose on the top two. The dot color represents
the feature values of each variable, which is redder when the
feature value gets higher and bluer when the feature value gets
lower. Each feature value of a certain variable corresponds to
a SHAP value (x-axis). For one sample, the aggregation of the
SHAP values of each variable equals to the predicted teicoplanin
trough concentration. To identify the features that influenced the

ensemble model the most, the average of absolute SHAP values
of each relevant variable (top 20) was calculated, the top 12 of
which included loading dose, maintenance dose, eGFR, duration
of teicoplanin treatment, weight, CLcr, age, ALB, maintenance
intervals, Cys-C, gender, and sepsis in a descending order.
Among them, the SHAP value of loading dose has the highest
score (0.200), followed by the SHAP value of maintenance dose
(0.199), and eGFR (0.182) demonstrating their importance in
predicting the teicoplanin trough concentration (Figure 3B).

The SHAP dependence plot of the top 12 relevant variables
was displayed in Figure 4. Our results showed higher loading
dose, maintenance dose, duration of teicoplanin treatment,
weight, ALB, Cys-C, as well as lower eGFR, CLcr and age
were related to higher teicoplanin trough concentration. Female
patients and patients with sepsis comorbidities may have higher
teicoplanin trough concentration.

DISCUSSION

Herein, we constructed an optimal prediction model of
teicoplanin trough concentration, and used SHAP method to
interpret of the prediction model. We selected the algorithms
through R2 comparison and continuously debug the ratio to
optimize the ensemble model. Ultimately, SVR, GBRT, and RF
(6:3:1) were determined, of which the R2 and the absolute
accuracy exceeded any single algorithm, and theMAE, MSE were
lower than any single algorithm. The SHAP values demonstrated
the feature importance and direction of each variable, and
clarified the correlation between the target variable and the
relevant important covariates, which is of great significance and
value for the clinical medication guidance.

Machine learning is used broadly in the biomedicine field.
Its main ability is to gather and interpret any relevant data
even on a large scale and thus, transforms medicine to a
data-driven approach. Precision treatment is one of the top
applications of machine learning, where a patient receives
tailored medical care, such as personalized dose adjustment,
plasma concentration prediction, and adverse drug events
prediction (19–22). Ensemble learning, one of the key features of
machine learning, comes from a combination of various models
that is capable of producing a final prediction. Random forests,
gradient boosting, and stacking/meta-ensembles are some of
the approaches available in this feature (13). In this study, the
ensemble model performed better than any single algorithm
included by contrasting the goodness-of-fit and accuracy.

The traditional pharmacokinetic analysis is based on
mathematically simple techniques with poor applicability and
high requirements for data quality (23). PPK analysis, a new
statistical approach, combines the traditional pharmacokinetic
model with population statistics model, of which nonlinear
mixed-effects modeling (NONMEM) is the most widely
used program (23). However, owing to the explicit analytical
model used, PPK model is relatively rigid to apply, where
adding or removing a parameter may be complicated (24). In
contrast, self-organization is what makes up machine learning.
It enables computers to access previous data without being
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FIGURE 2 | Comparison of predicted and observed value. (A) The blue dots represented testing sample, with observed values on the x-axis and predicted values on

the y-axis. The blue dots between the dotted lines indicated that the predict values were within ± 30% of the observed values. (B) The blue dots represented testing

sample, with observed values on the x-axis and predicted values on the y-axis. The blue dots between the dotted lines indicated that the predict values were within ±

5 mg/l of the observed values. (C) The red dots indicated the observed values, and blue dots indicated the predicted values. The green shade represented within ±

30% of the observed values, and the red shade represented within ± 5 mg/l of the observed values.

explicitly programmed. Many researches have reported that the
predicting accuracy of machine learning approach exceeded the
PPK method (20, 25). Huang et al. constructed an ensemble
prediction model of vancomycin trough concentrations, and
compared with PPK model. Their findings showed that machine

learning model works better with higher accuracy of prediction
(20). The evaluation parameters (R2 and accuracy) of our
ensemble predicting model have surpassed its vancomycin
counterpart, suggesting that our model has a good prediction
effect and prospect of clinical application.
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FIGURE 3 | The model’s interpretation by SHapley Additive exPlanation (SHAP). eGFR, estimated glomerular clearance; CLcr, creatinine clearance rate; ALB, albumin;

Cys-C, cystatin C; APACHE II, Acute Physiology and Chronic Health Evaluation II; CRRT, continuous renal replacement therapy; ALT, alanine aminotransferase; PLT,

platelet count; NEU%, the percentage of neutrophils. (A) The SHAP summary plot of the top 20 relevant variables. The SHAP value (x-axis) is a unified index

responding to the effect of a variable in the ensemble model. In each variable importance row, all the patients’ attributes to the outcome were plotted using different

colored dots, in which the red (blue) dots represent high (low) values. The higher the SHAP value of a variable, the higher teicoplanin trough concentration. (B) The

importance ranking of the top 20 variables according to the mean (|SHAP value|).

The interpretation of predictions from a complex statistic
model might make equal sense to the model prediction itself
in healthcare (26). As a classic posthoc interpretation method,
SHAP identifies the significant influencing factors with its
effect magnitude (27). In this study, the distribution of SHAP
values of a relevant covariate, and also its importance and
direction were measured. The averages of absolute SHAP
values indicated that teicoplanin administration was the most
important factor, for which the loading dose, maintenance
dose, duration of teicoplanin treatment and maintenance
intervals ranked first, second, fourth, and ninth, respectively.
Due to its long elimination half-life, teicoplanin requires
ample time for the concentration to achieve constant state.
As a result, loading doses are required to exhibit the same
concentration promptly. It has been reported that increase
of loading doses is beneficial for the clinical outcomes, but
significant teicoplanin underexposure onset of the therapy
is imminent if insufficient dosing persists (28, 29), which
were consistent with our study. The SHAP dependence
plot showed that the teicoplanin trough concentration was
positively correlated with loading dose, maintenance dose,
duration of teicoplanin treatment, and negatively correlated with

maintenance intervals. It indicated that sufficient loading dose
should be ensured first to rapidly achieve the effective plasma
concentration, and on this basis, adequate maintenance dose,
treatment duration and appropriate maintenance intervals were
also necessary.

Since teicoplanin is mainly eliminated as prototype through
the kidney, renal dysfunction causes a prolongation of the
elimination half-life and an elevated plasma concentration of
teicoplanin (28). A large number of studies have demonstrated
that renal function-related parameters including eGFR, CLcr,
and Cys-C were the significant covariate influencing teicoplanin
elimination (9, 14, 30, 31). The concomitant diseases and
medication that affect the renal function can also influence
teicoplanin trough concentration. For example, sepsis is often
accompanied by multiple organ dysfunction, including renal
insufficiency, leading to plasma accumulation of teicoplanin due
to the reduced elimination. Co-medication with drugs that are
explicitly warned by instructions with a high risk of exacerbating
renal toxicity, also increases the metabolic burden of renal
function and affects the elimination of teicoplanin. Consistent
with our findings, our results showed that low level of eGFR
and CLcr, as well as high level of Cys-C were closely related to
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FIGURE 4 | SHAP dependence plot of model. eGFR, estimated glomerular filtration rate; CLcr, creatinine clearance rate; ALB, albumin; Cys-C, cystatin C. The SHAP

dependence plot showed how the relevant variable affected the output of the ensemble prediction model. SHAP values for specific relevant variable exceed 0,

representing an increased teicoplanin trough concentration.

higher teicoplanin trough concentration, with the importance
ranking third, sixth, and tenth, respectively. Moreover, patients
with sepsis comorbidities and comedication might have higher
teicoplanin trough concentration. Furthermore, the level of
plasma ALB was another important factor that affects the
teicoplanin trough concentration. With a high-binding rate of
plasma ALB (90–95%), most teicoplanin combine with plasma
ALB as teicoplanin-ALB complex (32). Our results demonstrated
that ALB was positively related with the teicoplanin trough

concentration, ranking eighth in importance. For patients with
hypoalbuminemia, ALB supplementation should be the first
priority, which matters not only for the drug treatment, but
for maintaining the normal physical function. Meanwhile,
shortening the loading interval and appropriately increasing
the loading dose can be a feasible measure. Researches have
shown that the concomitant therapy such as continuous renal
replacement therapy (CRRT) and extracorporeal membrane
oxygenation (ECMO)may interfere with the pharmacokinetics of
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teicoplanin (33), for which drugs may be cleared during in vitro
CRRT or adhere to the fibers and catheters of oxygenator during
ECMO (34, 35). Consistently, our results indicated that the
teicoplanin trough concentrations of patients with ECMO and
CRRT therapy showed a downward trend. In our study, pediatric
patients (aged < 14 years) were excluded because of their diverse
pharmacokinetics (36). According to the medication instruction,
no dose adjustment is required for the elderly patients. However,
our SHAP values showed that age was positively related with
the teicoplanin trough concentration, which might result from
the commonly concomitant therapy for elders. Fan et al. found
that gender affected the tigecycline trough plasma concentration
in ICU patients, and women were independent risk factors for
high-tigecycline exposure (37). Similar results were obtained in
our SHAP analysis that female patients have higher teicoplanin
trough concentration compared with male. Thus, we suggest
to take all the aforementioned factors into account in the
teicoplanin administration regimen.

Despite the promising results, there is room to optimize our
ensemble prediction model overall. Considerable limitations of
this study should be taken into account. First, due to limited
samples on hand, accuracy may be compromised. Construction
of the model itself calls for a modest number of samples, let alone
further modeling that the study may deem necessary. Second,
since retrospective data rather than prospective data were used
in the study, some uncontrollable factors were inevitable. For
instance, the fluctuation in blood collection time point might lead
to changes in the teicoplanin plasma concentration. Third, an
external validation should be performed in the future studies to
improve the applicability of this model.

Our study primarily aims to encourage the application of
machine learning methods in biomedicine. To the best of our
knowledge, scarcely any study has adopted machine learning
approach to predict the teicoplanin trough concentration yet,
and we firstly used SHAP values to interpret of the ensemble
algorithm model. Therefore, our study fills the gap in this
research field. In the future, we plan to further establish an easy-
to-use web application based on the presented prediction model,

which then could serve as a real-time support tool in clinical
decision by self-learning and optimizing, and to help with the
personalized dose adjustment of teicoplanin.
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