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Abstract

The mechanisms that coordinate cellular gene expression are highly complex and intricately interconnected. Thus, it is necessary to move
beyond a fully reductionist approach to understanding genetic information flow and begin focusing on the networked connections be-
tween genes that organize cellular function. Continued advancements in computational hardware, coupled with the development of gene
correlation network algorithms, provide the capacity to study networked interactions between genes rather than their isolated functions.
For example, gene coexpression networks are used to construct gene relationship networks using linear metrics such as Spearman or
Pearson correlation. Recently, there have been tools designed to deepen these analyses by differentiating between intrinsic vs extrinsic
noise within gene expression values, identifying different modules based on tissue phenotype, and capturing potential nonlinear relation-
ships. In this report, we introduce an algorithm with a novel application of image-based segmentation modalities utilizing blob detection
techniques applied for detecting bigenic edges in a gene expression matrix. We applied this algorithm called EdgeCrafting to a bulk RNA-
sequencing gene expression matrix comprised of a healthy kidney and cancerous kidney data. We then compared EdgeCrafting against 4
other RNA expression analysis techniques: Weighted Gene Correlation Network Analysis, Knowledge Independent Network Construction,
NetExtractor, and Differential gene expression analysis.
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Introduction
Biological network construction is a fundamental technique to
explore genetic relationships. It has been estimated that any
given gene will have direct interactions with 4–8 other genes
while being involved in approximately 10 biological functions
(Arnone and Davidson, 1997) . Typical biological networks include
protein–protein interaction networks (Jeong et al. 2001), signaling
networks (Olsen et al. 2006), metabolic networks (Jeong et al.
2000), gene coexpression networks (GCNs) (Ficklin et al. 2017),
and gene regulatory networks (GRNs) (Düvel et al. 2010). GCNs
have been conventionally constructed using linear or monotonic
metrics such as Pearson or Spearman correlation between the ex-
pression values for every pair of genes. The network typically
comprises of gene–gene interactions, known as edges, that meet
a threshold defining significant correlation. Clusters of highly
interconnected genes can be identified as modules, thus suggest-
ing relationships between condition-specific, highly correlated
genes.

Conventional algorithms such as weighted GCN analysis
(WGCNA) (Langfelder and Horvath 2008) are limited by the fact
that they can only identify linearly correlated relationships while
struggling to differentiate between intrinsic signal and extrinsic
noise. To this end, algorithms such as Knowledge Independent

Network Construction (KINC) (Ficklin et al. 2017) and
NetExtractor (Husain et al. 2020) were developed to capture linear
and potentially nonlinear relationships that have traditionally
been ignored. Integration of these nonlinear relationships, how-
ever, greatly increases the computational complexity of con-
structing relationship networks. This issue can be compounded
by the presence of highly related subpopulations within the sam-
ple distribution. In addition, network construction algorithms be-
come particularly unwieldy when a large number of samples are
considered on account of the pair-wise correlation analysis.

We propose a novel approach for identifying bigenic, differen-
tially expressed relationships by reconstructing the input gene
expression matrices (GEMs) into a binned image-based format.
Kernels of this idea were first introduced in EdgeScaping (Husain
and Feltus 2019) where this novel representation of gene expres-
sion profiles allowed us to utilize a plethora of image analysis
modalities previously unexplored in the realm of transcriptom-
ics. EdgeCrafting implements a popular image segmentation
technique to identify sub-populations within each correlation
network, known as “blob detection.” EdgeCrafting proposes to
transform the manner in which transcriptomic data are conven-
tionally represented and the bigenic coexpression relationships
are defined. In this report, we apply EdgeCrafting to a human
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transcriptome compendium and then compare the constructed
network to existing linear and nonlinear GCN construction algo-
rithms.

Materials and methods
Input data
To implement the various differential gene expression (DGE)
analysis algorithms, we utilized the RNA-sequencing (RNAseq)
expression values for both “normal” tissue samples and “tumor”
tissue samples that can be directly comparable. Two of the larger
resources available for gathering RNAseq expression values in-
clude panTCGA and panGTEx GEMs (Lonsdale et al. 2013). The
panGTEx GEM comprised of 56,202 genes across 11,688 samples,
which is split among 53 tissue types. The panTCGA GEM
(Hoadley et al. 2018) contained 60,101 genes measured across
11,093 tissue samples, which is split between 33 cancer pheno-
types. The primary limitation, however, is that these GEMs can-
not be directly compared against each other since they have not
be normalized together to ensure the uniformity of sample ex-
pression values. Thus, we utilized unified TCGA and GTEx tissue
data documented by Wang et al. (2018) for “kidney” datasets.
This GEM comprised of 158 normal human kidney samples, 60
chromophobe renal cell carcinoma (KICH) samples, 475 clear cell
renal carcinoma (KIRC) samples, and 236 papillary renal cell car-
cinoma (KIRP). This renormalized, unified GEM contained 19,216
genes measured across a total of 929 samples and was the sub-
ject of our EdgeCrafting and comparative analyses.

WGCNA network construction
One of the algorithms used to compare with EdgeCrafting
includes WGCNA (Langfelder and Horvath 2008), an R package
for weighted correlation network analysis to identify modules of
highly correlated genes. The WGCNA tool package consists of a
variety of specific functions for network generation across a
broad scope of data types and user requirements. WGCNA is typi-
cally used to identify clusters within the constructed network
and to further study the relationships between these coexpressed
groups of genes. WGCNA uses a preprocessed input matrix of
RNAseq data and along with a similarity metric to create an adja-
cency matrix. A thresholding parameter utilizing scale-free topol-
ogy is then used to obtain clusters of similarly expressed genes.
Despite its wide adoption within the bioinformatics community,
this tool suffers a limitation in its inability to capture nonlinear
relationships. Another limiting factor is the inability to scale to
large GEMs such as panTCGA and panGTEx, so we narrowed our
scope to only kidney data to escape this scaling limitation. For
the purpose of kidney GEM evaluation, we utilized the WGCNA
python wrapper (Greenfest-Allen et al. 2017) with default settings
to obtain 32 modules that contained 1,881 nodes (genes). Note
that WGCNA does not output edge weight associated to the mod-
ules due to its functionality as a clustering algorithm. WGCNA’s
purpose is to form clusters of correlated genes rather than rank
hierarchies of weight to each node interaction.

KINC network construction
The KINC (Ficklin et al. 2017) tool aims to mitigate the shortcomings
associated with variations in noisy (intrinsic or extrinsic) GEM data.
KINC (software package available at http://www.github.com/
SystemsGenetics/KINC) analyzes GEM data in a bigenic manner
and hypothesizes the existence of multiple modes when searching
for condition-specific coexpression relationships. These modes may
pertain to the differentially expressed conditions in the gene pair as

well as the isolation of expression from intrinsic or extrinsic and
statistical noise. KINC utilizes Gaussian mixture models (GMMs) to
identify these modes within each bigenic coexpression distribution.
For each detected mode, KINC calculates the Spearman correlation
and considers only modes containing 30 samples or greater. The
correlation threshold was identified using random matrix theory
(RMT). Modes with fewer than 30 samples or an Fragments Per
Kilobase of transcript per Million mapped reads (FPKM) expression
of less than 0.1 were ignored. KINC outputs a correlation matrix
along with generating a network file containing edges and metadata
describing the network.

NetExtractor network construction
Conventionally, linear metrics such as Spearman or Pearson’s
correlation are primarily utilized when defining relationship for
bigenic expression data such as depicted by WGCNA, and even
though KINC implements GMM to identify several modes of rela-
tionships within each gene pair, linearity of coexpression rela-
tionship is still an underlying assumption. Examples depicted in
Figure 1 for the coexpression distribution of tumor samples,
more specifically bladder cancer (BLCA), ovarian cancer (OV),
lower-grade glioma (LGG), thyroid cancer (THCA), and glioblas-
toma (GBM), exhibit the typical relationship NetExtractor aims to
capture where cases consisting of multiple modes within bigenic
expression data may not always restrict to linearly defined coex-
pressions. In Fig. 1, it can be observed that samples under differ-
ent conditions (e.g. GBM and LGG vs BLCA, OV, and THCA) form
distinct subpopulations within coexpression depictions and may
require nonlinear metrics to be identified. Hence, NetExtractor
expands upon the theory of GMM-based KINC network construc-
tion by utilizing a nonlinear method of mutual information (MI)
to define gene–gene interactions (available at https://github.com/
bhusain/NetExtractor.git). MI is a measure of similarity between
2 random variables (RV) where if jUij is the number of the sam-
ples in module Ui, and jVjj is the number of the samples in mod-
ule Vj. The MI between modules U and V is expressed by:

MIðU;VÞ ¼
XjUj

i¼1

XjVj

j¼1

jUi \ Vjj
N

log
NjUi \ Vjj
jUijjVij

NetExtractor utilizes a Python Scikit-learn package
sklearn.mixture.BayesianGaussianMixture to estimate the different
GMM modes, followed by the estimation maximization algo-
rithm. Python’s Scikit-learn package was also utilized to calculate
MI in the range of 0 (no correlation) and 1 (perfect correlation) per
subpopulation within a gene-pair edge. The final MI value
assigned to each bigenic relationship is the average of all subpo-
pulations. Another threshold applied for gene pairs is mean sil-
houette coefficient (S), which is calculated using the mean of
intramodule distance (a) as well as the mean nearest module dis-
tance (b) using the equation (ba)/max(a, b) by implementing the
package sklearn.metrics.silhouettescore. The score, S, quantifies the
“tightness” or “similarity” of the detected subpopulation. Since MI
is a nonlinear metric where the correlation of 1 RV is dependent
on the predictability of the other RV, it is expected to have a large
number of gene pairs meet even a reasonably large cutoff thresh-
old; hence, NetExtractor utilized both MI and S measures to re-
strict the number of gene pairs (edges) of interest.

DGE analysis
A more straightforward and conventionally adopted gene expres-
sion analysis technique is the DGE analysis that provides a
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probability statistic that any given gene will be significantly dif-
ferentially expressed between 2 phenotypes or conditions. There
are several implemented techniques for DGE calculation, but in
this paper, we used the Bioconductor package DESeq2 (Love et al.
2014). DESeq2 compares DGE between conditions using the nega-
tive binomial probability distribution. To analyze the results of
DGE, statistical outliers that represented the most highly differ-
entially expressed genes [both up (positive) and down (negative)
regulated] were isolated (Padj < 0.0001).

EdgeCrafting network construction
The primary contribution of this paper is the implementation of
the EdgeCrafting workflow as depicted by Fig. 2. EdgeCrafting
attempts to recreate the methodology of KINC and NetExtractor
but transforms the data in a novel manner to achieve similarly
correlated gene expression networks while reformulating the
manner in which we understand and manipulate the input data.
In block A (unified GEM) of Fig. 2, we depict the input unified kid-
ney GEM. The output from this block is then used for further pre-
processing of data format in block B (edge list) where an edge list
is generated as a 2-dimensional RNAseq array for every gene pair.
Block C (binning) represents the primary data transformation
technique that was first introduced in EdgeScaping (Husain and
Feltus 2019).

Figure 3 depicts an example of the binning process, which con-
verts the 2-dimensional array from block B into a grayscale im-
age, where the range of input GEM data determines its
dimensions. For example, in our particular case min¼ 0 (only
positive expression levels are considered) and max ¼ maximum
expression value within the GEM (e.g. for the kidney GEM the
max value was 18.89 FPKM). Hence, the size of the grayscale im-
age is set at 19 � 19, which is then binned into 19 equal sizes per
dimension. The value of each bin was calculated by the number
of samples assigned to that bin as determined by their expression
range. This transforms the conventional gene-pair representation
from 2-dimensional sized array of expression data (929 � 2 for
unified kidney GEM) of block B to a grayscale image of dimension
19 � 19. EdgeCrafting can also be implemented at different reso-
lution of bin sizes based on the number of samples available as
well as the distribution patterns of coexpressions. We tested 3
resolutions at: 1 (19 � 19 bins), 0.5 (38 � 38 bins) and 0.25 (76 � 76
bins), and selected the final bin resolution as 0.5 (38 � 38 bins)
that maintained the most fidelity of the original input data.

Having transformed the original data into a format akin to an
image, we proceeded to utilize techniques and algorithms that
have been developed specifically for image manipulation. In
EdgeScaping, clustering algorithms were utilized to group gene-
pair edges based on similar expression patterns, whereas the
next block of EdgeCrafting (block D) used “blob detection,” a

Fig. 1. Examples depicting potentially nonlinear modes of differential expression patterns for bigenic coexpression data. B, bladder cancer; G,
glioblastoma; L, lower-grade glioma; O, ovarian cancer; T, thyroid cancer.
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classic segmentation methodology widely adopted in image
analysis. A Python skimage package (van der Walt et al. 2014)
was utilized to calculate the subpopulation of bigenic sample dis-
tributions depicted as “blobs” using 3 blob detection algorithms,
namely Laplacian of Gaussian (LoG), Difference of Gaussian
(DoG), and Determinant of Hessian (DoH) (Kong et al. 2013). Blobs
in EdgeCrafting are similar in concept to the “modes” detected us-
ing GMMs in KINC and NetExtractor. Also similar to GMMs, blob
detection can be highly sensitive, and there might be cases where
“blobs” within an edge are detected but are not necessarily signifi-
cantly coexpressed.

We calculated the MI for all the samples within the bigenic
data to determine an appropriate threshold for network con-
struction. Note that similar to NetExtractor, we also calculated
MI per blob and estimated the effective MI per gene edge by aver-
aging MI over all detected modes. Since the network was not sig-
nificantly altered, we implemented the more straightforward
approach of calculating the MI using all the samples within the
bigenic coexpression data. Another criteria used for filtering
bigenic coexpression date to qualify for inclusion into the final
network is that at least 2 or more blob detection techniques (LoG,

DoG, or DoH) should detect more than 1 subpopulation, i.e. we re-
strict to nodes that specifically demonstrate differential expres-
sion and are not false positives. Finally, in the last block E
(constructing gene relationship network), a network is con-
structed where nodes represent genes while the edges represent
the bigenic coexpressions that meet the thresholding criteria.

Results
To implement and compare the various GCN construction algo-
rithms we leveraged the unified GTEx and TCGA GEMs published
in (Wang et al. 2018). In this report, we limited our analysis to the
19,216 � 929 “kidney” GEM that comprised of 158 normal human
kidney samples, 60 KICH samples, 475 KIRC samples, and 236
KIRP samples for all algorithms. The output of all algorithms was
then compared based on the detected gene and edge relationship
as well as the functionally enriched terms associated with them.
Table 1 depicts the nodes and edges detected for each algorithm.

Algorithm comparisons
WGCNA
The first algorithm we used to analyze the unified kidney GEM
was WGCNA, a software package implemented in R for linear
GCN construction. WGCNA comprises of a comprehensive collec-
tion of R functions that can be utilized for performing various
aspects of weighted correlation network analysis. Cluster detec-
tion and analysis is a common functionality provided by
WGCNA, where clusters in this context represent group of genes
that exhibit similar expression patterns. WGCNA typically uses
the Pearson or Spearman correlation metric with a user defined
threshold to construct the GCN. Along with the restriction of line-
arity or monotonic relationships, another severe drawback to
WGCNA is the lack of scalability to larger GEMs. As the number
of samples increases, evaluation of each gene pair becomes in-
creasingly computationally intensive. GEMs that are significantly
larger than the unified kidney GEM such as panTCGA and
panGTEx reached a bottleneck on the available Palmetto cluster

Fig. 2. EdgeCrafting workflow: Key stages of algorithm depicted by blocks A–E. Blocks A and B represent the preprocessing of the input GEM. Block C
depicts the restructuring of GEM data into an image based format. Block D depicts the implementation of “blob detection” techniques used to identify
subpopulations. Block E represents the final constructed gene coexpression network.

Fig. 3. Converting bigenic expression data into an image analytics
format. The number of samples that fall into each gene expression bin is
counted transforming gene expression RNA-seq data into an image
based format.
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resources and did not reach convergence. Updates to the conven-
tional WGCNA algorithms included using MI as a possible metric
along with soft thresholding, but for the purpose of comparing to
EdgeCrafting, we limited our analysis to the basic version of the algo-
rithm and only utilize the modules of gene clusters detected. For the
purpose of kidney GEM evaluation, we utilized the WGCNA python
wrapper (Greenfest-Allen et al. 2017) with default settings to obtain
32 modules that contained 1,881 nodes (genes) depicted in Table 1.

KINC
Another method we used to compare gene network construction
was KINC, which utilized the approach of GMMs to construct a
condition-annotated GCN. That approach was specifically
designed to address natural extrinsic variation during network
construction from mixed input conditions. With the hypothesis
that gene expression relationships exhibit modality, the GMMs
allow for the identification of multiple modes for each pair-wise
gene expression. The correlation significance threshold calcu-
lated was 0.859 using RMT, which resulted in a scale-free net-
work with 8,913 edges connected by 959 genes. Figure 4 depicts the
constructed KINC network with Table 1 compares the KINC out-
put to the other algorithms.

NetExtractor
NetExtractor was designed to transcend the limitations posed
by the exclusion of nonlinear bigenic relationships for GCN
construction, as well as the problem posed by noisy correlated

edges. NetExtractor is a workflow that minimizes the problems of
extrinsic noise with the application of GMMs while exploring non-
linear latent relationships using the MI metric. MI predicts the de-
pendence of 1 RV over another RV which is not restricted to
linearity between gene expression relationships. NetExtractor was
also designed to identify condition-specific correlations and differ-
ential expressions in RNAseq data between gene pairs. For the uni-
fied kidney GEM, the MI threshold selected was 0.975 while the
intercluster score, S, was calculated as 0.77. Similar to previously
discovered networks, NetExtractor resulted in 16,824 edges con-
nected by 3,772 genes. The constructed NetExtractor GCN is
depicted by Fig. 5 with Table 1 comparing the NetExtractor output
to the other algorithms.

DGE analysis
We also compared the GCN construction methods to conventional
DGE analysis techniques that utilizes single gene expression values
for different condition types as opposed to analyzing bigenic coex-
pression relationships. DGE analysis in this report was performed
using the Bioconductor package DESeq2 (Love et al. 2014). Rather
than using normalized estimated expression levels, raw RSEM
counts of sequencing reads were used. These datasets were pub-
lished by Wang et al. alongside the normalized expression values.
In this report, we distinguished the set of genes, which have statisti-
cally significant positive regulation and the gene set that have a sig-
nificant negative regulation; hence, these 2 list of genes are
mutually exclusive. As documented in Table 1, we obtained 6,303
negatively regulated genes and 4,557 positively regulated genes.

EdgeCrafting
One of the novel contributions of this report is the implementa-
tion of the EdgeCrafting algorithm, which is inspired by the detec-
tion of subpopulation modes within bigenic expressions depicted
in KINC and NetExtractor. It attempts to address the limitations
of data explosion that leads to extensive computational resour-
ces with the introduction of calculating subpopulations within
sample distributions using nonlinear metrics such as MI. In a pro-
cess similar to the one described in EdgeScaping, the first step in
EdgeCrafting was to rearrange the format of the input GEM into
an image-based binned data. To overcome the increasing dimen-
sionality problem that is pervasive in GCN construction as

Fig. 4. KINC kidney gene relationship network. This network was
constructed using KINC and consists of 8,913 edges connected by 959
genes.

Fig. 5. NetExtractor kidney gene relationship network. This network was
constructed using NetExtractor and consists of 16,824 edges connected
by 3,772 genes.

Table 1. Number of genes and edges detected with the 5 algorithms.

Algorithm WGCNA KINC NetExtractor EdgeCrafting DGE_neg DGE_pos

Genes 1,881 959 3,772 2,275 6,303 4,557
Edges Not Applicable 8,913 16,824 7,328 Not Applicable Not Applicable
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datasets grow in size, we implemented a novel solution of data
compression (binning) while still maintaining the feature infor-
mation per edge (gene pair).

We narrowed potential edges to those that depicted 2 or more
blobs within at least 2 of the “blob detection” approaches to ensure
the blobs represent differentially expressed values between tissue
samples and not false positives due to algorithm sensitivity. In a
manner similar to NetExtractor, we followed the process of blob de-
tection by calculating the MI of each blob as well as all the samples
simultaneously while taking the average to calculate the effective
MI score for that particular edge. We further compared this effective
MI score to the MI score using all samples in the selected edges and
did not find a significant difference hence choosing the latter. The fi-
nal threshold selected for an edge to be included in the network was
0.97. The resulting extracted network resulted in 7,328 edges con-
nected to 2,275 genes. The constructed EdgeCrafting GRN is depicted
by Fig. 6 with comparisons to other algorithms listed in Table 1.

An important consideration we addressed in EdgeCrafting is
the issue of axis orientation for genes. In the implementation of
EdgeScaping, it can be noted that there was no restriction of axis
onto which a particular gene falls. This directly impacts the pat-
tern of the image being created. Therefore, during the clustering
procedure of EdgeScaping a mirroring effect was present, where a
similar pattern is classified as 2 distinct clusters simply because
the x- and y-axes of the particular gene was flipped. This phe-
nomenon was mitigated for EdgeCrafting as we detached orienta-
tion from edge selection since blob detection within each image
is independent of the orientation of the image. To confirm that
we address the shortcoming of orientation, we ran the
EdgeCrafting algorithm twice on the same unified kidney GEM,
where the second time the x and y-axes for the genes were
flipped. We compared the networks generated in both runs to
confirm that orientation does not play a role in edge selection.

An example of EdgeCrafting output is depicted by Fig. 7, where
the subfigure on the right is the scatterplot of gene pairs with ev-
ery sample point colored based on the specific tissue type, i.e.
normal, KICH, KIRP, and KIRC tissue samples. The corresponding
subfigure on the left represents the detected blobs within an im-
age-based compressed format. The results of EdgeCrafting were
observed to maintain the fidelity of data even when compressed
into a binned image based format.

Overlapping gene and enriched terms
Table 2 lists the number of genes detected per algorithm and
their overlap against all the other techniques. It can be observed
that the highest overlap of genes among the different algorithm

outputs was between the NetExtractor and EdgeCrafting results,
reflecting 57% overlap with 2,208 genes in common. This suggests
that blob detection results can closely resemble GMM-based
techniques for differentially expressed bigenic data. As specific
examples that were detected by both EdgeCrafting and
NetExtractor, we can observe that for Fig. 7 (left) for genes
NDUFA4L2 vs XAF1, 2 blobs were detected with KIRC samples
having higher expression values for that gene pair when com-
pared against other tumor or normal tissue samples. Similarly, in
Fig. 7 (right), we observe that KIRP and KIRC samples are
expressed lower when compared to normal and KICH tissue sam-
ples for genes TMEM30B vs TMPRSS2. Table 2 also indicates that
there is a substantial correspondence between WGCNA and KINC
algorithm outputs with 35.9% (745) overlapping genes. This also
follows our expectations due to the fact that both algorithms
search for linearly correlated edges either with or without the
presence of subpopulations. Another interesting observation is
that NetExtractor and EdgeCrafting share relatively higher per-
centage of genes with WGCNA than they do with KINC. In a simi-
lar trend, it can also be observed that the output of DGE
demonstrates a fairly low overlap with WGCNA and KINC when
compared against NetExtractor and EdgeCrafting.

To further compare the networks from all the algorithms, we
performed functional enrichment analysis (Chen et al. 2009) on
the genes sets from each algorithm and tabulated the results in
Tables 3–7. Each of these tables account for the number of
enriched terms for all the algorithm with a significance threshold
of False Discovery Rate (FDR) q-value <0.00001. A stringent signif-
icance threshold was set due to the fact that enrichment terms
are often significant with a low number of queried genes.
Because these algorithms are providing lists with several hun-
dred genes of interest, it is necessary to set a more stringent
threshold. It is not uncommon to see FDR q-values in the range of
0.001–0.05 for random gene sets of this size. A stringent threshold
was set to ensure that the enrichment results were accurate
reflections of the biological patterns underlying these insights.
Each table also contains the number of overlapping enriched
terms between the algorithms being compared.

First, it can be observed that although we do not get a majority
(over 50%) overlap in the actual list of genes as indicated by
Table 2, we noticed that each gene list demonstrates functional
enrichment even when accounting for a stringent significance
threshold. This is an interesting observation since it signifies that
different approaches to identify gene relationship result are
unique set of genes that still independently demonstrate func-
tional enrichment. Another interesting observation is that similar
to the overlap of genes, NetExtractor and EdgeCrafting contain a
significant amount of shared enriched terms, which is to be
expected with the majority of the genes being common between
the 2. It can also be observed that KINC and WGCNA share a high
number of enriched terms. Although for the case of disease
terms, EdgeCrafting demonstrated a high overlap of enriched
terms with all other algorithms.

Discussion
Functional analysis of genes detected from GCN construction
algorithms crudely indicates the biological relevance signified by
the network. Although in most cases it is essential to understand
mechanism of action of the proposed network relationships, we
restricted our analysis to preliminary biological indications
reflected through functional MI enrichment. Considering that our
aim was to compare the outputs of multiple algorithms, further

Fig. 6. EdgeCrafting kidney gene relationship network. This network was
constructed using EdgeCrafting and consists of 7,328 edges connected by
2,275 genes.
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biological investigation exceeds the scope of this report. To this
end, we reviewed not only the genes and edges isolated by each
algorithm (Table 1) but also the overlap of genes between each of
them as represented in Table 2. This exercise in gene set compar-
ison is not meant to determine the superior algorithm or objec-
tively claim if 1 algorithm is objectively better than others based
on a known ground truth, but rather to indicate that each algo-
rithm is essentially designed to detect a specific type of relation-
ship and may include edges that may be ignored by other
algorithms. More specifically, this paper aims to propose that
restructuring of input data into an alternative image-based for-
mat can detect biologically significant outputs that are compara-
ble to previously implemented methods with the caveat that
since each of those algorithms inherently are attempting to de-
tect a different expression patterns, the networks constructed
may have a limited overlap.

For example, WGCNA searches for linear pairwise correlations
between all the samples within a particular gene–gene edge and,
hence, shares a maximum overlap with KINC, which also
restricts to the linearity of relationship. This would also explain
why a relatively higher portion of genes are shared with
NetExtractor and EdgeCrafting in cases where a linear relation-
ship exists across all samples. A lower overlap for DGE-selected
genes can be observed since the fundamental theory of bigenic,
linear relationships does not hold true when monogenic condi-
tion-specific analysis is performed using DESeq2.

KINC, on the other hand, finds the optimal overlap with
WGCNA as elaborated above, but the overlap of genes steeply
declines when compared to other algorithms. We expected KINC
to show a higher intersection with other algorithms including
WGCNA, considering the fact that all of them account for
condition-specific differential expressions. It was found, how-
ever, that KINC resulted in the most restrictive gene list due to
the implementation of RMT to result in a scale-free network.

KINC therefore shows poor correlation with the other algorithms,
which output a more extensive gene lists.

EdgeCrafting, also modeled based on the theory of differential
expression of subpopulations demonstrated by NetExtractor,
exhibits a significant overlap of genes between the 2 algorithms
(2,208 of 2,275 EdgeCrafting genes were in common with the
NetExtractor output). This indicates that blob detection in image-
based gene expression data can closely resemble the pipeline of
GMMs followed by MI. Potential future work in this domain might
include exploration of blob detection parameters to obtain a net-
work most overlapping with that of NetExtractor.

We expect algorithms such as NetExtractor and EdgeCrafting to
identify a larger subset of edges that depict multimodal expression
patterns since the primary concept of their methodologies is to ex-
tend the scope of relationship that may exist and can be identified
with the introduction of nonlinear metrics. An advantage of KINC is
a granulated, significantly curated cluster of gene and their edges to
investigate pathways of interest. On the other hand, NetExtractor
and EdgeCrafting attempt to capture a larger number of gene pairs,
which depict both linear and not necessarily linear relationships.
This permits researchers to explore groups of genes and pathways
that may not have been considered together previously.

The nonoverlapping enriched terms can also be interesting,
suggesting that there are collective biological functions (Table 4),
which are discovered by certain algorithms yet are completely
missed by others. In particular, when observing Table 7 for dis-
ease terms, it was noticed that the highest overlap is still 52% be-
tween the 2 most similar algorithms with the common enriched
terms reduced down when compared to others. Another observa-
tion is that the more commonly utilized DGE output in the posi-
tive and negative direction generated by DESeq2 resulted in a
relatively large set of genes, which could be why functional en-
richment, specifically for DGE_neg, results in very few enriched
terms in most cases. These results indicate that most of these

Fig. 7. Example EdgeCrafting edges. Left 2 panels: scatterplot of input data between XAF1 and NDUFA4L2 genes. The plot depicts the image based
representation of the input data along with the detected blobs. Figure also depicts KIRC with a higher differential expression values when compared
against the other tissue samples. Right 2 panels: scatterplot of input data between TMPRSS2 and TMEM30B genes. The plot depicts the image based
representation of the input data along with the detected blobs. The figure also depicts KIRC and KIRP with a lower differential expression values when
compared against the other tissue samples.

Table 2. Number of overlapping genes among the 5 algorithms.

WGCNA KINC NetExtractor EdgeCrafting DGE_neg DGE_pos

WGCNA 1,881
KINC 35.6% (745) 959
NetExtractor 26% (1,168) 14% (583) 3,772
EdgeCrafting 25% (832) 16% (457) 57% (2,208) 2,275
DGE_neg 6.6% (397) 2.6% (143) 18.8% (1,319) 11.1% (686) 6,303
DGE_pos 12% (879) 8.4% (568) 17.5% (1,502) 14.5% (1,089) 0 4,557
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algorithms search for unique relationships within the same data
while EdgeCrafting focuses on computationally scalable knowl-
edge-independent detection of differential expression.

Conclusion
In this report, we introduced the algorithm EdgeCrafting,
where we integrate the theory of EdgeScaping and NetExtractor

to isolate embedded, latent, nonlinear patterns for differen-

tially expressed condition-specific tissue samples. This algo-

rithm combines the image-based data conversion and

nonlinear pattern detection of EdgeScaping as well as the abil-

ity to detect subpopulations within edges using GMMs followed

by the nonlinear metric MI in NetExtractor to address the

shortcomings of conventional GCN construction algorithms.

Table 6. Number of overlapping Pathway terms among the 5 algorithms.

WGCNA KINC NetExtractor EdgeCrafting DGE_neg DGE_pos

WGCNA 21
KINC 29.5% (13) 36
NetExtractor 20% (7) 1.7% (1) 21
EdgeCrafting 3.5% (1) 7% (3) 7% (2) 8
DGE_neg 0 0 29.6% (8) 0 14
DGE_pos 5.4% (5) 13.2% (13) 0 3.8% (3) 0 75

Table 7. Number of overlapping disease terms among the 5 algorithms.

WGCNA KINC NetExtractor EdgeCrafting DGE_neg DGE_pos

WGCNA 49
KINC 52% (39) 65
NetExtractor 27.4% (17) 15% (13) 30
EdgeCrafting 40% (37) 36% (38) 34.5% (28) 79
DGE_neg 0 0 0 0 0
DGE_pos 23.4% (38) 30.1% (50) 13.1% (21) 33% (57) 0 151

Table 3. Number of overlapping molecular function GO terms among the 5 algorithms.

WGCNA KINC NetExtractor EdgeCrafting DGE_neg DGE_pos

WGCNA 3
KINC 14% (2) 13
NetExtractor 8% (2) 2.7% (1) 24
EdgeCrafting 6.7% (1) 18% (4) 23% (7) 13
DGE_neg 0 0 20.8% (5) 12.5% (2) 5
DGE_pos 9% (1) 22.2% (4) 3.1% (1) 4.7% (1) 0 9

Table 4. Number of overlapping biological process GO terms among the 5 algorithms.

WGCNA KINC NetExtractor EdgeCrafting DGE_neg DGE_pos

WGCNA 222
KINC 41.5% (160) 323
NetExtractor 47% (157) 28.3% (131) 270
EdgeCrafting 40% (146) 46.1% (193) 48% (180) 288
DGE_neg 7.8% (22) 0 16.3% (49) 6% (21) 79
DGE_pos 25.3% (137) 39.3% (220) 19% (116) 28.7% (166) 0.1% (1) 456

Table 5. Number of overlapping cellular component GO terms among the 5 algorithms.

WGCNA KINC NetExtractor EdgeCrafting DGE_neg DGE_pos

WGCNA 40
KINC 19% (10) 22
NetExtractor 58% (29) 24% (12) 39
EdgeCrafting 22% (12) 38% (13) 45% (20) 25
DGE_neg 0 0 9.3% (4) 0 8
DGE_pos 13.6% (12) 17.1% (12) 19.2% (16) 23.1% (16) 0 60
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In EdgeCrafting, we convert gene expression data into an im-
age format, which is dependent on 2 components: (1) the resolu-
tion of the bin size that does not change the inherent distribution
of the data but only the resolution at which the patterns are ob-
served, which was selected at 0.5, and (2) the orientation of gene
A/gene B. As long as the axes of the genes remain consistent, i.e.
gene A on x-axis while gene B on y-axis of the scatterplot, the im-
age will always be consistent and reproducible. If the axes of
genes A/B are flipped, a mirror image of the grayscale image will
be obtained. This was a particular drawback in EdgeScaping since
the orientation of the genes would determine the cluster the edge
was assigned to. In EdgeCrafting however, this problem is
addressed since the end goal is not to classify all edges into clus-
ters but to determine differentially expressed nonlinear patterns
within the samples of each edge. These patterns can be detected
irrespective of the orientation of the genes on each axes.

We implemented EdgeCrafting at 3 different resolution of bin
sizes: 1, 0.5, and 0.25, and selected 0.5 resolution for the best fi-
delity of data compression. Based on results of the isolated genes
within each algorithm, it can also be observed that EdgeCrafting-
detected genes that were significantly overlapping with
NetExtractor, while KINC and WGCNA also shared a significant
number of common genes.

Data availability
EdgeCrafting source code and usage documentation are available
at https://github.com/bhusain/EdgeCrafting under the MIT li-
cense and data files are available in figshare at https://doi.org/10.
6084/m9.figshare.17701247.
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