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Abstract

Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used
an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an
attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic
strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast
tumors were identified from three different publically available microarray datasets. These differentially expressed (DE)
genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors.
The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules
and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially
expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three
datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as
elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small
molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that
found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit
proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated
bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important
biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers.
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Introduction

Estrogen action through estrogen receptor alpha (ER) is a

critical regulator of breast cancer cell proliferation and survival.

Tamoxifen is an ER antagonist that competitively inhibits the

interaction of estrogen with ER and represses ER activity [1,2,3].

Tamoxifen has been the primary therapeutic choice in both early

and advanced ER positive breast cancer patients since the 1970s.

Unfortunately, up to 50% of patients with metastatic disease do

not respond to first-line treatment with tamoxifen, and many who

receive it as adjuvant therapy experience relapse despite an initial

response. Understanding mechanisms by which resistance devel-

ops is an important task, which could lead to new therapeutic

strategies to combat tumors resistant to endocrine therapy.

Recently, microarray gene expression profiling of ER+ breast

tumors has been used to identify gene signatures for prediction of

clinical outcome of patients treated with tamoxifen [4,5,6,7,8]. For

example, a 36-gene signature has been derived that can correctly

classify up to 80% of patients into relapse or relapse-free groups

[7]. Similarly, a 44-gene signature and a 181-gene signature of

tamoxifen responsiveness have also been developed from profiling

different tumor sets [5,8]. These gene expression studies were

primarily focused on the identification of gene signatures

associated with disease progression and clinical outcomes.

Therefore, genes in the signatures are not necessarily directly

involved in mediating sensitivity to tamoxifen or regulating tumor

growth. Furthermore, the analyses of molecular functions of these

signature genes have provided only limited insight into underlying

mechanisms related to the treatment failure. For example, a

preliminary functional analysis of the 36-gene signature in

Chanrion et al. [7] indicates that there were 23 under-expressed

and 13 were over-expressed genes in tumors from patients with

relapse compared to tumors that were relapse free. The under-

expressed genes were involved in cellular adhesion or invasion,

immune responses, and ER negative regulation, whereas the over-

expressed genes were involved in control of mitosis and cell cycle,

DNA replication, DNA repair. The 44-gene signature was derived

from a set of 81 DE genes that are involved in estrogen action,

apoptosis, and extracellular matrix based on functional annotation

[8]. On the other hand, the 181-genes in the signature developed

by Loi et al. [5] was created from 13 biological clusters determined

in the context of a curated list of published molecular interactions
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by Ingenuity Pathways Analysis (IPA). These clusters represent

biological functions such as cell cycle, cell death, DNA repair and

cancer inflammation among others. However, whether these

functions were represented by the over- or under-expressed genes

in the tamoxifen resistant tumors was not clear. Also of note, the

three published gene signatures are comprised of distinctly

different sets of genes with a small overlap, which presents

challenges in deriving any potential mechanisms that may underlie

the development of tamoxifen resistance.

We therefore undertook a systematic analysis of three publically

available microarray data sets to better understand the biological

mechanisms that may contribute to a tamoxifen resistant phenotype

[5,6,7]. Interestingly, there was little overlap between the three

datasets in terms of individual genes that are differentially expressed

in tamoxifen resistant vs. sensitive tumors. However, a variety of

bioinformatics analyses revealed several functional commonalities in

these gene sets, including enhanced cell cycle potential, elevated

activity of the target genes of the E2F family of transcription factors,

and a number of small molecules that can reverse expression of genes

associated with tamoxifen resistance. Finally, we validated the

functionality of three small molecules from the phenothiazine family

of anti-psychotic drugs to down-regulate cyclin E2 expression and

inhibit proliferation of tamoxifen resistant breast cancer cells. Taken

together, our findings demonstrate that an integrated approach to

analyzing disparate datasets can produce valuable biological

information and lead to potential novel therapeutic strategies for

drug resistant breast cancers.

Materials and Methods

Breast tumor microarray data sets
Datasets used in this work were selected from three breast

cancer microarray studies published previously [5,6,7] and the raw

data were downloaded from Gene Expression Omnibus [9]

(accession numbers GSE6532, GSE9195 and GSE9893). Briefly,

datasets GSE6532 and GSE9195 consist of gene expression

profiles of early stage breast cancer tumors diagnosed between

1980 and 1995 in the John Radcliffe Hospital, Oxford, United

Kingdom and Guys Hospital, London, United Kingdom and

Uppsala University Hospital, Uppsala, Sweden, respectively. All

tumors were required to be ER positive and had received

tamoxifen only as adjuvant treatment. Dataset GSE9893 contains

gene expression profiles on breast tumors obtained from patients

between 1989 and 2001 at the Cancer Research Center of Val

d’Aurelle in Montpellier, the Bergonié Institute of Bordeaux, or

the Department of Obstetrics and Gynecology of Turin. The

patients received tamoxifen treatment for 5 years after surgery.

Some of them also received adjuvant radiotherapy. Tumors from

each study were classified as tamoxifen sensitive if patients were

relapse-free for 5 years or greater or tamoxifen resistant if relapse

occurred within 5 years [10]. The 5-year cut-off is based on the

criterion published in [10,11].

Gene expression analysis
Gene expression analysis was performed using packages in

Bioconductor [12]. For each microarray dataset, the probe set

intensities were normalized and summarized using the Robust

Multichip Averaging algorithm [13] with quantile normalization

in rma package. Affymetrix detection calls were obtained to

remove low quality probe sets. A second procedure was applied to

filter out the least variable probe sets using the percentile of the

distribution of coefficient of variability values. The threshold for

this filtering was set based on the platform using 0.5 for GSE6532

and GSE9195, and 0.8 for GSE9893. The custom CDF file [14]

was used for probe set definition for datasets based on Affymetrix

platforms. For the dataset based on 70-mer oligonucleotide

microarray, the 22,680 oligonucleotide probes (Oligo SetTM for

the Human Genome Version 2.1.3, Qiagen-Operon) representing

21,329 human specific genes were used. The DE genes between

the tamoxifen resistant and sensitive tumors were identified using

limma package with the Benjamini–Hochberg procedure for

multiple test adjustment [15]. The adjusted P-value threshold was

set at 0.05.

Gene function enrichment analysis
For each microarray dataset, over-expressed and under-expressed

genes in tamoxifen resistant compared to sensitive tumors were tested

for enrichment of functional annotation categories using tools in the

Database for Annotation, Visualization and Integrated Discovery

(DAVID) (v6.7) [16]. The P-values for the functional annotation

enrichment were corrected by the Benjamini–Hochberg method for

multiple testing and the significance threshold for the adjusted P-

values was set at 0.1.

Gene set enrichment analysis (GSEA)
GSEA can detect pathways or gene sets whose expression levels are

different between two phenotypes based on entire microarray profiles

(not just DE genes) using pre-defined gene sets [17]. Two categories of

pre-defined gene sets were selected for analysis. One was the

canonical pathway gene sets collected from online pathway

databases, biomedical literature, and published mammalian micro-

array studies. The other was a collection of transcription factor target

gene sets, which contain genes that share a transcription factor

binding site defined in the TRANSFAC (ver7.4) database [18]. These

gene sets are available from the Molecular Signature Database

(MSigDB) [19]. The gene sets included in our analysis were limited to

those with size between 10 and 500 genes. Permutation was carried

out 10,000 times using default weighted enrichment statistic and a

signal-to-noise metric to rank genes according to their differential

expression level across tamoxifen resistant and sensitive tumors. Gene

sets with nominal P-value,0.05 were selected.

Enrichment analysis of differentially expressed genes in
breast cancer subtypes

A compendium of 1211 breast cancer microarray expression

profiles was used for the enrichment analysis of the DE genes

identified by our study in the breast cancer subtypes [20]. These

tumors were classified into distinct subtypes based on available

tumor annotations. There are 441 tumors in Luminal A, 121

tumors in Luminal B, 136 tumors in normal-like, 152 in Her2, and

279 in basal-like subtypes. The expression data, which were

downloaded from the author’s website, have been log2-trans-

formed [20]. Gene expression levels are represented relative to the

mean of each gene, which was calculated from all samples in the

compendium. The enrichment analysis of DE gene sets between

tamoxifen resistant and sensitive tumors in the breast cancer

subtypes was conducted in two steps. First, for each tumor in the

compendium, the up-regulated genes with an expression level

greater than 2 and the down-regulated genes with an expression

level less than 22, relative to the mean expression of each gene

across the compendium, were identified. The enrichment of over-

expressed genes from the tamoxifen resistant tumors in the up-

regulated gene set from the compendium was analyzed using the

hypergeometric test. Similarly, the enrichment of under-expressed

genes from the tamoxifen resistant tumors in the down-regulated

gene set from the compendium was also analyzed. The

significantly enriched tumors were identified using a threshold of
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P,0.05. Next, the number of enriched tumors in each breast

cancer subtype was assigned a P-value according to the

hypergeometric test with a threshold of P,0.01 for significance.

Survival analysis
The principal component analysis (PCA) has been performed for

the untreated Luminal A and Luminal B tumors in the compendium

set using each of the three DE gene sets (genes not presented in the

compendium were excluded). The hierarchical clustering was based

on the weights of expression on the top principal components which

account for more than 48% of the variance. The Kaplan-Meier

estimates were used to compute the survival curves. The packages in

R were used for the above analyses.

Connectivity Map analysis
Entrez gene identifiers of the DE genes in the three microarray

datasets were first mapped to Affymetrix HG-U133A probe sets

using Affymetrix Human Genome U133A set annotation data

implemented in package hgu133a.db in Bioconductor. All mapped

probe sets in each individual microarray dataset were then

submitted to the Connectivity Map website [21]. A connectivity

score based on the Kolmogorov-Smirnov statistic was calculated to

estimate the enrichment of both over- and under-expressed query

genes in a Connectivity Map instance as described [22]. As the

basic unit of data in Connectivity Map, an instance consists of the

expression profile of a cell line treated with a compound at a

certain concentration and its control pair, as well as a rank-

ordered list of all probe sets on the HG-U133A array based on the

differential expression level between the pair. The current version

of the Connectivity Map (build 02) contains 6,100 such instances

representing 5 cultured human cell lines treated with 1,309

compounds. Instances were ranked in descending order of

connectivity scores. Multiple independent instances of the same

compound with high (or low) rankings indicate positive (or

negative) connectivity between the compound and the phenotype

represented by the query gene lists. Permutation tests were

performed to estimate the significance of the instance sets ranked

by the connectivity scores. Compounds were selected from top

ranked instance sets with negative connectivity scores at

permutation P-value,0.05 for each individual inquiry gene list.

Cell culture and reagents
MCF-7 breast cancer cell lines that were sensitive to tamoxifen

or had developed spontaneous resistance to tamoxifen but

remained highly responsive to estradiol (Figure S1) were cultured

as previously described [23]. BT474 cells were cultured as

previously described [24]. 4-hydroxytamoxifen, trifluoperazine,

thioridazine, and prochlorperazine were all obtained from Sigma

and used to treat cells, as described in the figure legend, following

3-day incubation in phenol-red free medium supplemented with

charcoal-dextran stripped serum.

Cell viability and proliferation
Cell viability was determined by methylene blue staining [25].

Briefly, each well was rinsed once with PBS and methylene blue

staining solution (Hanks’ Balanced Salt Solution+1.25% glutaral-

dehyde+0.6% methylene blue) was added to each well. Following

1 h incubation at 37uC, methylene blue staining solution was

removed, and the plates were gently rinsed 3 times in ddH2O.

Elution solution (50% ethanol+49% PBS+1% acetic acid) was

added to each well and subsequently incubated for 20 min at room

temperature with gentle agitation. Absorbance was read on a

microplate reader at a wavelength of 562 nm and viability was

calculated as a percentage of control cells. To study the specific

effects of phenothiazines on proliferation, a BrdU assay was

carried according to the manufacturer’s instructions (Millipore,

Billerica, MA). For this assay, MCF 7 cells were treated with

phenothiazines for 48 hr with BrdU applied to the cells for the

final 24 hours of treatment. Cells were fixed for 30 min and then

incubated with anti-BrdU antibody for 1 hour. The goat anti-

mouse antibody conjugated to peroxidase was added for 30 min.

After washing, cells were incubated with peroxidase substrate for

30 min. Absorbance, correlating to BrdU uptake by the cells, was

read at 450 nm wavelength on an automated plate-reader.

Cyclin E2 mRNA expression
Following treatment of tamoxifen-resistant MCF-7 cells with

phenothiazines for 24 hr, total RNA was isolated and Cyclin E2

mRNA was examined by QPCR as previously described [23] using

primers specific for Cyclin E2: forward: 59-GACGGAATCCCCC-

CAAGA-39, reverse: 59-TTTTTTGACATCCTGGGTAGTTT-

TC-39. The expression of cyclin E2 following treatment relative to

vehicle treated control cells was determined by the DDCT method

from three independent experiments.

Results

Differentially expressed genes in tamoxifen resistant vs.
sensitive breast tumors from three microarray datasets

Three sets of microarray gene expression profiles from ER

positive breast tumors were obtained from Gene Expression

Omnibus as described in Materials and Methods. The numbers of

tumors included from each dataset along with the information on

the microarray platforms are shown in Table 1 based on the 5-

year cut-off for tamoxifen resistance. After filtering out non-

variable genes from each dataset, the total numbers of genes

analyzed were 3,064, 4,870 and 2,366 for GSE6532, GSE9195

and GSE9893, respectively. The numbers of DE genes, which

were either over-expressed or under-expressed in tamoxifen

resistant compared to sensitive tumors, are 275 for GSE6532,

130 for GSE9195, and 252 for GSE9893. (A 10-year cut-off was

also considered, but the dataset GSE6532 did not provide any

differentially expressed genes at FDR = 0.05 following the same

analysis protocol). The full list of the DE genes can be found in

Table S1. The Venn diagram of overlap of the DE genes among

these three datasets is shown in Figure 1. Surprisingly, there are

only four genes common in all three sets of DE genes. These are

chemokine C-X3-C motif receptor 1 (CX3CR1), which is under-

expressed in tamoxifen resistant tumors; cyclin E2 (CCNE2),

kinesin family member 4A (KIF4A) and non-SMC condensin I

complex, and subunit G (NCAPG), which are over-expressed in

tamoxifen resistant tumors. Furthermore, there was very little

overlap between any two data sets with just 16 common between

GSE6532 and GSE9195, 14 common between GSE9195 and

GSE9893, and 14 common between GSE6532 and GSE9893.

These findings suggest that either the underlying biology is very

different among these three sets of tumors or that some technical

aspect of performing the microarrays captured unique sets of DE

genes.

Common biological pathways identified in tamoxifen
resistant tumors

To examine whether the datasets in fact represent biologically

different phenotypes, a number of approaches were utilized to

compare the three sets of DE genes. First, a functional analysis was

performed for each individual dataset using the tools in DAVID.

This analysis allows for the identification of particular biological
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processes or pathways based on functional annotation categories

that are over-represented in a set of genes. The three sets of genes

that are over-expressed in tamoxifen resistant tumors share a large

number of enriched Gene Ontology (GO) terms (Table 2).

Specifically, the GO terms in common are mainly associated with

cell cycle and DNA replication, suggesting elevated cell prolifer-

ative capacity in tamoxifen resistant compared to sensitive tumors.

On the other hand, there are no common GO terms shared in the

three sets of under-expressed genes in tamoxifen resistant tumors.

The entire list of enriched GO terms for each dataset is provided

in Table S2. These findings suggest that although there is little

overlap of individual genes among the tamoxifen resistant and

sensitive tumors, there may be similar underlying biological

mechanisms represented in these data sets.

To infer the possible mechanisms underlying the altered gene

expression profiles in tamoxifen resistant tumors, we performed GSEA

[17] to determine if specific pre-defined gene sets were significantly

enriched in tamoxifen resistant tumors. Four canonical pathways,

DNA replication reactome, G1_to_S cell cycle reactome, HSA04110

cell cycle, and purine metabolism, were found to be commonly

enriched pathways among all three datasets. Over-expressed genes,

POLE3, PRIM1, RFC3, RFC4, RFC5 (in GSE6532), DBF4, GMNN,

FEN1, MCM10, PSMD12 (in GSE9195) and CCNA2, CDC6,

CDT1, MCM2, MCM4 (in GSE9893), are involved in DNA

replication. Other over-expressed genes such as CCNA2 (in

GSE9893), CCNE2 (in GSE6532, GSE9195 and GSE9893), and

CCNB2, CDC2, KIF2C, RRM2 (in GSE9195 and GSE9893) are

associated with the cell cycle pathways. This finding suggests that

tamoxifen resistant tumors likely have an intrinsically elevated level of

cell proliferation. This concept was further supported by GSEA with

transcription factor (TF) target gene sets. The analysis is designed to

examine whether activity of a specific TF is significantly associated with

given gene expression data. In the case of tamoxifen resistant tumors,

target genes for the TFs TFDP1, TFDP2, E2F1, and E2F4 were found

to be significantly enriched in all three microarray datasets (Table 3).

TFDP1 and TFDP2 are transcriptional coactivators that can stimulate

E2F-dependent transcription of a number of genes whose products are

involved in control of cell-cycle progression from G1 to S phase, DNA

replication, and p53-dependent/independent apoptosis [26]. In our

analysis the expression levels of all four TFs are not significantly altered

between tamoxifen resistant and sensitive tumors. However, genes

known to be regulated by these TFs were over-expressed in tamoxifen

resistant tumors; for example, FBXO5 (in GSE6532), TOPBP1 (in

GSE9195), MCM2, MCM4, CDC6 (in GSE9893), and CDC2 (in

GSE9195 and GSE9893). All enriched pathways and TF target gene

sets are given in Table S3. Thus, our findings from the enrichment

analyses of functional annotation, canonical pathway, and TF target

gene sets are all consistent with the concept that elevated cell

proliferation pathways are a hallmark of tamoxifen resistant breast

tumors.

Enrichment of the differentially expressed genes in
breast cancer subtypes

To explore whether the DE genes in tamoxifen resistant vs.

sensitive tumors were enriched in specific intrinsic subtypes of

breast cancer, a breast cancer compendium was utilized as

described in Materials and Methods. Table 4 shows that genes

over-expressed in tamoxifen resistant tumors are enriched in the

Luminal B tumor subtype for two of three datasets, in the Basal-

like tumor subtypes for all three datasets, and the Her2 subtype for

only 1 dataset. In contrast, genes under-expressed in tamoxifen

resistant tumors are enriched in Luminal A subtype tumors for all

three datasets. In addition, the average expression level of CCNE2

is consistently higher in Luminal B, Basal-like, and Her2 tumor

subtypes than average, and lower than average in Luminal A and

Normal-like tumor subtypes (Figure 2). In addition, the transcrip-

tion factor target gene sets of E2F1 and TFDP1 used in GSEA

were also enriched in Luminal B tumor subtype (P = 0.014 and

P = 0.006, respectively) while TFDP2 and E2F4 target gene sets

showed no enrichment in Luminal B subtype (P = 0.302 and

Figure 1. Venn diagram showing overlap between three sets of
differentially expressed genes. The numbers of differentially
expressed genes, which were either over-expressed or under-expressed in
tamoxifen-resistant compared to sensitive tumors, are 275 for GSE6532, 130
for GSE9195, and 252 for GSE9893.
doi:10.1371/journal.pone.0022274.g001

Table 1. Characterization of the data sets from tamoxifen resistant and sensitive breast tumors used in this study.

Number of tumors Number of differentially expressed genes

Data source Platform
Tamoxifen
resistant

Tamoxifen
sensitive

Over-expressed
in tamoxifen
resistant

Under-expressed in
tamoxifen resistant

Total number
of genes

GSE6532 Affymetrix HG-U133A 85 91 173 102 275

GSE9195 Affymetrix HG-U133 Plus 2.0 26 138 86 44 130

GSE9893 Qiagen-Operon Oligo Set 2.1.3 49 98 118 134 252

doi:10.1371/journal.pone.0022274.t001
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Table 2. Common enriched GO terms in the three over-expressed gene sets in tamoxifen resistant tumors.

Ontology Accession number Synonyms

Biological process GO:0000087 M phase of mitotic cell cycle

GO:0000278 mitotic cell cycle

GO:0000279 M phase

GO:0000280 nuclear division

GO:0006259 DNA metabolic process

GO:0006260 DNA replication

GO:0007049 cell cycle

GO:0007067 mitosis

GO:0007346 regulation of mitotic cell cycle

GO:0010564 regulation of cell cycle process

GO:0022402 cell cycle process

GO:0022403 cell cycle phase

GO:0048285 organelle fission

GO:0051301 cell division

GO:0051726 regulation of cell cycle

Cellular component GO:0000777 condensed chromosome kinetochore

GO:0000779 condensed chromosome, centromeric region

GO:0000793 condensed chromosome

GO:0005694 chromosome

GO:0005819 spindle

GO:0015630 microtubule cytoskeleton

GO:0043228 non-membrane-bounded organelle

GO:0043232 intracellular non-membrane-bounded organelle

GO:0044427 chromosomal part

GO:0044430 cytoskeletal part

Molecular function GO:0001882 nucleoside binding

GO:0001883 purine nucleoside binding

GO:0005524 ATP binding

GO:0030554 adenyl nucleotide binding

GO:0032559 adenyl ribonucleotide binding

doi:10.1371/journal.pone.0022274.t002

Table 3. Transcription factor (TF) binding sites and the putative TFs that are common among all three microarray datasets of
tamoxifen resistant tumors.

Name of response element Putative TF associated with enriched target genes

V$E2F_Q3_01 TFDP1: transcription factor Dp-1

V$E2F_Q4_01 TFDP1: transcription factor Dp-1

V$E2F_Q6 E2F1: E2F transcription factor 1

V$E2F_Q6_01 TFDP1: transcription factor Dp-1

V$E2F1_Q3 E2F1: E2F transcription factor 1

V$E2F1_Q6 E2F1: E2F transcription factor 1

V$E2F1_Q6_01 E2F1: E2F transcription factor 1

V$E2F1DP1_01 E2F1: E2F transcription factor 1; TFDP1: transcription factor Dp-1

V$E2F1DP2_01 E2F1: E2F transcription factor 1; TFDP2: transcription factor Dp-2 (E2F dimerization partner 2)

V$E2F4DP1_01 E2F4: E2F transcription factor 4, p107/p130-binding; TFDP1: transcription factor Dp-1

V$E2F4DP2_01 E2F4: E2F transcription factor 4, p107/p130-binding; TFDP2: transcription factor Dp-2 (E2F dimerization partner 2)

doi:10.1371/journal.pone.0022274.t003
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P = 0.302, respectively) (Table S4). These results indicate that

tumors from the Luminal B intrinsic subtype share a similar highly

proliferative phenotype with tamoxifen resistant tumors.

We further investigated whether using the DE genes between

tamoxifen resistant and sensitive tumors can stratify ER+ tumors

with distinct outcome. For this purpose, we selected a subset of

untreated ER+ tumors (110 Luminal A and 52 Luminal B) with

survival data from the compendium. We retrieved the expression

values of the DE genes for these tumors. A PCA analysis was

performed on their gene expression values corresponding to each

DE set as described in Materials and Methods. Hierarchical

clustering was performed using each of the three DE gene set

(Figure 3A). We stratified the tumors into two clusters. Most of the

Luminal B tumors appeared in cluster 1, but mixed with some

Luminal A tumors, largely seen in the clustering corresponding to

the third gene set. The Kaplan-Meier analysis shows that the two

clusters are significantly different in outcomes, with P = 0.001,

P = 2e-06 and P = 2e-05, respectively for the three DE gene sets

(Figure 3B). This indicates the Luminal B subtypes has a similarly

intrinsic molecular profile to that of the tamoxifen resistant

tumors. Although some Luminal B tumors were present in cluster1

for all three datasets, the two Luminal B subgroups did not show

significantly different outcome (data not shown). However, it was

surprising to observe that in two cases the luminal A tumors

stratified into the two clusters demonstrated a significant difference

in outcome (P = 0.47, P = 0.029 and P = 0.017, respectively)

(Figure 3C). It appears that within the Luminal A tumors, there

is a subgroup of tumors possessing a molecular profile similar to

that of the tamoxifen resistant tumors. These results may appear to

be contradictory to the enrichment findings in Table 4, as the

Luminal A subtype was not significantly enriched in the over-

expressed genes in the tamoxifen resistant tumors. However, this

does not exclude the existence of some Luminal A tumors being

actually enriched by the over-expressed genes.

Small molecules that reverse proliferation of tamoxifen
resistant cell lines

In an attempt to link the gene expression profiles derived from

the tamoxifen resistant and sensitive tumors to small molecules

that may alter the profiles, and potentially tamoxifen resistance, an

analysis was performed using the Connectivity Map [22,27] as

described in Materials and Methods. The Connectivity Map

allows researchers to screen compounds by comparing a ranked

list of genes based on the association to a disease phenotype with

the expression profiles derived from the several types of cell lines

treated with compounds. If a small molecule produces the gene

expression pattern opposite to those observed between tamoxifen

resistant and sensitive breast cancers, then a negative score will be

assigned based on the Connectivity Map analysis. The molecules

with negative scores will be considered to have potential to reverse

the tumor expression pattern if the tumors were treated with the

molecules. The top-ranked compound/cell combinations with

negative connectivity scores that are common among the three

tamoxifen resistant gene sets are listed in Table 5. The entire list of

enriched compounds for each individual microarray dataset can

be found in Table S5.

Among the top-ranked compounds listed in Table 5, three drugs

(trifluoperazine, thioridazine, and prochlorperazine) belong to the

same structural family of phenothiazine compounds. From the

Connectivity Map database, expression of cyclin E2 was found to be

lower in MCF-7 and PC3 cells treated with these three compounds

than in controls (data not shown). To validate whether these drugs

may have any effect on proliferation or gene expression in tamoxifen

resistant breast cancer cells, MCF-7 cells that developed spontaneous

resistance to tamoxifen were utilized (Figure S1). Cells were treated

with increasing concentrations of the three phenothiazines, trifluo-

perazine, thioridazine, and prochlorperazine in the presence of 4-

Table 4. P-values of gene set enrichment analysis on the breast cancer compendium.

Subtypes and numbers in BC
compendium Over-expressed genes in tamoxifen resistant tumors Under-expressed genes in tamoxifen resistant tumors

GSE6532 GSE9195 GSE9893 GSE6532 GSE9195 GSE9893

Luminal A (411) 1.000 1.000 1.000 ,0.001 0* 0*

Luminal B (212) ,0.001 0.217 ,0.001 1.000 0.770 0.523

Normal-like (136) 1.000 1.000 1.000 ,0.001 0.913 0.414

Her2 (152) 0.292 0.276 0* 1.000 1.000 1.000

Basal (270) 0.002 0* ,0.001 1.000 1.000 1.000

*P-values are smaller than 1.00E-15.
doi:10.1371/journal.pone.0022274.t004

Figure 2. Expression level of Cyclin E2 mRNA in breast tumors
from different intrinsic subtypes. The mean expression level of
Cyclin E2 was determined in breast tumors of different intrinsic
subtypes as described in Materials and Methods. The Log2 transformed
mean expression level is relative to the mean expression level in all
tumors in the breast tumor compendium.
doi:10.1371/journal.pone.0022274.g002

Bioinformatics Approach to Resistant Breast Tumors

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e22274



hydroxytamoxifen (4OHT). After 5 days of treatment, a dose-

dependent decrease in the number of viable cells was observed for

each of the phenothiazine compounds independent of the presence of

4OHT (Figure 4A). A similar growth inhibitory effect was observed in

MCF-7 cells sensitive to tamoxifen (data not shown). A BrdU assay

was carried out in the resistant cells after 48 hr of treatment and

demonstrates that the growth inhibitory effects of phenothiazines are

associated with a reduction in cell proliferation (Figure 4B). To

examine the effect of these compounds on cyclin E2 expression,

QPCR was carried out. All three phenothiazines down-regulated

expression of cyclin E2 mRNA levels within 24 hr of treatment

(Figure 4C). To confirm our findings in another cell line, we utilized

BT474 cells that over-express HER2 and have previously been

shown to be tamoxifen resistant [28,29]. Treatment with 5 mM of

prochlorperazine in the presence or absence of 4OHT significantly

inhibited cell proliferation and reduced cyclin E2 mRNA levels

(Figure 5). These findings validate the bioinformatics analyses

described above and identify a novel class of therapeutic drugs that

have the potential to inhibit proliferation of both tamoxifen-sensitive

and tamoxifen-resistant breast tumors.

Discussion

In an attempt to understand more clearly the molecular

mechanisms involved in tamoxifen resistant breast tumors, we

Figure 3. Results of clustering and survival analysis. (A) Clustering results of untreated Luminal A and Luminal B breast tumors from the
compendium gene expression profile using principle components of the DE genes identified in GSE6532 (left), GSE9195 (middle) and GSE9893 (right).
Green: luminal A tumors; Pink: luminal B tumors; (B) Kaplan-Meier estimation of survival for stratified ER+ tumors using the DE genes identified in
GSE6532 (left), GSE9195 (middle) and GSE9893 (right); the number in the parentheses is the number of ER+ tumors in each cluster. (C) Kaplan-Meier
estimation of survival for stratified Luminal A tumors using the DE genes identified in GSE6532 (left), GSE9195 (middle) and GSE9893 (right); the
number in the parentheses is the number of Luminal A tumors in each cluster.
doi:10.1371/journal.pone.0022274.g003
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Table 5. Common top ranked compounds with expression profiles opposite to those of the tamoxifen resistance tumors.

GSE6532 GSE9195 GSE9893

Compound Cell Line Enrich Score Rank P * Enrich Score Rank P * Enrich Score Rank P *

trichostatin A PC3 20.372 1 0 20.844 1 0 20.627 2 0

trichostatin A MCF7 20.281 12 0 20.59 3 0 20.58 3 0

LY-294002 MCF7 20.374 3 ,0.001 20.412 4 0 20.441 5 0

resveratrol MCF7 20.696 9 0.002 20.767 13 ,0.001 20.551 143 0.031

trifluoperazine MCF7 20.53 24 0.007 20.641 14 0 20.642 11 0

thioridazine PC3 20.671 29 0.009 20.896 6 ,0.001 20.872 6 ,0.001

DL-thiorphan MCF7 20.933 32 0.009 20.886 73 0.026 20.905 92 0.018

harmine MCF7 20.929 26 0.011 20.948 31 0.006 20.927 67 0.011

0297417-0002B MCF7 20.928 38 0.011 20.977 20 0.001 20.973 21 0.001

chrysin MCF7 20.907 51 0.017 20.943 35 0.007 20.887 116 0.025

trimethylcolchicinic acid MCF7 20.896 62 0.021 20.894 68 0.022 20.911 89 0.016

galantamine MCF7 20.868 92 0.035 20.92 46 0.013 20.916 77 0.014

*P-values of 0 are smaller than 1.00E-15.
doi:10.1371/journal.pone.0022274.t005

Figure 4. Phenothiazines inhibit proliferation and down-regulate Cyclin E2 expression in tamoxifen-resistant MCF-7 breast cancer
cells. (A) Cells were treated for five days with increasing doses of the three phenothiazine compounds in the absence or presence of 1 mM
4-hydroxytamoxifen (4OHT) as indicated. Cell viability was determined by methylene blue staining and expressed as % of vehicle treated control cells.
(B) A BrdU assay was carried out after 48 hr of treatment with 5 mM of each phenothiazine drug. (C) Cyclin E2 mRNA levels were determined by QPCR
following 24 hr treatment with 5 mM of each phenothiazine as indicated. All data represent the mean +/2 SEM from three independent
determinations. *, P,0.05, **, P,0.01.
doi:10.1371/journal.pone.0022274.g004
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undertook an integrative bioinformatics analysis approach using

three published gene expression datasets from ER positive breast

tumors. It should be noted that these datasets have been previously

analyzed individually to derive gene signatures for the prediction

of tamoxifen responsiveness and clinical outcomes; limited

information on functionality of these genes have been provided

through gene function annotation or pathway analysis [5,6,7].

However, these datasets have not been compared or analyzed

together in any comprehensive manner. Our initial analysis

revealed only four genes that were differentially expressed between

tamoxifen resistant and sensitive tumors and common among all

three datasets. Despite this apparent difference in gene expression

profiles, a variety of functional analyses revealed a high degree of

biological commonality between these tumor sets. This success of

our approach may be attributed to the power of GSEA [17],

which does not rely on a set of DE genes but rather uses a

knowledge-based approach to identify pathways enriched by genes

with a moderate but not significant level of differential expression.

In addition, gene set enrichment analysis using the pre-defined

transcription factor target gene sets enabled the detection of

transcription factors whose activity but not expression levels are

different in resistant and sensitive tumors. Furthermore, the

Connectivity Map analysis allows for the detection of small

molecules that are linked to tamoxifen resistance through analysis

of similarity or dissimilarity between entire gene expression

profiles. Using existing knowledge of pathways and regulation of

gene expression, these approaches appear to be more effective

compared with any single-gene analysis, which may miss

important biologically active pathways.

It should be noted that a different approach can be taken by

pooling tumors profiled with the similar platforms, such as the

U133A, U133B and U133 Plus 2.0 Affymetrix GeneChips. In fact,

we also performed the analysis by pooling tumors in GSE6532 and

GSE9195 sets using common probesets between U133A and

U133 Plus 2.0 chips. Although a larger common DE gene set was

identified, we did not find significant difference in the sets of

enriched GO terms and pathways. However, the effectiveness of

the pooled analysis has to rely on a proper procedure of batch-

effect removal.

A wide variety of proposed mechanisms for tamoxifen

resistance have been described [30] but the majority of these

have been identified using cell lines that have acquired resistance

to tamoxifen over long-term exposure. The gene expression

profiles utilized for our study, on the other hand, are taken from

primary breast tumors prior to exposure to tamoxifen. Thus, our

findings potentially represent de novo or intrinsic molecular

mechanisms of resistance. One gene over-expressed in all three

datasets, cyclin E2, which is an essential regulator of G1 to S

phase transition during the cell cycle, is of particular interest.

Previous studies have shown that over-expression of cyclin E2 in

cell lines is associated with the development of tamoxifen

resistance [31]. In human breast tissue it was found that cyclin

E2 levels are elevated in tumors vs. normal tissue [32] and that

both cyclin E1 and E2 protein levels are associated with a poor

response to tamoxifen [33].

In addition to cyclin E2, the integrated analyses that we

performed also identified several pathways and GO terms, in

particular related to cell proliferation, that are enriched in all three

tamoxifen resistant tumor sets. Furthermore, we find activity of the

E2F family of transcription factors is strongly associated with the

tamoxifen resistant phenotype in all three datasets. Interestingly,

one of the gene expression profiling datasets used in our analysis

was previously used to identify elevated c-Myc activity as

associated with enhanced proliferation signature and reduced

responsiveness to tamoxifen [34]. We have confirmed their

findings (Table S3) but were unable to detect an elevated c-Myc

signature in the other two datasets examined, which indicates the

importance of an integrated analysis for the identification of

common mechanisms implied in different microarray datasets. We

have detected a strong association between tamoxifen resistance

and cell proliferation/cell cycle gene expression signatures, which

suggests that tamoxifen resistant tumors display a highly

proliferative phenotype compared with tamoxifen sensitive

tumors. The examination of genes differentially expressed in

tamoxifen resistant vs. sensitive tumors in breast tumor intrinsic

subtypes revealed that tamoxifen resistance is highly correlated

with the Luminal B and Basal-like subtypes. While Luminal B

tumors have a worse outcome than Luminal A tumors in general

[35], most likely due to enhanced growth factor signaling [36], a

clear association between gene signatures of Luminal subtype and

tamoxifen responsiveness has not been made. Our findings

support this but the similarity between tamoxifen resistant tumors

and both Luminal B and Basal-like subtypes also suggests the

possibility that the increased proliferation signatures in each of

these tumor types could be an underlying factor. In addition, our

analysis also found that the Luminal A tumors can be stratified

into two subgroups using the DE genes and that these two

subgroups have distinctly different outcomes, suggesting that

Figure 5. Prochlorperazine inhibits growth of BT474 cells. Cells were treated 5 mM of prochlorperazine for 5 days and cell proliferation was
measured by methylene blue staining (A) or for 2 days and cyclin E2 mRNA levels were by QPCR (B).
doi:10.1371/journal.pone.0022274.g005
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Luminal A and Luminal B subtypes represent a heterogeneous

populations and understanding the relationship between Luminal

subtype and tamoxifen responsiveness requires further study.

Using the Connectivity Map analysis we also linked the gene

expression profiles of several small molecules to those derived from

the three tamoxifen resistant and sensitive tumor datasets.

Although the small molecules utilized in the Connectivity Map

analysis were presumably tested in MCF-7 cells that are sensitive

to tamoxifen, we were able to identify many drugs that induce an

opposite gene expression profile of that seen in tamoxifen resistant

tumors. The top identified compounds belong to different

chemical classes. For example, a HDAC inhibitor (trichostatin

A), a PI3K inhibitor (LY294002), natural compounds, such as

resveretrol and chrysin, and several drugs, including phenothia-

zines (trifluoperazine and thioridazine), monoamine oxidase A

(MAO-A) inhibitor (harmine), and a colchicine analog (trimethyl-

colchicinic acid), were all found to produce an opposite gene

expression profile in MCF-7 or the prostate cancer cell line, PC3.

Validation studies were carried out on three structurally similar

drugs from the phenothiazine family (trifluoperazine, thioridazine,

and prochlorperazine) since they were structurally similar and all

found to down-regulate cyclin E2, a gene differentially expressed

in all three datasets. These drugs were originally designed as anti-

malarial drugs but have been shown to act as anti-histamines, anti-

emetics, suppressants of psychotic symptoms, and anti-choliner-

gics. We confirmed that these drugs reduce cyclin E2 gene

expression and cell proliferation in MCF-7 cells that are resistant

to tamoxifen. The mechanisms by which these drugs act are not

fully clear but they are known to inhibit calmodulin and

prostaglandin synthesis, both of which have the potential to

impact on estrogen receptor (ER) function and alter response to

endocrine therapy [37,38]. In fact, early studies suggested that the

anti-proliferative capacity of trifluoperazine correlated with its

ability to antagonize calmodulin activity and that calmodulin

inhibitors in combination with tamoxifen may have synergistic

activity [39]. Other studies have also suggested an interaction

between phenothiazines and tamoxifen in inducing apoptosis in

cancer cells [40,41]. However, our studies did not show any

interaction between tamoxifen and phenothiazines in any of the

cell types or assays tested. Alternatively, these drugs may act

independently of estrogen receptor and have a general anti-

proliferative effect on breast cancer cells, as suggested by the fact

that they also inhibit proliferation of tamoxifen sensitive MCF-7

cells. Previous studies have suggested that these drugs may

sensitize breast tumors with a multi-drug resistance phenotype

[42], induce apoptosis, potentially in combination with tamoxifen

[40], and/or promote autophagy [43,44].

Exploration of phenothiazines as agents to inhibit growth of

tamoxifen-resistant and sensitive, breast cancer cells requires

further study. Also, since these agents have been used in vivo

testing their ability to reduce tumor burden in preclinical

xenograft models also warrants further investigation.

In conclusion, our findings demonstrate that an integrated

bioinformatics approach to analyze gene expression profiles from

multiple breast tumor datasets can identify important biological

pathways and potential novel therapeutic options for tamoxifen-

resistant breast cancers.

Supporting Information

Figure S1 Growth Response of MCF-7 Cells to Estradiol
and Tamoxifen. MCF-7 cells that spontaneously developed

resistance to tamoxifen were cultured for 5 days in the presence of

10 nM E2, 1 mM 4-hydroxytamoxifen, or both. Cell proliferation

was measured by methylene blue assay and calculated as percentage

of control. Data shown are mean +/2 SE for 3 independent

replicates.

(TIF)

Table S1 Differentially expressed genes between tamoxifen

resistant and sensitive tumors in each data set (adjusted p

value,0.05).

(XLS)

Table S2 GO term functional annotation chart for differentially

expressed genes in each data set using DAVID.

(XLS)

Table S3 List of the canonical pathways and transcription factor

target (TFT) gene sets enriched in tamoxifen resistant tumors in

each data set through GSEA (p,0.05).

(XLS)

Table S4 Transcription factor target (TFT) gene set enrichment

in the Breast Cancer Compendium.

(XLS)

Table S5 List of enriched compounds through the Connectivity

Map analysis.

(XLS)
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