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Abstract: Developing new, smart drugs with the anticancer activity is crucial, especially for cancers,
which cause the highest mortality in humans. In this paper we describe a series of coordination
compounds with the element of health, zinc, and bioactive ligands, benzimidazole derivatives.
By way of synthesis we have obtained four compounds named C1, C2, C4 and C4. Analytical
analyses (elemental analysis (EA), flame atomic absorption spectrometry (FAAS)), spectroscopic
(Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS)) and thermogravimetric
(TG) methods and the definition of crystal structures were used to explore the nature of bonding and
to elucidate the chemical structures. The collected analytical data allowed the determination of the
stoichiometry in coordination compounds, thermal stability, crystal structure and way of bonding.
The cytotoxicity effect of the new compounds as a potential antitumor agent on the glioblastoma
(T98G), neuroblastoma (SK-N-AS) and lung adenocarcinoma (A549) cell lines and human normal
skin fibroblasts (CCD-1059Sk) was also determined. Cell viability was determined by the MTT
assay. The results obtained confirmed that conversion of ligands into the respective metal complexes
significantly improved their anticancer properties. The complexes were screened for antibacterial
and antifungal activities. The ADME technique was used to determine the physicochemical and
biological properties.

Keywords: metal complexes; coordination compounds; biological activity; biomedical applications;
structural studies; metallodrugs; bioorganometallic chemistry; pharmacological activity; lung can-
cer; glioblastoma; neuroblastoma; adenocarcinoma; benzimidazole derivatives; thermogravimetric
analysis; FTIR spectra; ADME analysis; MTT assay; medicinal inorganic chemistry

1. Introduction

There is no doubt that minerals are necessary for the proper development of plant and
animal organisms. One of the necessary microelements is zinc, isolated as a pure metal
in 1746 in Germany by Andreas Marggraf [1]. Zinc is commonly known as the element
of health. Zinc is supplied to the body mainly with food of plant and animal origin, to a
lesser extent through the respiratory system and skin, and excreted with feces and partly
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with urine [2]. Zinc absorption occurs in the small intestine, large intestine and stomach,
and its absorption depends on environmental pollution, stress, poor diet, exercise, age,
excess sugar, low protein and high iron intake and high doses of phytates derived from
plant products [3–8]. Zinc is a necessary microelement for regular functioning of plant and
animal organisms. Low and high concentrations can cause many diseases. Zinc deficiency
can inhibit the growth of children as it is involved in bone metabolism [7,9]. It has an
effect on the immune system and inhibits inflammation, and its deficiency has been found
in children with pneumonia and bronchitis [10,11]. The results of a too low level of zinc
are changes in the hormone balance, an increase in glucose tolerance [12], exacerbation of
symptoms in depression [13], potency disorders [14] and disturbed nerve conduction [15].
The proper level of this element determines the activity of antioxidant enzymes, including
zinc–copper superoxide dismutase, and it is thanks to its presence that damage to purine
bases in DNA, which is considered one of the causes of cancer, is avoided [16–18]. A higher
Cu/Zn ratio contributes to the development of non-small-cell lung cancer [19]. Due to the
aforementioned properties of zinc, it was selected for syntheses with medically active lig-
ands such as benzimidazoles. The therapeutic potential of a benzimidazole molecule dates
back to 1944 [20]. The presence of the benzimidazole molecule in bioactive compounds has
an impact on antiparasitic, anticonvulsant, analgesic, antihistaminic, antiulcer, antihyper-
tensive, antiviral, anticancer, antifungal and anti-inflammatory agents, and this compound
has anticoagulant properties [21–30]. In this work, we focused on the design and creation of
medically active coordination compounds containing a benzimidazole core, with potential
anticancer properties and an element essential for all living organisms—zinc [31–40]. Cur-
rently, the leading cause of cancer-related mortality worldwide is lung cancer. Each year,
about 1.82 million people are diagnosed with lung cancer, and about 85% of these people
die from the disease [41]. There are two classes of lung cancer, approximately 85% of which
are non-small-cell lung cancer. Additionally, there are two histopathological subtypes in
this class, and lung adenocarcinoma (LADC) is more common [42]. Another cancer that
causes high mortality is neuroblastoma (NBL). It is one of the most common extracranial
solid tumors. It is a tumor originating in the cells of the nerve crests, which normally
form the sympathetic ganglia and the adrenal medulla. NBL accounts for about 8–10% of
all malignant neoplasms in the group of children and adolescents [41,43]. Coordination
compounds of various benzimidazole derivatives with selected dn-electron metals give
promising results in the search for new, better and more selective anticancer drugs. For the
synthesis of complexes with these N-donor ligands, mainly metal ions such as ruthenium,
platinum, palladium and silver were used [44–50]. In addition, very good research results
have been achieved for complexes in which the central ions are biometals necessary for the
proper functioning of the human body [51,52]. In all cases [44–52], the authors describe
the anticancer properties of the synthesized complexes. Additionally, the interaction of
the obtained compounds with DNA has been investigated [44–46,48,51]. The biological
studies described in [44–52] show that the metal–biologically active ligand research direc-
tion gives hope for obtaining new anticancer drugs. These papers clearly show not only
that the organic ligand plays an important role, but also that the selection of the metal ion
has a great influence on the physicochemical and biological properties of the synthesized
coordination compounds. The electronic structure of the metal ion, the number of available
coordination sites in the organic ligand, the type of bond or interaction between the metal
ion and the ligand and the coordination number of the complex give the biological prop-
erties of the studied coordination compounds. The synthesis and characterization of an
increasing number of coordination compounds show the role of transition metal complexes
in medicine.

The presented paper is the continuation of our work on the synthesis and character-
ization of metal (II) complexes with benzimidazole derivatives [52]. Now, we describe
eight novel solid coordination compounds with not commercially available organic lig-
ands. The benzimidazole derivatives were designed using a structure-based drug design
approach. All synthesized compounds were characterized by F-AAS, FTIR, TGA and XRD
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analysis. Moreover, for all coordination compounds, in vitro cytotoxicity for glioblastoma
(T98G), neuroblastoma (SK-N-AS) and lung adenocarcinoma (A549) cell line inhibition and
antibacterial and antifungal activities were measured.

2. Results and Discussion
2.1. Synthesis
2.1.1. Ligand Synthesis

Ligands L1 and L2 were synthesized by the condensation and cyclization of
2,3-diaminopyridine or 3,4-diaminopyridine with isonicotinic acid in PPA (Scheme 1),
and ligands L3 and L4 were obtained by reacting 2,3-diaminopyridine or 5-bromo-2,3-
diaminopyridine with 3-pyridinecarboxaldehyde in the presence of boric acid in a mixture
of water and DMSO (Scheme 2). These syntheses we have previously described [52].
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2.1.2. Complex Synthesis

All complexes C1, C2, C3 and C4 were obtained using the method described in an
earlier article [52]. Benzimidazole derivatives (0.25 mmol) and zinc chloride dihydrates
(0.25 mmol) were dissolved in 96% v/v ethanol until homogeneous solutions were obtained.
Using a reflux condenser and a magnetic stirrer, they were mixed for 12 h. The total
volume of the reaction mixture was 30 mL. The reaction was carried out at constant
room temperature (25 ◦C) and controlled pH (6–7) until the formation of a precipitate
of coordination compounds, which was then washed with 40% EtOH and a mixture of
EtOH and H2O (vol = 1/1). The reaction products were air-dried at room temperature
(Scheme 3). The obtained coordination compounds were defined by means of elemental
C/H/N analysis and determination of Zn (II) content (Table 1), FTIR spectra and TG-MS
technique, as well as by solving the crystalline structures of the obtained single crystals.
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Table 1. Percentage composition of the elements in coordination compounds.

C1
[Zn2Cl4 (L1)2]·2H2O
(C22H20N8O2Zn2Cl4)

C2
[Zn2Cl4 (L2)2]

(C22H16N8Zn2Cl4)

C3
[Zn2Cl4 (L3)2]

(C22H14N8Zn2Cl4)

C4
[Zn2Cl4 (L4)2]

(C22H14N8Zn2Cl4Br2)

M = 701.5093 g/mol M = 664.4940 g/mol M = 662.9722 g/mol M = 822.7802 g/mol

yield (43%) yield (38%) yield (41%) yield (38%)

calculated/found (%) calculated/found (%) calculated/found (%) calculated/found (%)

C 37.69/37.75 C 39.73/39.81 C 39.86/39.93 C 32.11/32.17

H 2.87/2.90 H 2.42/2.47 H 2.13/2.15 H 1.71/1.76

N 15.98/16.00 N 16.85/16.68 N 16.90/16.75 N 13.62/13.54

O 4.56/4.45 - - -

Zn 18.65/18.75 Zn 19.66/19.69 Zn 19.72/19.82 Zn 15.89/15.67

Cl 20.23/20.15 Cl 21.32/21.35 Cl 21.39/21.35 Cl 17.23/17.33

- - - Br 19.42/19.53

2.2. MTT Cytotoxicity Assay

Ligands alone (L1, L2, L3 and L4) and their Zn (II) metal complexes were screened
for anticancer activity against glioblastoma, neuroblastoma and lung carcinoma cell lines
(T98G, SK-N-AS and A549, respectively). Moreover, in order to assess the selectivity of the
anticancer effect, the investigated compounds were also evaluated against human normal
skin fibroblasts (CCD-1059Sk). Etoposide, which belongs to topoisomerase IIα inhibitors,
was used as a reference drug. The results obtained confirmed that the conversion of ligands
into the respective metal complexes significantly improved their anticancer properties
(Table 2). All of them showed much stronger activity than etoposide, which is a component
of therapy for glioblastoma, neuroblastoma and lung cancer. Unfortunately, the increased
cytotoxicity of the metal complexes was also observed in relation to normal cells. Only
C1 and C4 complexes turned out to selectively inhibit the growth of T98G glioblastoma
cells with IC50 values equaling 30.05 and 24.29 µg/mL, respectively. Although most of the
investigated metal complexes cannot be used as a potential systemic treatment for cancer
due to their cytotoxic effect on normal cells, they can be integrated into different drug
delivery systems. Such carriers are able to precisely deliver anticancer drugs into the tumor
sites, especially those located in the brain, which is prevented by the blood–brain barrier
(BBB) against toxic xenobiotics carried in the bloodstream.
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Table 2. Cytotoxic effect of the investigated compounds against glioblastoma (T98G), neuroblastoma
(SK-N-AS), lung adenocarcinoma (A549) cell lines and human normal fibroblasts (CCD-1059Sk)
determined by MTT assay after 24 h incubation.

IC50 ± SD (µg/mL)

Complex T98G SK-N-AS A549 CCD-1059-Sk

L1 41.25 ± 2.30 >100 >100 >100
C1 32.22 ± 0.92 35.59 ± 1.03 33.51 ± 1.29 18.42 ± 0.37
L2 34.98 ± 1.44 81.35 ± 3.31 43.08 ± 2.17 >100
C2 24.29 ± 0.11 33.72 ± 0.39 34.44 ± 0.75 27.27 ± 1.05
L3 >100 >100 >100 >100
C3 46.54 ± 1.86 41.60 ± 1.93 41.34 ± 2.17 30.84 ± 1.11
L4 >100 >100 >100 >100
C4 30.05 ± 1.81 36.17 ± 0.44 35.01 ± 0.86 33.62 ±0.85

Etoposide >100 67.83 ± 2.03 >100 >100

2.3. Antimicrobial Activity

The antimicrobial activity of Zn complexes, free ligands and reference drugs was
tested against six strains of Gram-positive bacteria, five strains of Gram-negative rods and
three strains of yeasts. Antimicrobial properties were expressed as minimum inhibitory
concentration (MIC) in milligrams per liter (Table 3). The antimicrobial activity of Zn
complexes was compared with that of the antimicrobial and antifungal properties of the
appropriate ligands. Vancomycin (Van), ciprofloxacin (Cip) and nystatin (Nys) were used
as the standard drugs. The tested compounds showed no bioactivity against Gram-negative
bacteria and yeasts. Regarding Gram-positive bacteria, mild bioactivity was detected, with
a slight increase for Zn complexes.

Table 3. In vitro antimicrobial activity of ligands and complexes tested.

Chemicals Microorganism
L1 C1 L2 C2 L3 C3 L4 C4 Ref Drugs

MIC (mg/L)

Gram-Positive Bacteria Van
S. aureus ATCC 25923 >1000 1000 1000 500 >1000 1000 >1000 >1000 0.98

S. epidermidis ATCC 12228 >1000 500 1000 500 >1000 1000 1000 500 0.98
M. luteus ATCC 10240 500 250 250 250 500 500 >1000 500 0.12
E. faecalis ATCC 29212 >1000 >1000 1000 1000 >1000 >1000 1000 >1000 1.95
B. subtilis ATCC 6633 >1000 1000 500 500 1000 >1000 1000 >1000 0.24
B. cereus ATCC 10876 >1000 >1000 250 500 1000 >1000 1000 >1000 0.98

Gram-Negative Bacteria Cip
S. typhimurium ATCC 14028 >1000 >1000 1000 1000 >1000 >1000 >1000 >1000 0.061

E. coli ATCC 25922 >1000 >1000 1000 1000 >1000 >1000 >1000 >1000 0.015
P. mirabilis ATCC 12453 >1000 1000 1000 1000 >1000 >1000 >1000 >1000 0.03

K. pneumoniae ATCC 13883 >1000 >1000 >1000 1000 >1000 >1000 >1000 >1000 0.12
P. aeruginosa ATCC 9027 >1000 >1000 >1000 >1000 >1000 >1000 >1000 >1000 0.49

Yeasts Nys
C. glabrata ATCC 2091 >1000 >1000 >1000 >1000 >1000 >1000 >1000 >1000 0.48

C. albicans ATCC 102231 >1000 >1000 1000 1000 >1000 >1000 500 >1000 0.24
C. parapsilosis ATCC 22019 >1000 >1000 >1000 >1000 1000 >1000 1000 >1000 0.24

2.4. FTIR Spectra

The infrared spectra of free ligands with the corresponding zinc coordination com-
pounds were collected within the range 4000–500 cm−1 and are shown in Figures 1–4. In
the case of the coordination compound C1, we can observe a broad absorption band at
3635–3302 cm−1 which is assigned to the stretching vibrations ν(OH) of water molecules.
In the IR spectra of complexes, the ligand bands are retained but undergo considerable
shifts to a higher frequency. The greatest displacement in the spectra of compounds C3
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and C4 occurs for the bands corresponding to imidazole ring vibrations, which attests
to coordination through the pyridine nitrogen atom. In general, it can be observed that
the spectra of the coordination compounds are changed in comparison with the spectra
of the free ligands. Some peaks fade away, while others shift towards higher or lower
wavelengths. The fundamental ν(NH) and ν(CH) vibrational stretching modes in the
free ligands (from the imidazole ring) occur in the range 3500–2543 cm−1 and are shifted
towards higher wavenumbers (3600–2718 cm−1) as a result of coordination. For free ben-
zimidazole ligand derivatives, vibration modes of ν(C=N) and ν(C=C) are visible in the
ranges 1609–1539 cm−1 and 1447–1411 cm−1, and for complexes, these frequencies shift
towards higher or lower frequencies with peaks of 1621 and 1433 cm−1 for C1; 1622, 1590,
1541, 1442 and 1412 cm−1 for C2; 1610, 1451 and 1414 cm−1 for C3; and 1584, 1619, 1538 and
1453 cm−1 for C4. In the discussed spectra of both ligands and complexes, we can observe
β(CH) and γ(CH) mode vibrations in the range of 1274–1024 cm−1. All these changes are
results of coordination between the metal ions and organic ligand. These changes indicate
metal–nitrogen bonds.
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2.5. Thermal Study

The decomposition pathway of studied compounds (Figure 5, Table 4) is the same
as for analogous copper and compounds reported previously [52]. Among studied com-
pounds, only C1 contains water molecules in the structure. The mass loss corresponding to
dehydration indicates one water molecule per one zinc atom (the calculated mass loss is
5.1%). The dehydration starts at a low temperature, which suggests that water molecules
are located in the outer coordination sphere. The organic ligand disintegrates in two stages;
i.e., the pyridine ring decomposes first, followed by the imidazopyridine part (Table 4).
The coordination moieties of C3 and C4 start to decompose in lower temperatures in
comparison to these of C1 and C2, whose structures were not determined. The organic
ligands present in C1 and C2 possess nitrogen atoms in positions favoring the formation
of polymeric structures. This can be an explanation for the larger thermal stability of
C1 and C2 since the coordination polymers are usually more temperature-resistant than
discrete coordination compounds [53]. A noticeable difference in thermal stability exists
also between dinuclear compounds C3 and C4. In this case, the reason lies in their different
supramolecular structures. The temperature initiating decomposition is higher for C3,
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which indicates that the sum of intermolecular interaction energies is larger than that in C4.
The final product after the decomposition of studied compounds is zinc oxide. Its amount
is lower than expected (the calculated residual mass is in the range of 19.8–24.5%), most
likely due to evaporation of zinc in the form of ZnCl2 (m.p. 290 ◦C [54]) and also possibly
of ZnBr2 (m.p. 394 ◦C [54]) in the case of C4. The partial removal of zinc content, when the
chlorides and bromides are present in the structure, is a known phenomenon [55,56].
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Table 4. Temperature ranges and mass losses of thermal decomposition stages of cadmium (II)
coordination compounds.

C1 C2 C3 C4 m/z

Dehydration 50–120 ◦C
5.5% - - - 17, 18

1st stage of
ligand decomposition

350–540 ◦C
17.8%

360–520 ◦C
20.5%

310–450 ◦C
25.2%

260–450 ◦C
21.5% 12, 17, 18, 26, 27, 29, 30, 44, 45, 50, 52

2nd stage of
ligand decomposition

540–725 ◦C
64.1%

520–760 ◦C
75.9%

450–710 ◦C
57.2%

450–740 ◦C
72.2%

12, 13, 17, 18, 22, 26, 27, 29, 30, 35, 36,
37, 38, 41, 44, 45, 46, 70, 72, 79 *, 81 *,

158 *, 160 *, 162 *
Residual mass 12.6% 11.7% 17.6% 6.3% -

* signals present only in the mass spectra of C4.

2.6. Structural Analysis

The diffraction measurement allowed finding the structures of C3 and C4. These are
dinuclear coordination compounds of the general formula [Zn2Cl4(L)2]. Zinc cations are
connected by two molecules of organic ligand, which are coordinated by nitrogens of both
pyridine rings (Figure 6a). The coordination sphere of each central atom is completed by
two chlorides; thus, the coordination number is 4. The whole coordination entity of C4 is
symmetry-independent, whereas the asymmetric unit of C3 contains half of the dinuclear
molecule due to an inversion center between zinc cations (special position h of the P-1 space
group). The geometry index for four-coordinated atoms τ4 is 0.93 for C3, and 0.93 and 0.92
for C4, which means that all coordination polyhedra possess tetrahedral geometry [57].
The angles of coordination polyhedra are in the range of 96.4–116.7◦, which indicates
small deviations from ideal tetrahedral parameters (Table 5). Despite the same formula
and formed bonds, the structures of coordination entities are different between C3 and
C4 (Figure 6b). In C3, organic ligands are parallel, and the ZnCl2 moieties are oppositely
oriented, while in C4, organic ligands are perpendicular (the dihedral angle between planes
defined by imidazopyridine parts of ligand molecules is 87.4◦) and the ZnCl2 moieties are
oriented in the same direction.

The crystal structures of C3 and C4 are stabilized by various intermolecular interac-
tions, among which π–π stacking and hydrogen bonds play a crucial role. Due to different
structures of coordination entities, the motifs of π–π interactions are also varied (Table 6). In
C3, non-conjugated pyridine rings, as well as imidazopyridine parts, interact only between
themselves, whereas in C4, the mixed association is formed. The strongest hydrogen bonds
existing in the crystal structure of both studied compounds are N–H•••Cl (Table 7). They
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form chain motifs, which are propagated along [0 1 0] (in C4) and [0 0 1] (in both) crystallo-
graphic axes. Besides the above-mentioned interactions, the Cl•••Cl halogen bonds (in C4)
and the anion–π interactions (Cl•••π in both and Br•••π in C4) can also be identified.
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Table 5. Structural data of the coordination polyhedra in C3 and C4.

i–j dij (Å) i–j–k αijk (◦)

C3

Zn1–Cl1 2.2667(5) Cl1–Zn1–Cl2 113.01(2)
Zn1–Cl2 2.2272(5) Cl1–Zn1–N1 103.72(5)
Zn1–N1 2.0235(15) Cl1–Zn1–N4(i) 108.43(5)

Zn1–N4(i) 2.0391(15) Cl2–Zn1–N1 114.30(5)
Cl2–Zn1–N4(i) 102.87(5)
N1–Zn1–N4(i) 114.68(6)

C4

Zn1–Cl1 2.2115(9) Cl1–Zn1–Cl2 113.26(3)
Zn1–Cl2 2.2295(9) Cl1–Zn1–N1 109.05(7)
Zn1–N1 2.077(3) Cl1–Zn1–N24 115.19(8)

Zn1–N24 2.030(3) Cl2–Zn1–N1 113.71(8)
Cl2–Zn1–N24 103.92(8)
N1–Zn1–N24 101.15(10)

Zn2–Cl3 2.2304(9) Cl3–Zn2–Cl4 116.72(3)
Zn2–Cl4 2.2261(9) Cl3–Zn2–N21 114.10(8)
Zn2–N21 2.079(3) Cl3–Zn2–N4 107.83(8)
Zn2–N4 2.048(3) Cl4–Zn2–N21 106.33(7)

Cl4–Zn2–N4 113.75(8)
N21–Zn2–N4 96.4(1)

Symmetry transformations used to generate equivalent atoms: (i) −x + 1, −y + 1, −z + 1.
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Table 6. Stacking interactions in the structures of C3 and C4. Each ring is indicated by one atom,
which belongs solely to this ring. The α is a dihedral angle between planes I and J, β is an angle
between Cg(I)–Cg(J) vector and normal to plane I, dp is a perpendicular distance of Cg(I) on ring
J plane.

R(I)•••R(J) d(Cg•••Cg) (Å) α (◦) β (◦) dp (Å)

C3

N2•••N1(i) 4.2575(10) 1.44(9) 29.9 3.7399(7)
N1•••N1(ii) 3.6918(9) 0.03(8) 23.5 3.3855(7)
N4•••N4(iii) 3.7548(10) 0.00(8) 26.8 3.3517(7)

C4

N1•••N2(iv) 4.0721(18) 0.72(16) 25.0 3.6686(12)
N1•••N1(iv) 3.8205(16) 0.03(14) 15.2 3.6865(12)
N1•••N24(v) 3.8155(16) 10.00(14) 24.1 3.4508(12)
N2•••N22(v) 3.4906(17) 5.88(17) 9.3 3.3863(13)
N4•••N21(v) 3.6557(16) 5.72(14) 21.2 3.3775(12)

Symmetry transformations used to generate equivalent atoms: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 2, −y + 2,
−z + 1; (iii) −x + 1, −y + 1, −z; (iv) −x + 1, −y + 1, −z + 1; (v) x, −y + 0.5, z – 0.5; (vi) −x + 2, −y + 1, −z + 2.

Table 7. Hydrogen bonds in the structures of C3 and C4.

D–H•••A d(D–H) (Å)
d(H•••A)

(Å)
d(D•••A)

(Å) <(DHA) (◦) Graph-Set

C3

N3–
H3•••Cl1(i) 0.88 2.39 3.2688(16) 173 C (7)

C4

N3–
H3•••Cl3(ii)

0.88 2.57 3.195(3) 129 C (8)

N3–
H3•••Cl4(iii)

0.88 3.02 3.722(3) 139 C (8)

N23–
H23•••Cl2(iv)

0.88 2.71 3.459(3) 143 C (8)

N23–
H23•••Cl2(v)

0.88 2.64 3.237(3) 126 C (8)

Symmetry transformations used to generate equivalent atoms: (i) x, y, z − 1; (ii) x, −y + 0.5, z – 0.5; (iii) −x + 2,
y + 0.5, –z + 1.5; (iv) −x + 1, y + 0.5, −z + 1.5; (v) x, −y + 0.5, z + 0.5.

In the Cambridge Structural Database, there are no deposited structures of the coordi-
nation compounds with ligands L1–L4 [58]. The most similar structurally characterized
dinuclear zinc compound is tetrachlorobis{µ-[2-(pyridin-4-yl)-1H-benzimidazole]}dizinc
(II), which was obtained in the solvent-free form [59] and as dimethyl sulfoxide solvate [60].
The pyridinyl-benzimidazole molecules form bridges via nitrogen atoms of pyridine and
imidazole rings. The ZnCl2 moieties are oppositely oriented, similarly to the case of C3. The
second and the last known hybrid (organic–inorganic) coordination compound consisting
of zinc and 2-(pyridin-4-yl)-1H-benzimidazole is diaquabis(nitrato-O)bis[2-(4-pyridyl)-1H-
benzimidazole-N]zinc (II) [61]. This is a mononuclear compound due to the monodentate
coordination mode of pyridinyl-benzimidazole molecules via a nitrogen of the pyridine
ring. The more numerous group of zinc and pyridinyl-benzimidazole compounds also
contains organic aromatic co-ligands with two or three carboxylate groups [62–70]. Such
co-ligands form double or triple bridges, and depending on the coordination mode of
pyridinyl-benzimidazole (monodentate or bidentate bridging as described above, or triden-
tate bridging after deprotonation of imidazole nitrogen) the one-, two- or three-dimensional
polymeric networks are propagated.
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2.7. ADME Analysis

The compounds should meet the basic properties that will suggest their usefulness.
All tested compounds fulfill the rules of Lipinski [71] and Veber [72]. Bioavailability radars
(Figure 7) present six physicochemical properties: lipophilicity, size, polarity, solubility,
flexibility and saturation. All compounds have a good bioavailability score of 0.55, cal-
culated relying on the total charge, TPSA and violation of the Lipinski filter. The ligands
are absorbed from the gastrointestinal tract and pass the blood–brain barrier. All com-
pounds belong to the fourth class of toxicity (Figure 7). The activity was predicted for
the obtained ligands (Table 8). ADME analysis, the possibility of passing the blood–brain
barrier and cancer cell line prediction results highlighted the possibility of activity against
oligodendroglioma.
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Table 8. Cancer cell line prediction results for the ligand—Pa (probability “to be active”), Pi (proba-
bility “to be inactive”).

Ligand Pa Pi Cell-Line Name Tissue Tumor Type

L3 0.587 0.029 Oligodendroglioma Brain Glioma

L3 0.538 0.010 Colon adenocarcinoma Colon Adenocarcinoma

L3 0.490 0.022 Non-small-cell lung
carcinoma Lung Carcinoma

L3 0.475 0.009 Pancreatic carcinoma Pancreas Carcinoma

L3 0.439 0.043 Pancreatic carcinoma Pancreas Carcinoma

L4 0.559 0.006 Pancreatic carcinoma Pancreas Carcinoma

L4 0.554 0.009 Colon adenocarcinoma Colon Adenocarcinoma

L4 0.415 0.038 Cervical
adenocarcinoma Cervix Adenocarcinoma

L4 0.426 0.099 Oligodendroglioma Brain Glioma

3. Materials and Methods
3.1. Materials and Analysis

Substrates used for ligand synthesis as well as ZnCl2·2H2O were purchased from
Sigma Aldrich (Warszawa, Poland). Glioblastoma (T98G), neuroblastoma (SK-N-AS) and
lung adenocarcinoma (A549) cell lines and human normal skin fibroblasts (CCD-1059Sk)
were obtained from the American Type Culture Collection (Manassas, VA, USA). DMEM,
high glucose; DMEM/F12; MEM; fetal bovine serum; penicillin; and streptomycin were all
obtained from Sigma-Aldrich.

3.2. Methods and Instruments

Samples of complexes (about 20 mg) were digested in a mixture of concentrated
36% HCl (1 mL) and 65% HNO3 (6 mL). The contents of Zn (II) in solid complexes were
determined using an F-AAS spectrometer (Analityk Jena, contraAA 300, Jena, Germany)
with a continuum source of light and using air/acetylene flame (Analityk Jena, contraAA
300). Absorbances were measured at the analytical spectral line of 213.9 nm for Zn (II). The
limit of quantification was 0.004 mg/L for Zn (II). Solid samples were decomposed using
the Anton Paar Multiwave 3000 (Graz, Austria) closed-system instrument. Mineralization
was carried out for 45 min at 240 ◦C under the pressure of 60 bar. The contents of carbon,
hydrogen and nitrogen were determined with a Vario Micro (Elementar Analysensysteme
GmbH, Langenselbold, Germany). FTIR spectra were recorded with an IR Tracer-100
Shimadzu Spectrometer (4000–600 cm−1 with an accuracy of recording of 1 cm−1, Kyoto,
Japan) using KBr pellets. The thermal analyses were carried out with a Netzsch STA 449 F1
Jupiter thermoanalyzer (Netzsch-Geratebau GmbH, Selb, Germany) coupled with Netzsch
Aeolos Quadro QMS 403 mass spectrometer (Netzsch-Geratebau GmbH, Selb, Germany).
Samples were heated in corundum crucibles up to 1000 ◦C, with 10 ◦C/min heating rate,
in the atmosphere of synthetic air (20% O2, 80% N2). The suitable crystals of C3 and C4
were selected, and X-ray diffraction data for them were collected on an XtaLAB Synergy
Dualflex Pilatus 300K diffractometer (Rigaku Corporation, Tokyo, Japan). Using Olex2 [73],
the structures were solved with the SHELXT [74] using intrinsic phasing and refined with
SHELXL [75] using least-squares minimization. The details concerning X-ray diffraction
data and structure refinement are given in Table 9.
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Table 9. X-ray diffraction data and structure refinement details for C3 and C4.

Compound C3 C4

Empirical formula C22H16Cl4N8Zn2 C22H14Br2Cl4N8Zn2
Formula weight 664.97 822.77
Temperature (K) 99.97(4) 101(2)
Crystal system Triclinic Monoclinic

Space group P-1 P21/c
a (Å) 7.4842(2) 12.9125(2)
b (Å) 8.1366(2) 13.8888(1)
c (Å) 9.9889(2) 15.3249(2)
α (◦) 84.703(2) 90
β (◦) 87.371(2) 105.483(1)
γ (◦) 80.218(2) 90

Volume (Å3) 596.60(3) 2648.61(6)
Z 1 4

Calculated density (g/cm3) 1.851 2.063
Absorption coefficient (mm−1) 6.858 9.743

F(000) 332 1600
Crystal size (mm) 0.063 × 0.041 × 0.026 0.160 × 0.018 × 0.015

Radiation Cu Kα (λ = 1.54184 Å) Cu Kα (λ = 1.54184 Å)
θ range for data collection (◦) 4.447 to 78.664 3.552 to 78.928

Index ranges
−9 ≤ h ≤ 9
−9 ≤ k ≤ 10
−12 ≤ l ≤ 11

−16 ≤ h ≤ 14
−17 ≤ k ≤ 13
−18 ≤ l ≤ 18

Reflections collected/independent 11156/2407 27186/5268
Rint 0.0386 0.0393

Completeness (%) 99.9 99.9
Data/restraints/parameters 2407/0/163 5268/0/343

Goodness of fit on F2 1.073 1.026
Final R indices (I > 2σ(I)) R1 = 0.0251, wR2 = 0.0717 R1 = 0.0310, wR2 = 0.0815
Final R indices (all data) R1 = 0.0267, wR2 = 0.0726 R1 = 0.0374, wR2 = 0.0848

Largest diff. peak/hole (e•Å−3) 0.53/−0.34 1.07 and −0.91

The cytotoxic effect of the compounds was evaluated using glioblastoma (T98G),
neuroblastoma (SK-N-AS) and lung adenocarcinoma (A549) cell lines and human normal
skin fibroblasts (CCD-1059Sk). T98G and SK-N-AS cells were cultured in DMEM, high
glucose; A549 cells were cultured in DMEM/F12; and CCD-1059Sk cells were cultured in
MEM. All media were supplemented with 10% FBS, 100 U/mL of penicillin and 100 mg/mL
of streptomycin (PenStrep). Cells were incubated at 37 ◦C in a humidified atmosphere of
5% CO2. Stock solutions were prepared by dissolving the compounds in sterile dimethyl
sulfoxide (DMSO) to obtain the concentration of 50 mg/mL. The cells were seeded into
96-well sterile plates (Nunc) at a density of 1 × 105 cells/mL. After 24 h of incubation, the
medium was removed from each well, and then cells were incubated for the next 24 h with
different concentrations of the tested compounds (1–100 µg/mL) in respective medium
containing 2% FBS. Cytotoxicity of the compounds was evaluated using the MTT assay [76],
which is based on the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) into dark-blue formazan crystals. Briefly, after 24 h incubation of cells
with varying concentrations of the tested compounds, all culture media were removed
from the plates. Cells were washed with PBS, and then 100 µL of medium containing
10% MTT solution (5 mg/mL) was added to each well. After 3 h incubation, 100 µL
(per well) of 10% SDS buffer solution was added to solubilize formazan crystals. After
overnight incubation, the absorbance was measured at 570 nm using a microplate reader
(Epoch, BioTek Instruments). Experiments were repeated twice, and the measurements
in each experiment were run in triplicate. The viability of the investigated cells was
expressed as a percentage of the viability of the untreated cells, and the results were
transformed into IC50 values (expressed as mean ± SD). Zhang F. et al. [77] indicated
that the median inhibitory concentration (IC50) of etoposide incubated for 24 h with lung
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adenocarcinoma (A549) cells was 115 µg/mL [77]. This result is in line with the one obtained
in our experiments and presented in Table 2 (IC50 > 100 µg/mL). The complexes were
screened for antibacterial and antifungal activities by micro-dilution broth method using
Mueller–Hinton broth for growth of bacteria or Mueller–Hinton broth with 2% glucose for
growth of fungi [78]. Minimal inhibitory concentrations (MICs) of the tested derivatives
were evaluated for the panel of the reference microorganisms from the American Type
Culture Collection (ATCC), including Gram-negative bacteria (Escherichia coli ATCC 25922,
Salmonella Typhimurium ATCC14028, Klebsiella pneumoniae ATCC 13883, Pseudomonas
aeruginosa ATCC 9027, Proteus mirabilis ATCC 12453), Gram-positive bacteria (Staphylococcus
aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, Micrococcus luteus ATCC 10240,
Enterococcus faecalis ATCC 29212, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 10876)
and fungi (Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019, C. glabrata
ATCC 90030).

3.3. Statistical Analysis

The data were expressed as mean ± SD values from three independent replicate
experiments. A p value of less than 0.05 compared with the control group was considered
to be statistically significant, using Student’s t-test analysis [79]

3.4. ADME Analysis

An ADME analysis was performed using SwissADME service (Swiss Institute of
Bioinformatics 2021) [80–82] and ProTOX II service for the prediction of toxicities for tested
compounds [83].

Ligands were analyzed using www.way2drug.com/Cell-line (accesse on 10 February
2022) service, a freely available web service for in silico prediction of human cell line
cytotoxicity for drug-like compounds [84]. Cell line cytotoxicity predictor (CLC-Pred) is a
service for the prediction of the cytotoxic effect of chemical compounds) [85].

4. Conclusions

Four new solid-state complexes of Zn (II) with benzimidazole derivatives were syn-
thesized. Only compound C1 is hydrated. Changes observed in FTIR spectra of complexes
indicate that free ligands coordinate to metal (II) ions via N donor atoms from pyridine
rings. All compounds are stable at room temperature. The shape of the TG curve, solid
and volatile intermediates and final products clearly indicate the obtainment of the coor-
dination compound. The diffraction measurement allowed finding the structures of C3
and C4. These are dinuclear coordination compounds of the general formula [Zn2Cl4(L)2].
Zinc cations are connected by two molecules of organic ligand, which are coordinated by
nitrogens of both pyridine rings. The coordination sphere of each central atom is completed
by two chlorides; thus, the coordination number is 4. The antimicrobial activity of Zn
complexes, free ligands and reference drugs showed no bioactivity against Gram-negative
bacteria and yeasts. Regarding Gram-positive bacteria, mild bioactivity was detected, with
a slight increase for complexes. All compounds have a good bioavailability score of 0.55.
The ligands are absorbed from the gastrointestinal tract and pass the blood–brain barrier.
All compounds belong to the fourth class of toxicity. ADME analysis, the possibility of
passing the blood–brain barrier and cancer cell line prediction results highlighted the possi-
bility of activity against oligodendroglioma. The MTT test confirmed that the conversion of
free ligands into coordination compounds significantly increased their anticancer activity
against glioblastoma, neuroblastoma and lung carcinoma cell lines. The synthesized com-
pounds are stronger than etoposide, which is a component of the treatment of glioblastoma,
neuroblastoma and lung cancer. Due to cytotoxicity in relation to normal cells, a different
method of drug delivery should be considered than classical chemotherapy. Treatment
of neoplastic cells directly into the exposed place in the brain with a cytostatic drug or
encapsulation of the chemotherapeutic agent could minimize the risk of damage to healthy
cells. Comparing the coordination compounds of copper (II) [52] and zinc (II), we notice a

www.way2drug.com/Cell-line
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strong influence of the metal ion on the anticancer properties of the studied coordination
compounds. The electronic structure of the metal ion, its biological activity and the type of
bond formed between the metal ion and the organic ligand play a significant role in the
biological activity of the studied complexes.
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50. Sarı, Y.; Akkoç, S.; Gök, Y.; Sifniotis, V.; Özdemir, İ.; Günal, S.; Kayser, V. Benzimidazolium-based novel silver N-heterocyclic
carbene complexes: Synthesis, characterisation and in vitro antimicrobial activity. J. Enzyme Inhib. Med. Chem. 2016, 31, 1527–1530.
[CrossRef]
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