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Abstract. The mismatch of oxygen supply and demand during 
hemorrhagic shock disturbs endoplasmic reticulum (ER) 
homeostasis. The resulting accumulation of unfolded proteins 
in the ER lumen, which is a condition that is defined as ER 
stress, triggers the unfolded protein response (UPR). Since the 
UPR influences the extent of organ damage following hemor‑
rhagic shock/reperfusion (HS/R) and mediates the protective 
effects of stress preconditioning before ischemia‑reperfusion 
injury, the current study investigated the mechanisms of ER 
stress preconditioning and its impact on post‑hemorrhagic 
liver damage. Male C56BL/6‑mice were injected intraperito‑
neally with the ER stress inductor tunicamycin (TM) or its 
drug vehicle 48 h prior to being subjected to a 90 min pres‑
sure‑controlled hemorrhagic shock (30±5 mmHg). A period of 
14 h after hemorrhagic shock induction, mice were sacrificed. 
Hepatocellular damage was quantified by analyzing hepatic 
transaminases and hematoxylin‑eosin stained liver tissue 
sections. Additionally, the topographic expression patterns of 
the ER stress marker binding immunoglobulin protein (BiP), 

UPR signaling pathways, and the autophagy marker Beclin1 
were evaluated. TM injection significantly increased BiP 
expression and modified the topographic expression patterns 
of the UPR signaling proteins. In addition, immunohisto‑
chemical analysis of Beclin1 revealed an increased pericentral 
staining intensity following TM pretreatment. The histologic 
analysis of hepatocellular damage demonstrated a significant 
reduction in cell death areas in HS/R+TM (P=0.024). ER 
stress preconditioning influences the UPR and alleviates 
post‑hemorrhagic liver damage. The beneficial effects were, 
at least partially, mediated by the upregulation of BiP and 
autophagy induction. These results underscore the importance 
of the UPR in the context of HS/R and may help identify novel 
therapeutic targets.

Introduction

Trauma is the most common cause of death for all age groups 
below the age of 44 and the single largest cause for years of 
life lost in the United States (1‑3). Acute trauma care, therefore, 
is not only of the utmost importance from a clinical point of 
view but also from a public health perspective (4). One of the 
most dire consequences of severe trauma, and a leading cause 
of post‑injury death, is hemorrhagic shock as it may result in 
ischemia‑reperfusion injury (IRI), systemic inflammation, and 
multi‑organ failure (5). Despite enormous amounts of research, 
the underlying pathomechanisms are still poorly understood, 
hindering a target‑oriented therapy.

Hemorrhagic shock is known to cause a mismatch between 
oxygen supply and demand. The tissue hypoxia that occurs 
results in pathophysiological disturbances of the cellular 
machinery. Protein maturation and folding in the endo‑
plasmic reticulum (ER) is a highly energy‑dependent cellular 
process (6). Perturbations in the ER homeostasis result in 
an impaired ER function and an accumulation of unfolded 
proteins in the ER lumen‑a condition defined as ER stress (7). 
Consequently, the cell activates specific signaling pathways, 
which are collectively known as the unfolded protein response 
(UPR) consisting of three primary branches: Protein kinase 
RNA‑like endoplasmic reticulum kinase (PERK), activating 
transcription factor 6 (ATF6), and inositol‑requiring enzyme 1 
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(IRE1). Under physiological conditions, binding immunoglob‑
ulin protein (BiP), a molecular chaperone and master regulator 
of ER function, binds to the luminal domains of PERK, ATF6, 
and IRE1 (8). Upon ER stress, BiP dissociates from each 
stress sensor and facilitates their activation. Whereas PERK 
and IRE1 undergo oligomerization and trans‑autophosphor‑
ylation (9), ATF6 is activated by proteolytic cleavage in the 
Golgi compartment (10). After its translocation to the nucleus, 
ATF6 promotes the transcription of genes coding for adaptive 
proteins, such as chaperones, and of X‑box binding protein 1 
(XBP1) mRNA (11). Before its translation, XBP1 mRNA is 
spliced by activated IRE1 endoribonuclease (12). XBP1 codes 
for an active transcription factor, which amplifies the synthesis 
of components of the ER‑associated protein degradation 
machinery (13). Additionally, the activation of the PERK 
pathway results in a global attenuation of protein synthesis by 
phosphorylation of eukaryotic initiation factor 2α (eIF2α) (14). 
In brief, the UPR is primarily a pro‑survival cellular response 
aiming to restore protein homeostasis in the ER by facilitating 
protein folding, reducing protein synthesis, and increasing 
protein degradation. However, if the UPR fails to reestablish 
protein homeostasis and ER stress persists, cell death may 
occur (15).

As reported in previous studies, the above‑described 
cellular mechanisms influence the extent of liver damage 
following hemorrhagic shock and reperfusion (HS/R) (16‑18). 
Furthermore, the UPR mediates the protective effects of 
stress preconditioning, an established concept to mitigate 
subsequent IRI. Previous studies have demonstrated that 
ischemia‑reperfusion associated hepatocellular, myocardial, 
and neuronal cell damage can be alleviated by stress 
preconditioning (e.g. by remote ischemic preconditioning 
or lipopolysaccharide pretreatment) (19,20). From a clinical 
point of view, the therapeutic potential of this method 
has already been demonstrated by the bench‑to‑bedside 
transfer of remote ischemic preconditioning in patients 
undergoing coronary artery bypass surgery (21,22). Even 
though IRI and HS/R signaling pathways have been studied 
for decades, some of the underlying mechanisms remain 
elusive. However, developing novel therapeutic approaches 
requires a deeper understanding of the pathophysiology 
of IRI and HS/R. Based on the above‑described findings 
and our previous results, we hypothesized that ER stress 
preconditioning alleviates liver damage following HS/R 
and may thereby reveal a target with potential therapeutic 
relevance. To investigate this hypothesis and to identify the 
underlying protective mechanisms, we injected mice with 
the pharmacological ER stress inducer tunicamycin (TM) 
and subjected them to HS/R 48 h later.

Materials and methods

Animal care. C57BL/6 mice, 10 weeks of age, were purchased 
from Charles River Laboratories (Sulzfeld, Germany). Due to 
the influence of female sex steroids on post‑hemorrhagic organ 
damage, only male mice were included (23). The animals were 
housed in the animal facility of the University of Heidelberg 
at a temperature of 21˚C and a 12 h light/dark cycle. The mice 
had one to two weeks for acclimatization and had access 
to water and chow ad libitum. During acclimatization the 

animals were housed in group cages and with start of the 
experiment animals were placed individually. All study proto‑
cols were reviewed and approved by the section for agriculture 
and veterinary services of the Regional Council, Karlsruhe, 
Germany (35‑9185.81/G‑65/13).

Experimental model. The shock protocol was performed as 
previously published (17,18). Briefly, anesthesia was induced 
via inhalation of 4% isoflurane (Abbott Laboratories Ltd.) 
in an acrylic glass chamber. After loss of righting reflex 
the animals were placed in a supine position on a heating 
cushion and anesthesia was maintained by administering 
~1.2% isoflurane via a face mask. For temperature control 
(37.0±0.5˚C) a rectal probe was inserted. Before the bilateral 
dissection of the groins, 25 µl (~5 mg/kg body weight) of 
0.5% Bupivacaine hydrochloride (AstraZeneca Gmbh) was 
applied for local anesthesia intraincisionally. Subsequently, 
the femoral arteries were cannulated with a polyethylene 
tubing, previously flushed with a heparin solution. The 
right catheter was connected to a blood pressure analyzer 
(BPA‑400, Micro‑med Inc.), the left catheter was used 
to withdraw blood and induce a hemorrhagic shock. The 
mean arterial pressure (MAP) was maintained for 90 min 
at 30±5 mmHg. Afterwards, Ringer's solution, three times 
the shed blood volume, was injected for resuscitation. 
Subsequently, the catheters were removed, the vessels were 
ligated, and the skin was closed. After the discontinuation of 
isoflurane inhalation, the mouse was placed in its cage and 
observed till emergence.

Mice were randomly assigned to five different groups. 
HS/R groups were treated as outlined above. Depending on 
the group assignment mice received either TM (0.75 mg/kg 
BW in solution, Merck KGaA) or its drug vehicle (DV) 
dimethyl sulfoxide (DMSO), dissolved in 100 µl Ringer's 
solution, which was given intraperitoneally 48 h before 
shock induction. Sham controls (SC) were created for each 
HS/R group. SC groups received the same treatment as the 
corresponding HS/R group but did not undergo hemorrhagic 
shock. For the evaluation of physiologic baseline values, 
euthanasia was performed under anesthesia without any 
prior treatment given to the mice. This baseline control 
(BC) group as well as the HS/R+TM group consisted of 
six animals whereas all other groups (SC+DV, SC+TM, 
HS/R+DV) contained three animals. Experimental group 
size calculation was based on our previous study, which 
compared mice undergoing HS/R procedure and receiving 
the drug vehicle (DV) DMSO during reperfusion with mice 
undergoing HS/R procedure without any pharmaceutical 
intervention (18). Each group included 6‑7 animals. The 
same comparison was performed for mice undergoing sham 
procedure with 5 animals per group. Using Mann‑Whitney 
U test we could not find any significant differences in 
transaminase levels or percentage of cell death areas (HS/R 
groups). Therefore, we concluded that the applied dosage 
of our solvent DMSO does not influence our main outcome 
parameters and decided to limit the number to three animals 
per control group in the present study.

Tissue harvesting and plasma analysis. A period of 14 h after 
shock induction, anesthesia was induced and maintained via 
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inhalation of 4% isoflurane. After loss of the paw withdrawal 
reflex and observation of agonal breathing, a laparotomy 
and thoracotomy were performed. For euthanasia the right 
heart ventricle was punctured using a heparinized 1‑ml 
syringe. Death was confirmed by observation of cardiac 
and respiratory arrest. The collected blood was centrifuged 
(10 and 5 min at 2,000 x g) and 50 µl of the plasma was 
used to measure aspartate aminotransferase (ASAT) as well 
as alanine aminotransferase (ALAT) concentrations (Fuji 
Dri‑Chem NX500i; FujiFilm Europe GmbH). Subsequently, 
the body was flushed with a heparin solution through punc‑
ture of the left ventricle. The liver was then harvested and 
halved. One half was snap‑frozen by submerging the sample 
tubes into liquid nitrogen and the other half was placed in 4% 
paraformaldehyde (PFA).

Histology. After fixation in 4% PFA for at least 24 h the livers 
were dehydrated using a series of alcohols with increasing 
concentrations and acetone. Hereafter, the organs were 
embedded in paraffin. The tissues were then cut into 5 µm 
sections. For deparaffinization the slides were placed in 
xylene and afterwards immersed in a series of alcohols with 
decreasing concentrations for rehydration. The sections were 
then either processed for immunohistochemistry or stained 
with hematoxylin and eosin (H&E) using a standard protocol. 
To quantify liver damage, the H&E‑stained liver tissue 
sections were assessed for dead cells assessed by at least two 
investigators experienced in analyzing histological slides. We 
first measured the percentage of vessels and dead cells using 
ImageJ (Version: 1.51f; Wayne Rasband, National Institutes 
of Health). In the following, the number of pixels covered by 
vessels were subtracted from the total pixel amount and the 
percentage of irreversibly damaged tissue was calculated. 
Corresponding morphological features were a rupture of 
the nuclear envelope or chromatin condensation, loss of cell 
borders with irregular fragmentation and/or washed‑out 
image of cytoplasm (24,25). Since cell swelling per se is a 
reversible state, swollen cells were not considered as dead 
cells (24). Six‑eight representative visual fields (100 x) per 
animal of the HS/R+DV and 1‑5 representative visual fields 
per animal of the HS/R+TM group were analyzed. In total, 
we evaluated 20 representative visual fields for each HS/R 
group. The varying numbers of analyzed visual fields per 
animal resulted from the different group sizes. Subsequently, 
the median percentage of damaged tissue per animal was 
calculated and used for further statistical analysis.

Immunohistochemistry. Immunohistochemical staining was 
performed as previously published (17,18). In the following, 
we describe the BiP staining more detailed since that was 
our standard protocol. Therefore, only the differences to the 
BiP staining process are mentioned for the other staining 
procedures.

BiP. After deparaffinization and rehydration the tissue 
sections were immersed in 0.45% hydrogen peroxide 
for 20 min to block the endogenous peroxidase activity. 
Heat‑induced antigen retrieval was performed by placing the 
sections for 20 min in a citrate buffer (pH 6.0, 10 mM) set to 
100˚C. Following this, the blocking agent, 1.5% donkey serum 

(#sc‑2023, Santa Cruz Biotechnology, Inc.) in phosphate 
buffered saline (PBS), was applied. The tissue sections were 
then incubated overnight at 4˚C with the primary antibody, 
goat anti‑BiP (#sc‑1050, Santa Cruz Biotechnology, Inc.), at 
a dilution of 1:50. In the next step, the secondary antibody, 
donkey anti‑goat IgG (#sc‑2023, Santa Cruz Biotechnology, 
Inc.), was administered for 30 min at room temperature, 
diluted at 1:200. For signal detection, alkaline phosphatase 
(AP; #AK‑5000, Vector Laboratories) was applied and Fast 
Red was used as chromogen. To stop the reaction, the slides 
were immersed in distilled water. Finally, hematoxylin was 
applied for counterstaining and the slides were mounted using 
an aqueous mountant.

ATF6. 2.5% horse serum was used as a blocking solution 
(#MP‑5401, Vector Laboratories, Inc.). The tissue sections were 
incubated overnight at 4˚C with the rabbit anti‑ATF6 antibody 
(#NBP1‑77251, Novus Biologicals Europe, Cambridge, Great 
Britain), diluted at 1:100. As secondary antibody we applied 
a horse anti‑rabbit antibody for 30 min at room temperature, 
which was supplied as ready‑to‑use kit and already conjugated 
with alkaline phosphatase by the manufacturer (#MP‑5401, 
Vector Laboratories, Inc.).

pPERK. To block unspecific antibody binding sites, a solution 
of 5% skim milk and 1% BSA was applied. Afterwards, the 
primary antibody, rabbit anti‑pPERK (#ab192591, Abcam 
plc.,), incubated overnight at 4˚C at a 1:50 dilution. The slides 
were then covered with the secondary antibody for 30 min 
at room temperature, a ready‑to‑use alkaline phosphatase 
polymer anti‑rabbit reagent (#MP‑5401, Vector Laboratories, 
Inc.).

sXBP1. After the blocking procedure with 1.5% donkey serum 
(#sc‑2023, Santa Cruz Biotechnology, Inc.), the slides were 
incubated overnight at 4˚C with the goat anti‑XBP1 antibody 
(#ab85546, Abcam plc.), diluted at 1:100. Subsequently, the 
secondary antibody (#sc‑2023; Santa Cruz Biotechnology, 
Inc.), diluted at 1:200 in 1.5% donkey serum, was applied for 
30 min at room temperature.

Beclin 1. For deparaffinization the slides were placed in xylene 
before being rehydrated by immersion in 100% isopropanol. 
Afterwards, the endogenous peroxidase activity was blocked 
by 1.5% methanol and antigen retrieval was performed as 
described above. To block unspecific binding sites 2.5% horse 
serum was applied. Next, the slides were incubated for one 
hour at room temperature with the primary antibody, rabbit 
anti‑Beclin1 IgG (#NB500‑249, Novus Biologicals Europe), at 
a dilution of 1:400 before the secondary antibody (#MP‑5401, 
Vector Laboratories, Inc.) was applied for 30 min at room 
temperature.

Western blot analysis. The frozen livers were thawed and 
homogenized using a homogenization buffer (5 mmol/l 
3‑(N‑morpholino) propanesulfonic acid, 1 mmol/l ethyl‑
enediaminetetraacetic acid, 0.25 mol/l sucrose, 0.2 mmol/l 
dithiothreitol, 1 mmol/l ε‑aminocaproic acid, 5 mmol/l benza‑
midine, 0.2 mmol/l phenylmethylsulfonyl fluoride, 0.1% Triton 
X‑100). After centrifugation at 15.400 g for 15 min at 4˚C the 
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protein samples were fractionated by electrophoresis on 
sodium dodecyl sulfate polyacrylamide gel. Subsequently, 
the separated proteins were transferred to a polyvinyli‑
dene fluoride membrane (#1620177, Bio‑Rad Laboratories 
GmbH). The membranes were then washed with PBS‑Tween 
(0.05%) followed by the saturation with 5% skim milk 
in PBS‑Tween for one hour at room temperature to block 
non‑specific binding sites. Afterwards, the membranes 
were incubated overnight at 4˚C with the primary anti‑
body, goat anti‑BiP (#sc‑1050, Santa Cruz Biotechnology, 
Inc.), diluted at 1:500 in 5% skim milk. Before and after 
the incubation for one hour at room temperature with the 
HRP‑conjugated secondary antibody, donkey anti‑goat 
IgG (#sc‑2020, Santa Cruz Biotechnology, Inc.) diluted 
at 1:5,000 in 5% skim milk, the membranes were washed 
with PBS‑Tween. Enhanced chemiluminescent substrate 
was added and the signal was detected using Image Reader 
LAS‑3000 Version 2.0 (Fuji Photo Film). For loading 
control, the membranes were incubated for two hours at 
room temperature with rabbit anti‑glyceraldehyde 3‑phos‑
phate dehydrogenase (GAPDH) antibody (#sc‑25778, Santa 
Cruz Biotechnology, Inc.) diluted at 1:500 in 1% newborn 
calf serum.

Regarding the quantification of BiP expression, we 
loaded two reference samples on each plot to allow a 
comparison of different plots. For the analysis we used the 
ImageJ (Version: 1.51f; Wayne Rasband, National Institutes 
of Health). We selected the lanes, plotted them and labelled 
the peaks. After converting the number of pixels of each lane 
into percentage we divided the percentage of each sample 
by the percentage of our reference sample. These steps were 
performed for BiP as well as for GAPDH. We finally divided 

the calculated values and received the ratio of BiP to GAPDH 
expression. Using this approach, the analysis was adjusted to 
inconsistent GAPDH expressions.

Statistical analyses. Statistical analysis was performed using 
MATLAB R2018b (The MathWorks Inc.). Shapiro‑Wilk test 
showed a non‑parametric distribution of the data. Therefore, 
the Kruskal‑Wallis test was used for the comparison of more 
than two groups, together with Tukey‑Kramer post‑hoc 
correction. For the comparison of two groups the Wilcoxon 
Mann‑Whitney test was applied. Data are expressed as median 
[minimum; maximum]. A p‑value below 0.05 was considered 
statistically significant. We additionally present the Area 
Under the Curve (AUC) with bootstrapped 95% confidence 
intervals as effect size. For this we used the MATLAB‑based 
MES toolbox (26). The use of AUC helps to evaluate the 
strength of an effect (27).

Results

Model evaluation. Fixed pressure‑controlled hemorrhagic 
shock was shown to be a reliable and reproducible model (28). 
The mice used in this experiment did not differ in age, body 
weight, or strain from previous studies (17,18). As four animals 
had to be excluded, e.g. due to death during hemorrhagic 
shock (n=1), malformations (n=1), or inconsistent shock with 
more than three peaks above 35 mmHg (n=2), we included 
21 animals in our analysis. The mean blood volume to induce 
and maintain a mean arterial pressure of 30±5 mmHg for 
90 min was 0.60 [0.50; 0.65] ml (2.45 [2.10; 2.94] ml per 100 g 
body weight) and did not differ significantly between the shock 
groups. Furthermore, there were no significant differences 

Figure 1. TM injection was followed by body weight loss. Display of body weight in gram (g) at the time of the injection and before the beginning of the 
surgical procedure, 48 h later. The light gray lines represent animals of the sham control and the dark gray lines animals of the hemorrhagic shock and 
reperfusion group. (A) The body weight of mice (n=6) receiving the DV at 0 and 48 h. (B) Mice treated with TM injection mice at 0 and 48 h. *P<0.01 (n=9).
TM, tunicamycin; DV, drug vehicle.
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between the groups regarding the body weight at the start of 
the experiment. However, mice which received TM lost 6.8 
[3.1; 13.7]% of their body weight within 48 h (P=0.004; AUC 
0.93 [0.78 1]; Fig. 1).

TM preconditioning alleviated liver damage. To assess the 
extent of liver damage, plasma concentrations of ASAT and 
ALAT were measured as their plasma levels correlate with 
hepatocellular injury (29) (Fig. 2A and B). The comparison of 

Figure 2. TM preconditioning mitigated liver damage after HS/R. (A) ASAT and (B) ALAT plasma levels in Units per liter (U/l). (C) Representative hema‑
toxylin and eosin stains of liver tissue sections. Scale bar, 300 µm. (D) The quantification of cell death areas after HS/R was performed by analyzing 
6‑8 representative visual fields (magnification, x100) per animal of the HS/R+DV (n=3) and 1‑5 representative visual fields per animal of the HS/R+TM 
group (n=6). One circle displays the median percentage of damaged tissue of one animal. *P<0.05; $P<0.01. HS/R, hemorrhagic shock and reperfusion; ASAT, 
Aspartate aminotransferase; ALAT, alanine aminotransferase; DV, drug vehicle; TM, tunicamycin.
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the control groups (BC, SC+DV, SC+TM) showed no signifi‑
cant differences except for the ALAT concentration in SC+TM 
group (35.0 [30.0; 43.0] U/l), which was significantly higher 
than in BC (20.5 [15.0; 21.0] U/l, P=0.047; AUC 0 [0 0]). The 
ASAT/ALAT levels in the shock groups were similar: 1141.5 
[312.0; 2510.0] U/l and 1778.0 [235.0; 3805.0] U/l in HS/R+TM 
group vs. 1084.0 [1058.0; 1958.0] U/l and 2417 [1876.0; 5499.0] 
U/l in the HS/R+DV group. The comparison of the shock 
groups with their corresponding sham groups demonstrated 
more than 10‑fold higher transaminases concentrations in the 
HS/R groups. This difference was significant for TM groups 
(P=0.024; AUC 0 [0 0]) and non‑significant for the DV groups 
(P=0.1).

Additionally, H&E‑staining of liver tissue sections was 
performed to confirm the results of the plasma measure‑
ments (Fig. 2C and D). The evaluation of baseline and sham 
controls showed no obvious signs of hepatocellular damage. In 

contrast to this finding, there were cell death areas spreading 
centrifugally from the central vein in both shock groups. The 
quantification of these areas revealed that the percentage of 
damaged liver tissue was significantly lower in the HS/R+TM 
group (4.0 [0.4; 13.9]%) compared to the HS/R+DV group (16.1 
[5.2; 30.0]%; P=0.024). This finding is underlined by an AUC 
of 0 [0 0].

BiP expression was upregulated by TM preconditioning. 
To investigate the influence of TM preconditioning on 
the ER, we analyzed the expression of BiP, a master regu‑
lator of ER function and a known ER stress marker (8,30). 
Immunohistochemistry displayed a homogeneous staining 
of the liver sections in BC and SC+DV groups (Fig. 3A). In 
the HS/R+DV group the vital parenchyma was also homoge‑
nously stained but the staining intensity appeared to be higher 
compared to its corresponding sham group. Furthermore, 

Figure 3. TM preconditioning induces BiP expression. (A) Representative immunostainings of the endoplasmic reticulum stress marker BiP. Scale bar of upper 
row, 300 µm; Scale bar of lower row, 100 µm. Vessels of the periportal field (P) and central veins (C) are exemplified. (B) Protein expression was quantified by 
calculating the relative density of BiP to GAPDH. SCs and HS/R+DV included three animals, BC and HS/R+TM consisted of six mice. *P<0.05. BiP, binding 
immunoglobulin protein; SC, sham control; HS/R, hemorrhagic shock and reperfusion; DV, drug vehicle; TM, tunicamycin; BC, baseline control.
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there were single, intensely stained cells adjacent to the cell 
death areas. These cells were also seen in the HS/R+TM 
group. However, the BiP baseline expression pattern in 
HS/R+TM and SC+TM varied from all other groups. Liver 
tissue sections of mice, which received TM, displayed an 
increasing gradient of BiP expression from the periportal field 
to the central vein.

For the evaluation of BiP expression in whole liver homog‑
enates western blotting was performed (Fig. 3B and 3C). The 
analysis demonstrated an increased BiP expression in both 
TM groups. Compared to the HS/R+DV (1.55 [1.03; 1.74]), the 
HS/R+TM group (3.88 [2.46; 14.11]) showed a significantly 
higher BiP/GAPDH ratio depicted by P=0.024 and an AUC 
of 1 [1 1].

Topographical changes in the UPR after TM preconditioning. 
Since PERK undergoes autophosphorylation upon ER stress, 
phosphorylated PERK (pPERK) indicates its activation (9). The 
pPERK staining was predominated by an increased staining 
intensity around the periportal field (Fig. 4A). This pattern 
was observed in the BC, SC+DV, SC+TM, and HS/R+DV 
group. However, the difference in the periportal and pericen‑
tral staining intensity appeared to be smaller in the SC+TM 
group compared to the SC+DV group. Liver tissue sections 
of HS/R+TM group showed a similar pericentral as well 
as periportal expression level displayed by a homogeneous, 
intense staining.

ATF6 is constitutively expressed (31). Upon ER stress, its 
activation is initiated by the dissociation from BiP, followed 
by proteolytic cleavage in the Golgi compartment (32). The 
ATF6 expression pattern was characterized by a homogeneous 
staining of the vital liver parenchyma and one row of intensely 
stained cells around the central vein (Fig. 4B). In the SC+TM 
group the pericentral cells were not as intensely stained as 
in the other groups. In this group, a smooth transition from 
the intensely stained pericentral area to the remaining liver 
parenchyma was detected.

Since activated IRE1 splices XBP1 mRNA, measuring 
spliced XBP1 (sXBP1) is a reliable, indirect method of 
assessing IRE1 activation (30). In the BC group only a slight, 
homogeneous expression could be detected (Fig. 4C). The 
staining pattern in SC+DV was characterized by an increased 
pericentral intensity that faded out centrifugally. Whereas in 
HS/R+DV a sharp transition between intensely stained cell 
death areas and slightly stained vital parenchyma was found 
the staining pattern in SC+TM and HS/R+TM was similar to 
SC+DV.

TM preconditioning induced pericentral autophagy. Beclin1 
is a known marker of autophagy, which is naturally expressed 
in biliary epithelium (33). In the BC, SC+DV, and HS/R+DV 
group Beclin1 was scarcely expressed indicated by a weak and 
partly missing staining of the vital parenchyma (Fig. 5). In 
contrast to this finding, both TM groups showed an increased 

Figure 4. Topographical changes of UPR signaling. Representative stains of the immunohistochemical proof of pPERK, ATF6, and sXBP1. Vessels of the 
periportal field (P) and central veins (C) are exemplified. Immunohistochemical staining for detection of (A) pPERK, (B) ATF6 and (C) sXBP1 in the different 
groups. Scale bar, 300 µm. pPERK, phosphorylated protein kinase RNA‑like endoplasmic reticulum kinase; ATF6, activating transcription factor 6; sXBP1, 
spliced Version of X‑box binding protein 1; SC, sham control; HS/R, hemorrhagic shock and reperfusion; DV, drug vehicle; TM, tunicamycin; BC, baseline 
control; UPR, unfolded protein response.
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Beclin1 expression pericentrally. Similar to the BiP staining 
pattern an increasing staining intensity from the periportal 
field to the central vein was observed.

Discussion

As previously shown by Jian et al (16), ER stress plays an 
important role in liver injury following HS/R. We confirmed 
this finding in our preceding study: The injection of the ER 
stress inhibitor tauroursodeoxycholic acid (TUDCA) during 
reperfusion mitigated hepatocellular damage, whereas the 
administration of the ER stress inductor TM during reperfu‑
sion increased hepatocellular damage (18). In addition, we 
conducted a detailed timeline investigation of the temporal 
dynamics of the expression of UPR signaling proteins and 
liver injury (17). Our analysis revealed a maximum of hepato‑
cellular damage 14 h after shock induction. Since the focus of 
the present study was on liver damage, we chose to sacrifice 
mice 14 h after hemorrhagic shock induction.

TM is a pharmaceutical ER stress inducer and acts via 
an inhibition of N‑glycosylation, causing an accumulation 
of unfolded glycoproteins in the ER (30,34). In accordance 
with previous studies, the results of the western blot analysis 
of whole‑organ homogenates demonstrated an increased BiP 
expression following TM pretreatment (35). As prior publi‑
cations on IRI and HS/R have already demonstrated that an 
increased expression of BiP is accompanied by an upregula‑
tion of pPERK, IRE1, and ATF6 (16,36,37) and as the focus 
of the present study was also on the topographical distribution 
of ER stress, we decided to only analyze BiP in whole liver 
homogenates. We chose BiP since it is a master regulator of ER 
function. As a member of the heat shock protein 70 family, BiP 
is a highly conserved molecular chaperone (8). However, it not 
only facilitates protein folding, but is also an essential compo‑
nent of quality control mechanisms of the secretory pathway 
and regulates endoluminal calcium concentration (38,39). 
Additionally, and of the utmost importantance for the present 
study, BiP is a well‑established marker of ER stress as its 
expression is induced by mal‑/unfolded proteins (40,41).

Interestingly, immunohistochemistry showed that BiP 
was not homogeneously increased but rather focused in the 
pericentral area. This topographic distribution pattern might 
be explained by the unique blood supply of the liver, which 
leads to a decreasing oxygen gradient from the periportal 
region towards the pericentral area (42). In several studies, 
Paxian et al (43,44) demonstrated the resulting susceptibility 
to external stressors of pericentral hepatocytes, especially 
during hemorrhagic shock and the oxidant stress upon reper‑
fusion. Consequently, these cells respond more sensitively to 
TM than periportal cells, indicated in the present study by the 
increased pericentral expression of ER stress marker BiP in 
both TM groups (44). Our finding of a topographic correla‑
tion of an upregulated BiP induction with the diminution of 
hepatocellular damage suggests that BiP has beneficial effects. 
This assumption is also supported by a recent publication 
from Bi et al (45), which demonstrated that an overexpres‑
sion of BiP mitigated myocardial IRI. In line with the results 
of Paxian et al (43), the protective effect was mediated by 
inhibiting an accumulation of reactive oxygen species. Taking 
our observations and the current literature into account, we 
conclude that a pre‑hemorrhagic BiP induction by TM admin‑
istration mitigates post‑hemorrhagic hepatocellular injury.

Whereas TM injection significantly altered BiP expression, 
its influence on the topographic patterns of ATF6 and IRE1 was 
limited. This difference might be based on the degradation of 
the proteins: The half‑life of BiP is approximately 46 h, while 
ATF6 and IRE1 are degraded with a half‑life of about 2 and 
3 h, respectively (46‑48). Consequently, the effect of TM on 
their topographic patterns might already have faded away 62 h 
after the injection. In contrast, PERK signaling, represented by 
pPERK, was markedly influenced by TM pretreatment. The 
homogeneous staining intensity in HS/R+TM group suggests 
an upregulation of the PERK pathway in the intermediary 
and pericentral zone. Even though PERK can contribute to 
cell death, we theorize that PERK signaling in the context of 
IRI and HS/R is primarily protective (49). The pro‑survival 
effect might be mediated by the activation of the antioxidant 
response element via ATF4 and nuclear factor erythroid 

Figure 5. Pericentral Beclin1 upregulation by TM preconditioning. Immunohistochemical stained liver tissue sections for the autophagy marker Beclin1. 
Vessels of the periportal field (P) and central veins (C) are exemplified. Scale bar of upper row, 300 µm; Scale bar of lower row, 100 µm. SC, sham control; 
HS/R, hemorrhagic shock and reperfusion; DV, drug vehicle; TM, tunicamycin; BC, baseline control.
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2‑related factor 2 (Nrf2), resulting in an upregulation of 
protective enzymes (50). Since PERK activation thereby 
promotes beneficial effects, the increased pericentral expres‑
sion of pPERK may explain the reduction of centrilobular cell 
death areas in the HS/R+TM group. Leung et al (51) recently 
demonstrated in a murine HS/R model that Nrf2 plays a 
crucial role in the generation of protective factors induced by 
stress preconditioning and thus confirmed the importance of 
the PERK/ATF4/Nrf2 signaling branch.

In addition to its function as an activator of Nrf2, ATF4 is a key 
signal for ER stress induced autophagy (52). Although autophagy 
can play dual roles and may promote cell death, multiple studies 
attribute beneficial effects to the autophagic process during hypo‑
perfusion or ischemia (53‑55). Chandrika et al (53) demonstrated 
in the context of renal IRI that ER‑stress induced autophagy 
provides cytoprotection. Yan et al (56) induced a subarachnoid 
hemorrhage in rats and described an autophagy dependent 
mitigation of early brain injury. Moreover, autophagy was shown 
to be hepatoprotective during a low‑flow state, e.g. caused by 
septic shock (55). Previous studies reported that for correct 
autophagosome formation BiP is an obligatory component (57). 
Our immunohistochemical analysis supports this finding as the 
expression patterns of BiP and the autophagy marker Beclin1 
were similar in the TM groups (33). Furthermore, our results 
underpin the hypothesis of Zhang et al (19), attributing a protec‑
tive role to BiP dependent autophagy induction in the context of 
IRI. In the HS/R+TM group, Beclin1 expression was upregulated 
around the central vein, which indicates an increase in autophagic 
activity in the pericentral zone. With regard to the diminished 
liver damage in the HS/R+TM group, the topographic distribution 
of the cell death areas and Beclin1, the present study underlines 
the protective role of autophagy and identifies its activation as a 
beneficial mechanism.

Hepatic injury was analyzed by evaluating H&E‑stained 
liver tissue sections and measuring serum transaminases. We 
chose to use the umbrella term ‘liver damage’ because of the 
vague understanding of cell death mechanisms during HS/R. 
Although necrosis has been postulated as the predominant 
cell death mechanism, the occurrence of apoptosis and 
autophagy‑related cell death has similarly been reported (58,59). 
In the present work, we focused on ER stress as an underlying 
mechanism of the IRI as well as on the impact of ER stress 
preconditioning on organ damage. We did not investigate the 
exact modalities of ER stress associated cell death. In contrast 
to the long‑standing assumption that prolonged ER stress 
only triggers apoptotic cell death, recent studies have demon‑
strated an ER stress induced caspase‑independent cell death 
mechanism (60‑62). Therefore, we suggest taking into account 
histomorphologic signs of both cell death modalities, when 
investigating post‑hemorrhagic hepatocellular damage.

Interestingly, the results of the methods employed were not 
totally consistent. The discrepancy in the results of the two 
methods might be explained by the lengthy half‑life of the liver 
transaminases on one hand and the liver's ability to regenerate 
on the other hand (63). Li et al (64) and Pajaud et al (65) deter‑
mined the enormous regenerative potential of the murine liver 
as their data shows a completion of hepatocyte proliferation 
72 h after two‑thirds partial hepatectomy. The upregula‑
tion of early liver regeneration was particularly remarkable 
considering the debilitating, pre‑hemorrhagic body weight 

loss of mice receiving TM. This body weight loss might be 
explained by the interplay of ER‑stress and inflammation since 
it is known that ATF4 induces interleukin‑6, which promotes 
adipose tissue lipolysis (66,67). Therefore, ER‑stress induction 
by TM may initiate an inflammatory response which, in turn, 
decreased body weight.

Since we focused on a fixed point in time, we can only 
speculate whether TM preconditioning lowered organ damage 
or if it merely accelerated liver regeneration. Previous studies 
focusing on IRI or partial hepatectomy (PH) demonstrated 
the enormous potential of the liver to regenerate (64,65,68). 
Furthermore, it has been shown that liver regeneration can 
be promoted through heat‑shock proteins (HSPs) (69). As 
HSPs are upregulated through ER stress, we assume that TM 
preconditioning mediates its beneficial effects by accelerating 
liver regeneration via induction of HSPs, e.g. BiP (8,70,71). 
However, to fully elucidate the temporal dynamics, a detailed 
time trial is needed. This trial should also include the analysis 
of transaminase and protein levels 48 h after TM injection. An 
upregulation of HSP expression just prior to hemorrhagic shock 
induction could support our above‑mentioned assumption.

Since TM is not soluble in aqueous solution at pH 7.4, 
the manufacturer recommends using DMSO as a solvent. 
Since DMSO increases serum transaminases, its influence 
should also be considered when evaluating the results of the 
histological and laboratory analysis as it could be another 
explanation for the aforementioned difference (72). However, 
the dosage applied in the present study was more than 100‑fold 
below its median lethal dose, and in our previous studies we 
did not detect considerable differences comparing DV groups 
with mice undergoing sham or HS/R procedure without any 
drug injection (18,73). Consequently, we assigned only three 
animals to each control group as we did not expect to augment 
scientific knowledge by including more mice and might 
thereby avoid raising ethical issues.

Furthermore, Beclin1 detection is no absolute criteria 
for determining autophagic status even though it is an estab‑
lished marker of autophagy onset (33,74) Complementary 
to our analyses, it would be worth evaluating the expression 
of e.g. p62 or microtubule associated protein 1 light‑chain 3 
as these proteins are required for the formation of ubiquiti‑
nated protein aggregates and their delivery to the autophagy 
system (74). Detecting these proteins could confirm our 
conclusion and enable a deeper analysis of the pericentral 
autophagic processes. Nevertheless, looking at our data, there 
are further indicators of the induction of autophagy by TM 
preconditioning in addition to the increased Beclin1 expres‑
sion. Furthermore, PERK activation was enhanced around the 
central vein in HS/R+TM group compared to all other groups. 
One target of the PERK pathway is ATF4, a key signal for 
autophagy induced by ER‑stress (52). Regarding the concomi‑
tant upregulation of BiP, which is an obligatory component 
of autophagy, these immunohistochemical findings support 
the assumption of a pericentral autophagy induction by TM 
preconditioning (57). Furthermore, we performed an immu‑
nohistochemical proof of CCAAT/Enhancer Binding Protein 
Homologous Protein (CHOP; data not shown), which is a target 
gene of ATF4 and has been shown to promote the transcription 
of several autophagy genes (49,75). In addition, an increased 
CHOP expression downregulates protein B‑Cell Lymphoma 2 
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(Bcl‑2) (76). As Bcl‑2 inhibits Beclin1‑dependent autophagy, 
its downregulation facilitates autophagy induction (77). In 
the present study, the immunohistochemical analysis of liver 
tissue sections demonstrated an increased CHOP expres‑
sion around the central vein in TM groups. As this finding 
suggests an upregulation of autophagy genes and a suppression 
of autophagy inhibition, it confirmed the above‑mentioned 
results and supports the hypothesis of a pericentral autophagy 
induction by TM preconditioning. To further elucidate the 
importance of this finding, a selective post‑hemorrhagic 
autophagy induction would be useful. Since TM influences 
BiP expression as well autophagy, this approach would help to 
differentiate the impact of these two mechanisms and highlight 
their clinical significance (41,78).

A comparison of BiP western blot and immunohistochem‑
istry reveals the strengths and weaknesses of both methods. 
Since the semi quantitative analysis of whole liver homogenates 
did not contain any information about the topographic distribu‑
tion of BiP, we also performed an immunohistochemical proof 
of BiP. Unexpectedly, the results of the two methods did not 
completely overlap. Our evaluation of the immunohistochem‑
ical staining suggested the highest BiP expression was in the 
HS/R+DV group. In contrast to this finding, the western blot 
analysis showed the highest BiP expression in the TM groups. 
The strong pericentral upregulation of BiP in TM groups may 
have outweighed the lower expression in the remaining zones, 
whereas in the HS/R+DV group the BiP expression in the 
vital liver parenchyma was not enough to compensate for the 
cell death areas. To backup this assumption, for the future we 
propose microdissecting the individual liver zones followed by 
western blot or PCR analyses. This approach makes possible 
the detection of topographical changes and their simultaneous 
quantification.

In the present study, we confirmed previous results 
reporting a significant role for the UPR in IRI. In addition, 
we demonstrated that the injection of the ER stress inducer 
tunicamycin mitigates post‑hemorrhagic hepatocellular injury. 
By analyzing topographic expression patterns, we identified 
an upregulated BiP expression and a concomitant autophagy 
induction as potential beneficial mechanisms. In conclusion, 
ER stress preconditioning alleviates post‑hemorrhagic liver 
damage and may lead to novel therapeutic targets.
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