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ABSTRACT
Background: Chronic subdural hematoma (CSDH) incidence and referral rates to neurosurgery are increasing. 
Accurate and automated evidence-based referral decision-support tools that can triage referrals are required. Our 
objective was to explore the feasibility of machine learning (ML) algorithms in predicting the outcome of a CSDH 
referral made to neurosurgery and to examine their reliability on external validation.

Methods: Multicenter retrospective case series conducted from 2015 to 2020, analyzing all CSDH patient referrals 
at two neurosurgical centers in the United Kingdom. 10 independent predictor variables were analyzed to predict 
the binary outcome of either accepting (for surgical treatment) or rejecting the CSDH referral with the aim of 
conservative management. 5 ML algorithms were developed and externally tested to determine the most reliable 
model for deployment.

Results: 1500 referrals in the internal cohort were analyzed, with 70% being rejected referrals. On a holdout set of 
450 patients, the artificial neural network demonstrated an accuracy of 96.222% (94.444–97.778), an area under 
the receiver operating curve (AUC) of 0.951 (0.927–0.973) and a brier score loss of 0.037 (0.022–0.056). On a 1713 
external validation patient cohort, the model demonstrated an AUC of 0.896 (0.878–0.912) and an accuracy of 
92.294% (90.952–93.520). This model is publicly deployed: https://medmlanalytics.com/neural-analysis-model/.

Conclusion: ML models can accurately predict referral outcomes and can potentially be used in clinical practice 
as CSDH referral decision making support tools. The growing demand in healthcare, combined with increasing 
digitization of health records raises the opportunity for ML algorithms to be used for decision making in complex 
clinical scenarios.
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INTRODUCTION

Chronic subdural hematoma (CSDH) is a common 
neurosurgical condition with a high prevalence in the elderly 
population.[31,38] Global incidence rates range from 1.72 to 
20.6/100,000 persons/year,[5,14,23,29] a figure which is expected 
to increase with the aging population and the growing use of 
anti-coagulation/anti-platelet medications.[4,6,30,36] Typically, 
in the United  Kingdom (UK), patients with CSDH present 
to outlying emergency departments and hospitals, where 
they are assessed by emergency physicians who complete 
the initial workup. Once a CT scan has identified a CSFH, 
irrespective of patient fitness or symptomatology, they 
are almost always referred to the on-call neurosurgical 
service at a tertiary center. These referrals generally have 
two outcomes: The acceptance or rejection of the referral 
by the neurosurgical team. The accepted patients are 
transferred for acute inpatient admission for considering 
surgical intervention and rejected referrals are advised for 
conservative medical management at the referring hospital, 
with re-referral in cases of neurological deterioration.

In the UK health system, patients with CSDH mostly present 
to the outlying district hospitals rather than the regional 
tertiary neurosurgery center and will be transferred across 
to the neurosurgery center only if there is a likelihood of 
needing surgical intervention. A large number of referrals are 
rejected for transfer as most patients are either not suitable for 
neurosurgery or do not need neurosurgery. These referrals, 
however, take up significant resources for both the referring 
physician as well as the neurosurgical team, who are already 
both overburdened with other clinical work. The development 
of an evidence-based decision tool for predicting CSDH 
referral outcomes that is easily interpretable by healthcare 
professionals can therefore be helpful. Such a tool would not 
only make a significant impact on the logistics of running an 
on-call neurosurgical service but also enable junior trainees 
on-call and emergency departments to be more confident in 
making the decision to refer as well as accept based on the tool.

Machine learning (ML) is a rapidly developing field that can 
be applied to health-related outcome prediction models. ML 
algorithms can identify complex non-linear relationships 
between a set of features and an output, generating 
interpretable results in real time.[33] There is a paucity of 
literature in the different techniques utilized to predict the 
outcome of CSDH referral, with the presence of only one 
previous study applying conventional statistical methods to 
the problem.[8] These models can suffer from over or under-
training during the initial development process resulting in 
misleading algorithm performances, that are only evident 
upon external validation at different care centers with 
different patient demographics. The ML models will also be 
able to provide patient specific results on the influence of 
their clinical and radiological parameters on referral outcome, 

thereby supporting the clinical reasoning and patient centered 
decision-making ability of physicians in training.

The aim of this study was to create an ML model capable of 
replicating neurosurgical decision making and evaluate its 
reliability in predicting acceptance of CSDH referrals in two 
separate neurosurgical centers.

MATERIALS AND METHODS

Guidelines

The Transparent Reporting of Multivariable Prediction Models 
for Individual Prognosis or Diagnosis checklist and the JMIR 
Guidelines for Developing and Reporting ML Predictive Models 
in Biomedical Research were followed in our analysis.[12,25]

Data source and feature selection

The initial study was a single center retrospective analysis of 
all CSDH patient referrals to the local neurosurgery unit in 
Manchester from 2015 to 2020. The local trust’s neurosurgical 
referral database was examined and all CSDH referrals 
were exported in an anonymized manner for analysis. The 
exclusion criteria included any patients with missing data and 
those without a decision given at the time of initial referral. 16 
neurosurgery consultants and 18 registrars were involved in 
the decision making of these CSDH referrals. A total of 1500 
referrals were identified, of which 450 referrals were accepted 
referrals and the remaining 1050 were rejected referrals. 
These 1500 patient referrals were used for the development 
and validation of the models. Patient consent was not 
required as the study was conducted in an anonymized and 
retrospective manner. The study was approved by the local 
hospital’s research and innovation board, reference number: 
22HIP11.

Ten predictor variables were identified on the referral 
database and the relevant information was extracted at the 
point of first referral: age (continuous), sex of the patient 
(male or female), GCS of the patient at referral (discrete 
continuous), presence of headache (yes or no), dementia 
(yes or no), motor weakness (yes or no), midline shift 
(yes or no), the size of the CSDH (small, medium or large; 
determined from radiological reports), the patient’s pre-
morbid quality of life (QoL) (poor or reasonable), and their 
anti-coagulation status (yes or no). The presence of midline 
shift on radiological scans was based on the referring neuro-
radiology report and the hematoma sizes were defined using 
the maximal hematoma thickness; with hematomas <1  cm 
being considered small, 1–2  cm as medium and >2  cm as 
large. Poor pre-morbid QoL was defined as patients requiring 
full time care or those classified as an American Society of 
Anesthesiologists Grade  4, with all other patients classified 
as having a reasonable pre-morbid QoL. The binary outcome 
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variable of the model was the acceptance or rejection of a 
CSDH referral, with acceptance defined as admitting the 
patient to the neurosurgery center for assessment with 
the aim of proceeding to urgent surgical intervention. 
Predictor variable selection was conducted through stepwise 
multivariable logistic regression analysis and recursive 
feature elimination (RFE) using a stratified 4-fold cross 
validation with 4 repeats to determine the optimal number of 
variables employed in the ML models.

Model analysis

A stratified 70:30 train – test split was carried out on the 
total cohort of 1500 patient referrals, with 1050 data points 
utilized for training the models. All continuous data were 
centered to zero mean and scaled to unit variance while 
all categorical data were dummy coded. 6 ML models were 
created; 5 supervised learning algorithms: Logistic regression 
model, Support Vector Machine (SVM), K-nearest neighbors 
(KNN), Decision Tree (DT) and 1 deep learning multi-level 
perceptron artificial neural network (ANN) framework. 
Model hyperparameters were optimized through an iterative 
process that calibrated the weight estimations for each model 
based on their best yield for accuracy.

The models were trained on 4-fold stratified K-fold cross 
validation with 100 repeats on the training dataset. In 
stratified K-fold cross-validation, the class ratio for each 
fold is equivalent to the class ratio of the original dataset 
for each variable.[7] This allowed for standardizing the class 
imbalances present within our predictor variables and 
provided us with the best average performance results for 
the models.[21] The performance of the models was evaluated 

via 6 performance metrics on the training and testing sets: 
accuracy, recall/sensitivity, precision/positive predictive 
value, specificity, area under the receiver operating curve 
(AUC)/discrimination, and the brier score loss (refer to 
Supplementary Table  1 for definitions). All metrics were 
bootstrapped with 1000 resamples to derive the associated 
95% confidence intervals (CI). The best performing model 
was selected after comparative analysis of the different 
model performance metrics on the training and testing sets: 
DeLong’s test was used to compare the difference in the AUC 
of any two models on the testing set, the McNemar’s test was 
used to compare the difference in the accuracy of two models 
on the testing set and the Mann–Whitney U test was used 
to compare the difference in the mean sensitivity of the 16 
different training folds of any two models on the training 
set. Finally, decision curve analysis (DCA) was performed 
to confirm the model that provided the greatest clinical net 
benefit when predicting the outcome of a CSDH referral 
over a wide range of predicted threshold probabilities. The 
net benefit is defined as a function of the number of true 
positives, false positives, and the threshold probability. The 
DCA plot allows a physician to determine a threshold best 
suited for an individual patient’s need and evaluate the net 
benefit of using the ML model relative to the default strategies 
of treating all or no patients.[40]

The best performing model was then calibrated on the 
testing test. Calibration is a measure of the consistency 
between the model’s predicted probabilities and the true 
observed probabilities in the study population. It is depicted 
as a calibration curve, that is ideally a 45−° line through 
the origin, with a slope of 1 (an assessment of the spread of 
the estimated probabilities/risk compared to the observed 

Supplementary Table 1: Description of the performance metrics used for evaluating the ML models in context of the study.

Performance metrics Description

Accuracy The percentage of correctly predicted outcomes compared to all actual true outcomes.[43]

Recall/sensitivity Recall is the ability of our model to correctly identify the patients accepted into neurosurgery out of all the 
patients predicted by the model to be accepted into neurosurgery.[19]

Precision/positive 
predictive value

Precision is the ability of our model to correctly identify the patients accepted into neurosurgery out of all the 
patients originally accepted into neurosurgery.[19]

Specificity Specificity is the ability of our model to correctly identify the patients rejected by neurosurgery out of all the 
patients predicted by the model to be rejected.[37]

AUC/Discrimination/
c‑statistic

AUC is the numerical representation of the discrimination of a model. It is the ability of the model to distinguish 
between patient referrals that are accepted into neurosurgery compared to those that are not and the values range 
from 0.5 (no better than random chance) to 1 (perfect discrimination).[9]

Brier score loss Measures the mean squared difference between the predicted probability and the actual outcome. Brier scores 
range from 0 to 1 and values close to 0 indicate better calibrated models with less error between the predicted and 
outcome outcomes.[15,34]

SHAP feature 
importance values

SHAP feature importance is feature importance ranked based on the Shapley values. Shapley values give the 
marginal contributions of a feature across all permutations of a model during cross‑validations. This allows 
the analysis of a feature globally across all the models created during cross validation. Mean|SHAP|values then 
provide the absolute value of the average feature importance scores across all cross‑validation folds.[26]

SHAP: SHapley additive exPlanation, ML: Machine learning, AUC = Area under the receiver operating curve
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probabilities) and an intercept of 0 (measure of the model’s 
tendency of under-estimating (<0) or over-estimating (more 
than 0) the true probability of the dataset).[34,35,39] In this 
study, Platt scaling/sigmoid binned calibration spread across 
10 bins was the preferred method of calibration, and the 
models were evaluated through analysis of the shape of the 
calibration belt, its slope, intercept, and the Brier score loss 
metric.

Model agnostic interpretation was conducted on the trained 
models through partial dependence plots (PDPs) and feature 
importance calculations. PDPs helped visualized the impact 
of a predictor variable on the outcome of the model by 
marginalizing over all the values of the input variable.[16] In 
addition, feature importance calculations for all predictor 
variables were performed on the optimal model using the 
SHapley Additive exPlanation (SHAP) method, to produce 
mean SHAP scores for each variable on a scale from 0 to 1 
[Supplementary Table 1].

All ML analysis was performed using the R coding language 
version  3.4.3 (The R Foundation, Vienna, Austria), Python 
coding language (version  3.8, Python Software Foundation, 

Wilmington, Delaware) in an Anaconda virtual environment 
(Anaconda Inc., Austin, Texas), using TensorFlow 2.1 for 
deep learning,[1,2] and the Scikit-learn package for supervised 
learning.[11,28] IBM Statistical Package for the Social Sciences 
(SPSS) software (SPSS Inc., Chicago, IL, USA) Version 25 for 
Mac was utilized for all the statistical analysis. P < 0.05 was 
considered statistically significant. Step-wise multivariable 
logistic regression analysis was performed to determine the 
impact of each predictor variable on the outcome.

External validation

A retrospective analysis was conducted of all CSDH patients 
referred to a neurosurgical center in London, to encompass 
a larger, more heterogenous patient population, spanning 
5 years from 2015 to 2020. A  total of 2200 patient referrals 
were identified but only 1713 were selected for analysis 
following removal of duplicates and missing/inappropriate 
data. Of the 1713 referrals identified 505 were accepted 
referrals and 1204 were rejected referrals. These 1713 patient 
referrals were used for external validation of the optimal ML 
model.

Table 1: Cohort demographics of 1500 patient referrals with descriptive statistical analysis using t‑tests for continuous variables (Mean  
[± Standard Deviation]) and Chi‑square tests for categorical variables (n [%]).

Rejected cohort (n=1050) (%) Accepted cohort (n=450) (%) Total cohort (n=1500) (%) P‑value

Age 78.352±13.408 71.582±14.592 76.321±14.114 6.999×10−18

Sex
Male 733 (48.8) 346 (23.1) 1079 (71.9) 0.005
Female 317 (21.1) 104 (7.0) 421 (28.1)

Headache
Yes 135 (9.0) 167 (11.1) 302 (20.1) 6.981×10−27

No 915 (61.0) 283 (18.9) 1198 (79.9)
Dementia

Yes 231 (15.4) 30 (2.0) 261 (17.4) 7.054×10‑13

No 819 (54.6) 420 (28.0) 1239 (82.6)
GCS 14.170±1.620/15 (14–15) 14.289±1.610/15 (14–15) 14.205±1.613/15 (14–15) 0.189
Motor weakness

Yes 110 (7.3) 177 (11.8) 287 (19.1) 9.353×10−39

No 940 (62.7) 273 (18.2) 1213 (80.9)
Midline shift

Yes 89 (5.9) 337 (22.5) 426 (28.4) 1.311×10−150

No 961 (64.1) 113 (7.5) 1074 (71.6)
Size of CSDH

Small 839 (56.0) 11 (0.7) 850 (56.7) 3.171×10−220

Medium 141 (9.4) 42 (2.8) 183 (12.2)
Large 70 (4.7) 397 (26.4) 467 (31.1)

Pre‑morbid QoL
Poor 155 (10.3) 9 (0.6) 164 (10.9) 3.919×10−13

Reasonable 895 (59.7) 441 (29.4) 1336 (89.1)
Anti‑coagulation

Yes 453 (30.2) 165 (11.0) 618 (41.2) 0.020
No 597 (39.8) 285 (19.0) 882 (58.8)

CSDH: Chronic subdural hematoma, GCS: Glasgow coma scale, QoL: Quality of life
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Application deployment

The optimal ML model was incorporated into a natively 
developed interactive web application, that is, publicly 
deployed and is optimized for use on all major desktops, 
tablets, and mobile phones. This open access clinical tool will 
allow primary and secondary care health-care professionals 
from all over the world to input in values into the pre-trained 
model and retrieve an output in real time.

RESULTS

Baseline patient characteristics

The average age of the cohort was 76.321 ± 14.114 years and 
71.9% of the patients were male. Detailed cohort demographic 
information for this study is summarized in Table 1. Majority 
of patients in the patient cohort had no headache (79.9%), 
dementia (82.6%), motor weakness (80.9%) nor midline 

Table 2: Performance metrics of the 5 ML models on the testing set with 95% confidence intervals.

Model Accuracy (%) Recall/Sensitivity (%) Precision/PPV (%) Specificity (%) AUC Brier score loss

Testing Set (n=450)
Logistic 
regression

94.667  
(92.444–96.667)

92.908  
(88.535–96.855)

90.345  
(85.156–94.891)

95.469  
(92.343–97.404)

0.942  
(0.917–0.964)

0.053  
(0.033–0.076)

SVM 93.556  
(91.111–95.778)

90.780  
(85.816–95.302)

88.889  
(83.562–93.878)

94.822  
(91.561–96.913)

0.928  
(0.900–0.953)

0.064  
(0.042–0.089)

KNN 94.222  
(92.000–96.222)

90.780  
(86.207–95.364)

90.780  
(86.207–95.364)

95.729  
(92.738–97.645)

0.933  
(0.907–0.957)

0.058  
(0.038–0.080)

DT 96.000  
(94.000–97.778)

92.199  
(87.324–96.241)

94.891  
(90.909–98.374)

97.735  
(95.186–99.004)

0.949  
(0.924–0.972)

0.040  
(0.022–0.060)

ANN 96.222  
(94.444–97.778)

92.199  
(87.500–96.250)

95.588  
(91.667–98.582)

98.058  
(95.613–99.208)

0.951  
(0.927–0.973)

0.037  
(0.022–0.056)

ANN: Artificial neural network, AUC: Area under the receiver operating curve, DT: Decision tree, KNN: K‑nearest neighbours, PPV: Positive predictive 
value, SVM: Support vector machine, ML: Machine learning

Figure 1: Receiver operating curve of the artificial neural network model for predicting acceptance of chronic subdural hematoma referrals, 
AUC = 0.951, on the testing set, n = 450. AUC = Area under the receiver operating curve. 
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shift (71.6%) at the time of the referral. In addition, most 
patients had a small sized hematoma (56.7%), a reasonable 
pre-morbid QoL (89.1%) and were not on anti-coagulation 
(58.8%). Independent samples test results revealed a statistically 
significant difference in the mean age of each outcome 
class, with the accepted cohort being significantly younger 
than the rejected cohort (P = 6.999 × 10−18). The accepted 
cohort also had a comparatively higher mean GCS, but there 
was no significant difference (P = 0.189). Further stepwise 
multivariable logistic regression analysis demonstrated that 
the age of the patient (OR: 0.998 [0.997–0.999], P = 0.001007), 
the presence of headaches (OR: 1.093 [1.056–1.132], P = 4.17 × 
10−7), dementia (OR: 0.936 [0.903–0.970], P = 0.000247), motor 
weakness (OR: 1.108 [1.070–1.147], P = 8.84 × 10−9), midline 
shift (OR: 1.136 [1.086–1.188], P = 2.83 × 10−8), the size of the 
CSDH (OR: 1.389 [1.357–1.421], P ≤ 2.0 × 10−16), and the pre-
morbid QoL of the patient (OR: 0.841 [0.806–0.878], P = 3.81 × 
10−15) were all statistically significant predictors of acceptance of 
a CSDH referral. Thus, only these seven variables were used as 
the predictor variables for the ML models.

Model performance

Supplementary Table 2 demonstrates the performance 
metrics for the 5 ML models on the training dataset. These 
results clearly indicate that the best trained model was the DT 

model with an accuracy of 98.762% (95% CI: 98.095–99.333), 
sensitivity of 97.411% (95% CI: 95.469–99.032), specificity of 
99.325% (95% CI: 98.337–99.751), PPV of 98.366% (95% CI: 
96.865–99.671), an AUC of 0.984 (95% CI: 0.974–0.992) and a 
brier score loss of 0.012 (95% CI: 0.007–0.019). Subsequently, 
the performance of all 5 ML models was evaluated on the 
testing set [Table  2]. These results suggested that the ANN 
model was the optimal model with an accuracy of 96.222% 
(95% CI: 94.444–97.778), sensitivity of 92.199% (95% CI: 
87.500–96.250), specificity of 98.058% (95% CI: 95.613–
99.208), PPV of 95.588% (95% CI: 91.667–98.582), an AUC 
of 0.951 (95% CI: 0.927–0.973) [Figure 1], and a brier score 
loss of 0.037  (95% CI: 0.022–0.056). Comparative statistical 
analysis between the performance metrics of the 5 ML models 
on the testing set demonstrated that the ANN was statistically 
significantly better than the SVM and the KNN models but 
not the DT and logistic regression models [Supplementary 
Table 3]. DCA then further highlighted that the ANN model 
provided greater clinical net benefit compared to the DT and 
logistic regression models at all predicted probabilities relative 
to default strategies of management for all or no patients 
[Figure 2]. Thus, the ANN was considered to be the most best 
performing model for predicting the outcome of a CSDH 
referral. Figure 3 illustrates the calibration curve of this ANN 
model on the testing set with an intercept of −0.44 (−0.95–

Table 3: Differences between the baseline characteristics of the internal cohort and external validation datasets.

Internal cohort (n=1500) External validation (n=1713) P‑value

Age 76.321±14.114 76.695±14.423 0.089
Headache  

Yes 302 (20.1%) 430 (25.1%) 0.485
No 1198 (79.9%) 1283 (74.9%)

Dementia  
Yes 261 (17.4%) 243 (14.2%) 0.833
No 1239 (82.6%) 1470 (85.8%)

Motor weakness  
Yes 287 (19.1%) 488 (29.5%) 0.171
No 1213 (80.9%) 1225 (71.5%)

Midline shift  
Yes 426 (28.4%) 585 (34.2%) 0.745
No 1074 (71.6%) 1128 (65.8%)

Size of CSDH
Small 850 (56.7%) 788 (46%) 0.746
Medium 183 (12.2%) 421 (24.6%)
Large 467 (31.1%) 504 (29.4%)

Pre‑morbid QoL
Poor 164 (10.9%) 474 (27.7%) 0.415
Reasonable 1336 (89.1%) 1239 (72.3%)

Acceptance status
Accepted 450 (30%) 505 (29.5%) 0.747
Rejected 1050 (70%) 1208 (70.5%)

Categorical variables represented as n (%), continuous variables represented as mean (± Standard Deviation). CSDH: Chronic subdural hematoma, 
QoL: Quality of life. *P value significant at the 0.05 level
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0.08) and a slope of 0.99  (0.78–1.20). This ANN model, 
named ANCHOR (an ANN for CSDH Referral outcome 

prediction) has been deployed as a web application at https://
medmlanalytics.com/neural-analysis-model/.

Supplementary Table 2: Performance metrics of the 5 ML models on the training set, n=1050, with 95% confidence intervals.

Model Accuracy (%) Recall/sensitivity (%) Precision/PPV (%) Specificity (%) AUC Brier score loss

Training Set (n=1050)
Logistic 
regression

93.619  
(92.191–95.048)

88.673  
(85.374–92.151)

89.543  
(86.007–93.016)

95.682  
(93.889–96.981)

0.922  
(0.904–0.9415)

0.064  
(0.050–0.079)

SVM 91.619  
(89.905–93.238)

87.792  
(84.971–91.096)

84.424  
(80.374–88.401)

93.252  
(91.139–94.903)

0.905  
(0.884–0.924)

0.084  
(0.068–0.101)

KNN 94.286  
(92.857–95.619)

90.291  
(86.897–93.312)

90.291  
(86.897–93.312)

95.951  
(94.201–97.206)

0.931  
(0.913–0.948)

0.057  
(0.044–0.071)

DT 98.762  
(98.095–99.333)

97.411  
(95.469–99.032)

98.366  
(96.865–99.671)

99.325  
(98.337–99.751)

0.984  
(0.974–0.992)

0.012  
(0.007–0.019)

ANN 94.667  
(93.333–96.000)

88.673  
(85.209–92.079)

92.881  
(89.892–95.623)

97.166  
(95.626–98.193)

0.922  
(0.912–0.948)

0.053  
(0.040–0.067)

ANN: Artificial neural network, AUC: Area under the receiver operating curve, DT: Decision tree, KNN: K‑nearest neighbours, PPV: Positive predictive 
value, SVM: Support vector machine, ML: Machine learning

Figure 2: Decision curve analysis comparing expected clinical net benefit of the 5 different machine 
learning models on the testing set. SVM = Support Vector Machine, KNN = K-nearest neighbours, 
DT = Decision Tree, ANN = Artificial Neural Network, ANCHOR = Artificial Neural network for 
Chronic subdural HematOma Referral outcome prediction.
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Supplementary Table 3: Statistical significance of the comparison between the performance of all machine learning models on the training 
and testing set.

Model Logistic regression SVM KNN DT ANN

Logistic regression ‑ 0.08261 0.6978 0.6539 0.304
0.752 0.540 0.137 0.096

0.06576 <0.00001* <0.00001* <0.00001*
SVM 0.08261 ‑ 0.1093 0.2191 0.038*

0.752 0.286 0.082 0.009*
0.06576 0.00142* <0.00001* <0.00001*

KNN 0.6978 0.1093 ‑ 0.8331 0.025*
0.540 0.286 0.404 0.015*

<0.00001* 0.00142* <0.00001* <0.00001*
DT 0.570 0.135 0.207 ‑ 0.889 

0.137 0.082 0.404 0.990
<0.00001* <0.00001* <0.00001* <0.00001*

ANN 0.304 0.038* 0.025* 0.889 ‑
0.096 0.009* 0.015* 0.990

<0.00001* <0.00001* <0.00001* <0.00001*
DLT: DeLong’s test, MCN: McNemar’s test, MWU: Mann‑whitney u test for comparison of the AUC and Accuracy of the models on the testing set and 
recall of the models on the training set. *Statistically significant at P<0.05. SVM = Support vector machine, KNN = K-nearest neighbours, DT = Decision 
tree, ANN = Artificial neural network, AUC = Area under the receiver operating curve

Supplementary Table 4: Cohort demographics of the external validation set with descriptive statistical analysis using t‑tests for continuous 
variables (Mean [± Standard Deviation]) and Chi‑square tests for categorical variables (n [%]).

 Rejected cohort (n=1208) (%) Accepted cohort (%) Total cohort (n=1713) (%) P‑value(%)
(n=505)

Age 78.206±14.152 73±14 76.695±14.423 0.344
Headache

Yes 251 (20.8) 179 (35.4) 430 (25.1) <0.001*
No 957 (79.2)  326 (64.6) 1283 (74.9)

Dementia
Yes 206 (17.1) 37 (7.3) 243 (14.2) <0.001*
No 1002 (82.9) 468 (92.7) 1470 (85.8)

Motor weakness
Yes 270 (22.4) 218 (43.2) 488 (71.5) <0.001*
No 938 (77.6) 287 (56.8) 1225 (29.5)

Midline shift
Yes 160 (13.2) 425 (84.2) 585 (34.2) <0.001*
No 1048 (86.8)  287 (56.8) 1128 (65.8)

Size of CSDH
Small 785 (65) 3 (0.6) 788 (46) <0.001*
Medium 326 (27) 95 (18.8) 421 (24.6)
Large 97 (8) 407 (80.6) 504 (29.4)

Pre‑morbid QoL
Poor 462 (38.2) 12 (2.4) 474 (27.7) <0.001*
Reasonable 746 (61.8) 493 (97.6) 1239 (72.3)

CSDH: Chronic subdural hematoma, QoL: Quality of life. *P‑value significant at the 0.05 level

External validation of ANCHOR

The average age of the London cohort was 
76.695 ± 14.423  years. Detailed baseline characteristics of 
the external validation patient cohort are summarized in 
Supplementary Table  4. Comparative analysis revealed that 

the baseline characteristics of the external validation cohort 
did not differ from those of the internal cohort for any of the 
7 variables, as shown in Table 3. The analysis demonstrated 
no statistically significant difference in the age of the 
local patient cohort compared to the external validation 
cohort (P = 0.089) and in the rates of headache (P = 0.485), 
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dementia (P = 0.833), motor weakness (P = 0.171), midline 
shift (P = 0.745), and pre-morbid QoL (P = 0.415). The 
London cohort demonstrated a comparatively greater 
incidence of medium sized hematomas as compared to the 
internal cohort; however, there was no statistically significant 
difference (P = 0.746). Acceptance status between the internal 
and external cohorts also exhibited no statistically significant 
difference, with 30% and 29.5% acceptance rates, respectively 
(P = 0.747).

The ANCHOR ML model demonstrated good discriminative 
ability, calibration, overall performance, and accuracy on this 
external validation cohort of 1713 CSDH patient referrals from 
London. On external validation, the algorithm had an AUC of 
0.896  (95% CI: 0.878–0.912) [Figure  4], suggesting good-to-
excellent discrimination. In addition, the model demonstrated 
an accuracy of 92.294% (95% CI: 90.952–93.520), sensitivity of 
82.970  (95% CI: 79.644–86.180), specificity of 96.190% (95% 
CI: 94.951–97.202), and PPV of 90.108% (95% CI: 87.197–

Supplementary Figure 1:  Partial dependence plots for each predictor variable on the binary outcome 
class for the artificial neural network model. CSDH = Chronic subdural hematoma, QoL = Quality of Life.
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92.688). DCA showed that ANCHOR provided greater clinical 
net benefit at all predicted probabilities relative to default 
strategies of management for all or no patients [Figure 5]. There 
was also excellent prediction of CSDH referral outcome from 
the predicted probabilities of 0.8–1.0 [Figure 6]. However, the 
ANCHOR algorithm underestimated the observed proportion 
of patients with referral acceptance, with predicted probabilities 
lower than 0.8. This finding is represented by an overall 
calibration intercept of 0.34 (0.13–0.55), an overall calibration 
slope of 0.92 (0.83–1.01) and a brier score loss of 0.077 (95% CI: 
0.065–0.091). 

Feature analysis

RFE analysis also revealed that the 7 aforementioned 
predictor variables were necessary to achieve the highest 
average accuracy. Model agnostic SHAP feature importance 
calculations revealed the size of the CSDH to be the single 
most important predictor of referral acceptance, with a mean 
SHAP value of 0.30. Please refer to Figure  7 for the SHAP 
feature importance scores for each of the remaining predictor 
variables. In addition, the direction of effect of these 
variables on the outcome classes is illustrated by PDPs in 
Supplementary Figure  1. In addition, the website illustrates 

locally interpretable model agnostic explanations for each set 
of inputs for an individual patient, highlighting the predictive 
impact of each variable on the result in real time.

DISCUSSION

To the best of our knowledge, this is the first study that has 
analyzed the CSHD referral acceptance process through ML 
algorithms. The increasing rate of CSDH incidence and referrals 
compounded with the lack of objective clinical reasoning 
guidelines, necessitates the need for a more accurate and efficient 
referral decision-making process, established on evidence-based 
predictions that are reliable, consistent and can take place in real 
time, making this process an ideal candidate for ML modeling. 
This study thus evaluated the utility and efficacy of multiple ML 
models in predicting the outcome of a CSDH patient referral. 
The best performing model was validated on an external cohort 
successfully demonstrating excellent accuracy in predicting 
CSDH referral outcome. Used as a clinical triage and decision 
support tool, our model could thus ensure that those most likely 
to need surgical intervention are assessed first.

We report that our ANN model demonstrated the best overall 
discriminatory ability with good calibration upon validation of 
unseen data points. Such conventional black box models are well 

Figure 3: Calibration curve of the artificial neural network model for predicting acceptance of chronic 
subdural hematoma referrals on the testing set, n = 450.
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Figure 4: Receiver operating curve of the artificial neural network model for predicting acceptance 
of chronic subdural hematoma referrals, AUC = 0.896, on the external validation set, n = 1713. 
AUC = Area under the receiver operating curve.

Figure 5: Decision curve analysis comparing expected clinical net benefit of the 5 different machine 
learning models on the external validation set. SVM = Support Vector Machine, KNN = K-nearest 
neighbours, DT = Decision Tree, ANN = Artificial Neural Network, ANCHOR = Artificial Neural 
network for Chronic subdural HematOma Referral outcome prediction.
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suited for analyzing complex non-linear relationships between 
predictor and outcome variables. However, they suffer from a 
lack of explain ability and interpretability. Abouzari et al. have 
previously demonstrated the superior efficacy of ANNs compared 
to logistic regression ML models in outcome prediction in CSDH 
patients; however, their study suffered from poor explain ability 
and had a low sample size for training and validating the model.[3] 
Thus, in accordance with predictive decision-making artificial 
intelligence guidelines,[17] our ML models were optimized to 
possess an accurate predictive ability and be easy to interpret. 
A  combination of model agnostic interpretation methods and 
conventional statistical techniques have allowed for objective 

analysis of decision-making parameters and has addressed 
the current gaps in understanding the role of baseline patient 
parameters that influence patient care.

CSDH referral decision making process

We observed that the single most important predictive 
factor of acceptance was the size of the hematoma. Multiple 
studies have previously demonstrated the negative prognostic 
impact of subdural hematoma size on the recurrence and 
post-operative outcomes of patients.[24,27,42] We report that 
patients with larger hematomas were significantly more likely 

Figure 7: SHAP feature importance scores of the 7 predictor variables in the artificial neural network 
model. Mean |SHAP| values provide the absolute value of the average feature importance scores across 
all cross-validation folds. SHAP: SHapley Additive exPlanation values. CSDH: Chronic subdural 
hematoma, QoL: Quality of Life.

Figure 6: Calibration curve of the artificial neural network model for predicting acceptance of chronic 
subdural hematoma referrals on the external validation set, n = 1713.
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to be accepted compared to those with smaller hematomas. 
Brennan et al. similarly report that the most common 
reason for rejecting a CSDH referral was that the subdural 
collection was small and insufficient to explain the patient’s 
symptoms.[10] The current study sub-classified the size of the 
hematoma into three categories via analysis of the maximal 
subdural thickness and degree of midline shift reported by the 
neuro-radiologists. However, discrepancies might arise due 
to the heterogeneity of the radiological reports as no specific 
quantifiable volumetric measurements were used. Kellogg 
et al. have developed 3D convolutional neural networks 
capable of automated segmentation and analysis of CSDH 
computer tomography scans, laying the groundwork for 
future improvement and adoption of these technologies.[20]

The findings of this study also re-enforce results previously 
demonstrated, regarding the non-significant predictors of 
referral acceptance. Brennan et al. have shown no significant 
differences in the GCS scores between transferred and non-
transferred patients, with majority of patients having a GCS 
score of 13–15.[10] Our results support these findings, with 
no observable difference in the median GCS score between 
the accepted and rejected referral groups. Additionally, the 
presence of headache and motor weakness were significant 
predictors of referral acceptance, thereby highlighting that 
these variables may provide a better representation of the 
patient’s neurological status overtime compared to their GCS 
score at referral. Finally, in our study, around 37% of CSDH 
patients referred to neurosurgery while on anti-platelet and 
anti-coagulation medication were accepted. Although being 
on antithrombotic agents increases the risk of subdural 
recollection after surgery,[41] we found that the decision 
making process for the index operation was not altered by 
the patient being on them. These results are in line with 
the previous literature,[10] thereby further emphasizing the 
generalizability of our model to a wider population group.

Goals of ANCHOR

Across the UK’s two largest tertiary neurosurgical centers that 
provide care to a large and diverse population of patients, we 
have demonstrated the capability of ANCHOR as a decision 
making adjunct within the health-care framework of the UK.

Focus was placed on the transparency, interpretability 
and explain ability of the model for both patients and 
physicians. Such methods allow patients to understand what 
is happening and why the decision to accept or reject their 
referral is being made. In addition, these features combined 
with the real time output of referral outcome allow for faster 
and safer transmission of information across all involved 
medical professionals. This tool can also be useful to the 
junior physicians in training, who can check whether their 
initial management plan is sound. At present, acceptance of 
CSDH referrals to neurosurgery is a decision influenced by an 

individual clinician’s experience and is based on the impact of 
patient variables such as age, size of the subdural hematoma, 
and neurological deficit.[22,32] Thus, this open access model 
will provide evidence based knowledge and information to 
our referring non-neurosurgical colleagues regarding the 
nuances of the referral decision making process, thereby only 
allowing for specific and appropriate patient referrals.

Finally, the UK NHS is currently undergoing a digital health-
care revolution, with a focus on the creation, distribution and 
enhancement of reliable health-care systems and research 
pipelines using information technology and AI.[13,18] In 
support, this pilot study has addressed its primary aim by 
creating a reliable decision-support ML tool and publicly 
deploying it for testing by healthcare professionals and 
thus is well suited to facilitate the development of more 
sophisticated decision tools for CSDH patients in the future. 
This study also shows that ML algorithms of this nature could 
be used for other clinical conditions with multiple variables 
determining binary outcomes.

Limitations

Despite these results, our study has a few limitations. First, the 
decision of the consultant neurosurgeon was assumed to be 
correct and no follow-up data were collected on the outcomes 
of these decisions. Second, the predictor variables included in 
this analysis are not exhaustive. Factors such as race, ethnicity, 
co-morbidities (diabetes, cardiovascular disease, etc.), the 
presence of previous hematomas, volumetric radiological 
hematoma appearance, and other neurological symptoms 
such as ataxia and hemisensory loss were not assessed. These 
variables can possibly influence the outcomes of the referrals. 
Third, while our model demonstrated excellent accuracy 
across our internal and external cohorts, the results cannot 
be generalized to the CSDH patient population worldwide. 
Countries with a different funding model of healthcare and 
less centralization of neurosurgical services may not find 
this tool helpful. Therefore, external validation in multiple 
international tertiary centers in differing healthcare settings is 
thus necessary to safely employ the model in clinical practice. 
Despite the differences in neurosurgical practices worldwide, 
there is however a global applicability of such a publicly 
available ML model as it can be used by non-specialist 
clinicians who encounter a CSDH and are debating whether 
they need to refer this onto neurosurgery. In addition, our 
work shows that if there is good data already available on the 
referrals, a ML algorithm can be built specifically for that 
country or region to aid the management of this condition. 
Fourth, the small incongruities in our model’s calibration on 
the internal and external datasets can be explained by the 
cumulative yet non-significant differences in the distribution 
of patient variables. These changes may represent a “gray 
zone” of variable clinical presentations that require more 
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in-depth individualistic evaluation and thus, may not be 
well evaluated by our ML model. This suggests that further 
prospective training and enhancement are required before 
this tool is used in routine clinical practice.

CONCLUSION

This is the first study to evaluate the use of ML algorithms 
in deciding the outcome of a referral for CSDH and 
demonstrates that implementation of accurate and reliable 
ML algorithms as decision support tools is feasible and can 
potentially be used in conjunction to current clinical practice. 
In addition, the study highlights which variables influence 
clinical decision making the most. These findings can help 
facilitate the CSDH clinical referral decision making process 
and have the potential to significantly enhance patient care 
and physician education.
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