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Simple Summary: Skeletal muscle and adipose tissue express the vitamin D receptor and may be a
mechanism through which vitamin D supplementation slows cancer progression and reduces cancer
death. It is unknown if high-dose vitamin D3 impacts skeletal muscle and adipose tissue, as compared
with standard-dose vitamin D3, in patients with advanced or metastatic colorectal cancer. In this
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exploratory analysis of a phase II randomized trial, high-dose vitamin D3 did not lead to changes
of body weight, body mass index, muscle area, muscle attenuation, visceral adipose tissue area,
or subcutaneous adipose tissue area, as compared with standard-dose vitamin D3. High-dose vitamin
D3 did not change body composition in patients receiving chemotherapy for advanced or metastatic
colorectal cancer.

Abstract: Skeletal muscle and adipose tissue express the vitamin D receptor and may be a mechanism
through which vitamin D supplementation slows cancer progression and reduces cancer death. In this
exploratory analysis of a double-blind, multicenter, randomized phase II clinical trial, 105 patients
with advanced or metastatic colorectal cancer who were receiving chemotherapy were randomized
to either high-dose vitamin D3 (4000 IU) or standard-dose (400 IU) vitamin D3. Body composition
was measured with abdominal computed tomography at enrollment (baseline) and after cycle 8 of
chemotherapy (16 weeks). As compared with standard-dose vitamin D3, high-dose vitamin D3 did
not significantly change body weight [−0.7 kg; (95% CI: −3.5, 2.0)], body mass index [−0.2 kg/m2;
(95% CI: −1.2, 0.7)], muscle area [−1.7 cm2; (95% CI: −9.6, 6.3)], muscle attenuation [−0.4 HU; (95% CI:
−4.2, 3.2)], visceral adipose tissue area [−7.5 cm2; (95% CI: −24.5, 9.6)], or subcutaneous adipose tissue
area [−8.3 cm2; (95% CI: −35.5, 18.9)] over the first 8 cycles of chemotherapy. Among patients with
advanced or metastatic colorectal cancer, the addition of high-dose vitamin D3, vs standard-dose
vitamin D3, to standard chemotherapy did not result in any changes in body composition.

Keywords: adipose tissue; colorectal neoplasms; cholecalciferol; mediation; prognosis; randomized;
skeletal muscle

1. Introduction

More than 80% of the U.S. population has vitamin D insufficiency (e.g., 25-hydroxyvitamin D
[25(OH)D] concentrations ≤30 ng/mL) [1]. Observational studies report that vitamin D insufficiency
is independently associated with a higher risk of cancer death [2,3]. Meta-analyses of randomized
controlled trials demonstrate that vitamin D supplementation reduces cancer death [4,5]. However,
the mechanisms through which vitamin D supplementation may slow cancer progression and reduce
cancer death are incompletely understood [6,7].

Skeletal muscle and adipose tissue express the vitamin D receptor [8–11]. In skeletal muscle,
binding of the vitamin D receptor stimulates protein synthesis, resulting in muscle cell proliferation and
growth [12,13]. Detailed reviews of these biological relationships have been reviewed elsewhere [14,15].
In adipose tissue, vitamin D and its receptor have been implicated in adipogenesis, lipid mobilization
and utilization, and adipokine secretion [16,17]. This is relevant because measures of skeletal muscle
and adipose tissue are prognostic of cancer progression and death in patients with various types of
malignancies [18]. It is not known if the effects of vitamin D supplementation to slow cancer progression
and reduce cancer death are mediated, in part, by changes in skeletal muscle and adipose tissue.

These observations provided the scientific rationale to conduct an exploratory analysis using
data from the SUNSHINE trial. The SUNSHINE trial was a phase II randomized clinical trial that
established the safety and preliminary efficacy of oral supplementation with high-dose vitamin D3

(4,000 IU) as compared with standard-dose (400 IU) vitamin D3 on progression-free survival in patients
with advanced or metastatic colorectal cancer [19]. We hypothesized that high-dose vitamin D3 would
increase skeletal muscle and reduce adipose tissue, as compared with standard-dose vitamin D3.
Moreover, we hypothesized that the previously-reported improvement in progression-free survival
with high-dose vitamin D3 would be mediated by changes in skeletal muscle and adipose tissue [19].
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2. Results

2.1. Baseline Participant Characteristics

Participant recruitment was conducted from 29 March 2012 and 9 November 2016. In total,
139 participants were randomized; 105 participants were evaluable in this exploratory analysis,
which did not differ between groups (p = 0.32); the most common reason participants were not
included in this analysis was because the obtained computed tomography image needed to quantify
body composition was of insufficient quality or did not include the abdominal region (Figure 1).
The 105 participants included in this exploratory analysis were significantly (p < 0.001) more likely
to have mutated (48.8% vs 23.5%) or unknown (8.6% vs 2.9%) KRAS status than the 34 participants
that were not included in this analysis (Table S1). As of September 1, 2018, all participants had
completed study assigned treatments. The median follow-up from randomization was 22.9 months
(IQR: 11.8–34.5 months). During follow-up, we observed 86 progression-free survival events and 77
overall survival events.
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Figure 1. Flow of participants.

Baseline participant and tumor characteristics were balanced between the treatment groups
(Table 1). The 75 participants in this analysis that had both, baseline and follow-up, body composition
measures did not differ on any measured baseline characteristics than the 33 participants who only had
one body composition measure (Table S2). Adherence to vitamin D3 was high, with a median of 98%
of expected capsules taken by participants in both treatment groups. As compared with participants
assigned to standard-dose vitamin D3, those assigned to high-dose vitamin D3 had significantly
increased concentrations of plasma 25(OH)D over the first 8 cycles of chemotherapy [20.0 ng/mL;
(95% CI: 14.7, 25.2); p < 0.001] (Table S3).

Table 1. Baseline characteristics of sub-study participants by randomized group.

Characteristic High-Dose Vitamin D3
(n = 50)

Standard-Dose Vitamin D3
(n = 55)

Age, median (IQR), y 54.2 (46.8–65.3) 55.5 (49.2–64.7)
Sex, No. (%)

Male 32 (64.0) 27 (49.1)
Female 18 (36.0) 28 (50.9)
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Table 1. Cont.

Characteristic High-Dose Vitamin D3
(n = 50)

Standard-Dose Vitamin D3
(n = 55)

Race, Ethnicity, No. (%)
White 38 (76.0) 43 (78.2)
Black 2 (4.0) 5 (9.1)
Asian 0 (0) 0 (0)

>1 Race 0 (0.0) 1 (1.8)
Other 10 (20.0) 6 (10.9)

ECOG Performance Status, No. (%)
0 21 (42.0) 32 (58.2)
1 29 (58.0) 23 (41.8)

Primary Tumor Location, No. (%)
Right Colon 12 (24.0) 15 (27.3)

Transverse Colon 3 (6.0) 7 (12.7)
Left Colon, Rectum 35 (70.0) 33 (60.0)

Primary Tumor Resected, No. (%) 20 (40.0) 17 (30.9)
No. of Metastatic Sites, mean (SD) 2.0 (0.93) 1.9 (0.91)

Carcinoembryonic Antigen *,
median (IQR), ng/mL 64.8 (4.5–565.6) 91.9 (5.5–393.5)

Microsatellite Instability Status, No. (%)
High 1 (2.0) 4 (7.3)
Stable 42 (84.0) 35 (63.6)

Unknown 7 (14.0) 16 (29.1)
KRAS Mutation Status, No. (%)

Wild Type 26 (52.0) 24 (43.6)
Mutated 22 (44.0) 24 (43.6)

Unknown 2 (4.0) 7 (12.7)
NRAS Mutation Status, No. (%)

Wild Type 29 (58.0) 30 (54.5)
Mutated 0 (0.0) 2 (3.6)

Unknown 21 (42.0) 23 (41.8)
BRAF V600E Mutation Status, No. (%)

Wild Type 31 (62.0) 30 (54.5)
Mutated 3 (6.0) 7 (12.7)

Unknown 16 (32.0) 18 (32.7)

* Missing for 1 participant.

2.2. Effects of Intervention on Body Composition Outcome Measures

As compared with participants assigned to standard-dose vitamin D3, those assigned to high-dose
vitamin D3 supplementation did not significantly change body weight [−0.7 kg; (95% CI: −3.5,
2.0); p = 0.61], body mass index [−0.2 kg/m2; (95% CI: −1.2, 0.7); p = 0.63], muscle area [−1.7 cm2;
(95% CI: −9.6, 6.3); p = 0.68], muscle attenuation [−0.4 HU; (95% CI: −4.2, 3.2); p = 0.81], visceral adipose
tissue area [−7.5 cm2; (95% CI: −24.5, 9.6); p = 0.39], or subcutaneous adipose tissue area [−8.3 cm2;
(95% CI: −35.5, 18.9); [p = 0.55] over the first 8 cycles of chemotherapy (Table 2). Results were similar in
sensitivity analyses using maximum-likelihood regression without multiple imputation (Table S4).
Nine participants experienced disease progression with the first 8 cycles of chemotherapy [2 (4.0%)
in the high-dose vitamin D3 group and 7 (12.7%) in the standard-dose vitamin D3 group, p = 0.11];
results were similar after excluding these participants.
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Table 2. Effects of vitamin D3 supplementation on change in body composition outcomes using multiple imputation analysis.

Outcome & Group Baseline
[LS Mean (SE)]

Follow-Up
[LS Mean (SE)]

∆ Baseline to Follow-Up
(LS Mean, 95% CI)

∆ Between Group
(LS Mean, 95% CI) p

Body Weight, kg
High-Dose Vitamin D3 82.0 (3.1) 81.0 (3.3) −1.0 (−2.9, 0.9) −0.7 (−3.5, 2.0) 0.61

Standard-Dose Vitamin D3 76.8 (3.2) 76.5 (3.4) −0.3 (−2.3, 1.7) —
Body Mass Index, kg/m2

High-Dose Vitamin D3 28.7 (0.99) 28.4 (1.03) −0.3 (−1.0, 0.3) −0.2 (−1.2, 0.7) 0.63
Standard-Dose Vitamin D3 27.2 (1.03) 27.1 (1.07) −0.1 (−0.8, 0.6) —

Muscle Area, cm2

High-Dose Vitamin D3 139.3 (4.6) 135.4 (4.9) −3.9 (−8.8, 1.0) −1.7 (−9.6, 6.3) 0.68
Standard-Dose Vitamin D3 133.5 (4.8) 131.3 (5.3) −2.3 (−7.9, 3.4) —
Muscle Attenuation, HU
High-Dose Vitamin D3 34.9 (1.47) 35.0 (1.74) 0.1 (−2.4, 2.6) −0.4 (−4.2, 3.2) 0.81

Standard-Dose Vitamin D3 38.0 (1.52) 38.6 (1.73) 0.6 (−2.2, 3.4) —
Visceral Adipose Tissue Area, cm2

High-Dose Vitamin D3 130.8 (15.3) 128.0 (15.3) −2.8 (−14.7, 9.2) −7.5 (−24.5, 9.6) 0.39
Standard-Dose Vitamin D3 111.5 (15.8) 116.1 (16.0) 4.7 (−7.9, 17.3) —

Subcutaneous Adipose Tissue Area, cm2

High-Dose Vitamin D3 230.5 (20.1) 226.0 (22.1) −4.5 (−24, 15.1) −8.3 (−35.5, 18.9) 0.55
Standard-Dose Vitamin D3 207.6 (20.6) 211.5 (22.6) 3.8 (−15.2, 22.9) —

All results were from a regression model for repeated measurements that was adjusted for age, number of metastatic sites, sex, race, and ECOG performance status.
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2.3. Correlation between Change in Plasma 25(OH)D and Body Composition

Among all participants, change in plasma 25(OH)D concentration from baseline to cycle 8 was
not significantly associated with change in body weight [r = −0.24; (95% CI: −0.46, 0.01); p = 0.054],
body mass index [r = −0.23; (95% CI: −0.45, 0.02); p = 0.067], muscle area [r = −0.17; (95% CI: −0.41,
0.09); p = 0.19], muscle attenuation [r = 0.16; (95% CI: −0.10, 0.41); p = 0.21], visceral adipose tissue area
[r = −0.05; (95% CI: −0.30, 0.21); p = 0.71], and subcutaneous adipose tissue area [r = 0.01; (95% CI:
−0.26, 0.26); p = 0.99].

2.4. Mediation Effect of Body Composition on Vitamin D3 and Progression-Free Survival

In the subgroup of 105 participants included this exploratory analysis, randomization to high-dose
vitamin D3 was associated with a lower risk of disease progression or death as compared with low-dose
vitamin D3 [HR: 0.67; (95% CI: 0.42, 1.07)]; the magnitude of risk reduction was similar to that observed
in the full analysis set of 139 participants as previously reported [HR: 0.64; (95% CI: 0.0–0.90)] [19].
Change in body weight [HR: 0.69; 95% CI: 0.40, 1.18)], body mass index [HR: 0.69; (95% CI: 0.40,
1.17)], muscle area [HR: 0.62; (95% CI: 0.35, 1.11)], muscle attenuation [HR: 0.73; (95% CI: 0.42, 1.25)],
visceral adipose tissue area [HR: 0.77; (95% CI: 0.44, 1.36)], and subcutaneous adipose tissue area
[HR: 0.76; (95% CI: 0.44, 1.33)] over the first 8 cycles of chemotherapy did not mediate the association
between randomized group and progression-free survival (Table 3).

Table 3. Change in effect of vitamin D3 supplementation randomized group on progression-free
survival before and after adjustment for change in body composition.

Before Adjustment
Hazard Ratio (95% CI) Hypothesized Mediator After Adjustment

Hazard Ratio (95% CI)

0.67 (0.42, 1.07)
∆ Body Weight 0.69 (0.40, 1.18)

∆ Body Mass Index 0.69 (0.40, 1.17)
∆ Muscle Area 0.62 (0.35, 1.11)

∆ Muscle Attenuation 0.73 (0.42, 1.25)
∆ Visceral Adipose Tissue Area 0.77 (0.44, 1.36)

∆ Subcutaneous Adipose Tissue Area 0.76 (0.44, 1.33)

Hazard ratios compare high-dose vitamin D3 supplementation with standard-dose vitamin D3 supplementation
and were estimated from a Cox proportional hazards model that was adjusted for age, number of metastatic sites,
sex, race, and ECOG performance status.

2.5. Prognostic Effect of Body Composition on Progression-Free and Overall Survival

In restricted cubic spline analysis, no baseline body composition measures were significantly
associated with progression-free survival (Figure S1); baseline muscle area (nonlinear p = 0.026) and
visceral adipose tissue area (nonlinear p = 0.01) were significantly associated with overall survival
(Figure S2). Change in muscle attenuation from baseline to cycle 8 (nonlinear p = 0.002) was significantly
associated with progression-free survival (Figure S3); no change in body composition measures from
baseline to cycle 8 were significantly associated with overall survival (Figure S4).

3. Discussion

In this exploratory analysis of a phase II trial, high-dose vitamin D3 vs standard-dose vitamin
D3 did not significantly change skeletal muscle and adipose tissue among patients with metastatic
colorectal cancer receiving standard chemotherapy. Among both randomized groups, change in plasma
25(OH)D concentration did not correlate with changes in body composition. Change in skeletal muscle
and adipose tissues did not mediate the effect of high-dose vitamin D3 on progression-free survival in
this population. Among both randomized groups, baseline muscle area and visceral adipose tissue
area were associated with overall survival and change in muscle attenuation from baseline to cycle 8
was associated with progression-free survival. These exploratory findings help to clarify the potential
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mechanisms through which vitamin D supplementation may slow cancer progression and reduce
cancer death.

At the time of diagnosis, ≥80% of patients with advanced or metastatic colorectal cancer have
25(OH)D concentrations ≤30 ng/mL [20]. A prospective analysis of 1043 patients with metastatic
colorectal cancer who participated in a randomized phase III clinical trial of first-line chemotherapy
plus biologic therapy demonstrated that patients with plasma 25(OH)D concentrations ≥20 ng/mL had
a 19% reduced risk of disease progression [HR: 0.81; (95% CI: 0.66–1.00)] and a 30% reduced risk of
death [HR: 0.70; (95% CI: 0.56–0.86)], as compared with plasma 25(OH)D concentrations <10 ng/mL [21].
A meta-analysis of 11 observational studies that included 7718 patients with stage I-IV colorectal cancer
demonstrated that 25(OH)D was independently and inversely associated with cancer-specific and
overall survival [22].

We hypothesized that one of the mechanisms by which vitamin D3 supplementation exerts
anticancer effects is through its impact on body composition. Our hypothesis was founded on the
convergence of several lines of evidence. Skeletal muscle and adipose tissue express the vitamin D
receptor [8–11]. In cross-sectional studies, concentrations of 25(OH)D positively correlate with skeletal
muscle and negatively correlate with visceral and subcutaneous adipose tissue [23,24]. Skeletal muscle
and adiposity are independent prognostic factors in patients with colorectal cancer [25–27]. The findings
from this exploratory analysis, however, are not consistent with this hypothesis. Our observations
support the results of several meta-analyses in various populations that vitamin D supplementation
does not substantively change body composition [28–30].

There are several limitations to this trial. The main limitation is that this was an unplanned,
exploratory, post hoc analysis and the findings, although null, should be interpreted conservatively.
The relatively modest sample size may have limited our ability to detect small, but potentially clinically
meaningful effects of vitamin D3 supplementation on body composition outcomes. The current sample
size provided sufficient statistical power to detect moderate to large treatment effects. The racially
and geographically homogeneous sample also limited our ability to detect treatment effects in
participant subgroups. The intervention duration was 16 weeks (8 cycles of mFOLFOX6 chemotherapy),
which limits our ability to understand the benefits of vitamin D3 supplementation on body composition
over longer time horizons. The intervention did not include other supplements that may enhance the
absorption of vitamin D, such as calcium, magnesium, and marine n-3 fatty acids. The study population
was not recruited on the basis of having unfavorable body composition at baseline, which limits our
understanding of treatment effect in patients with low muscle or excess adiposity at baseline.

There are several strengths to this trial. The randomized double-blind design allowed for
a direct comparison of treatment effect of high-dose vitamin D3 on body composition outcomes.
Study participants were recruited from both academic and community-based cancer centers. Based on
changes in plasma 25(OH)D concentrations, there was high supplement adherence, and no evidence of
control group crossover, despite availability of vitamin D3 supplements over the counter to patients.
Body composition was ascertained using computed tomography, a gold-standard modality for muscle
and adipose tissue measurement [31], by staff who were blinded to randomized group assignment.

4. Materials and Methods

4.1. Study Design

This study was a double-blind, multicenter, randomized phase II clinical trial. The study was
conducted at 11 academic and community cancer centers across the United States. The study was
conducted in accordance with Good Clinical Practice and the ethical principles originating in the
Declaration of Helsinki. The protocol and informed consent document were approved by the institutional
review board for each study site (coordinating center, Dana-Farber Cancer Institute, IRB Protocol
11-436; approved 12/27/2011). An independent data and safety monitoring board provided oversight of
the study. All participants provided written informed consent prior to completing any study-related
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activities. The study was registered on ClinicalTrials.gov as NCT01516216. The detailed study protocol is
published [19].

4.2. Participants

Patients were eligible if they had pathologically confirmed, unresectable locally advanced
or metastatic adenocarcinoma of the colon or rectum with measurable disease per the Response
Evaluation Criteria in Solid Tumors (RECIST) guidelines version 1.1 [32]. Patients were eligible if
the last dose of prior chemotherapy or chemoradiotherapy was ≥12 months before study enrollment.
Eligible patients had an Eastern Cooperative Group (ECOG) performance status of 0–1, with adequate
organ function, and no evidence of hypercalcemia or conditions that may increase the risk of
hypercalcemia (e.g., hyperparathyroidism). Patients were ineligible if they were taking ≥2000 IU
daily of vitamin D3, had symptomatic genitourinary stones within the past year, or were taking
thiazide diuretics.

4.3. Randomization and Blinding

Participants were randomly assigned by the trial statistician in a 1:1 ratio to high-dose vitamin D3

or standard-dose vitamin D3 (described in detail below) using a computerized block randomization
procedure with a block size of two. The trial statistician and research pharmacist were not blinded to
treatment assignment. Study participants and treating physicians were blinded to treatment assignment.

4.4. Intervention

All study participants received chemotherapy with the mFOLFOX6 regimen, plus bevacizumab,
administered every 2 weeks (1 cycle = 2 weeks) [33]. Bevacizumab could be omitted during cycle 1
and commenced with cycle 2, per treating physician discretion.

Vitamin D3 capsules and placebos were identical in appearance (Pharmavite, LLC, West Hills,
CA, USA). After randomization, participants were instructed to cease consumption of all supplements
containing vitamin D and calcium outside of the study intervention. The high-dose vitamin
D3 group received an initial daily dose of 8000 IU of vitamin D3 (two 4000 IU capsules) for
cycle 1, and 4000 IU per day for all subsequent cycles. The standard-dose group received
400 IU daily during all cycles (one 400 IU capsule plus one placebo capsule during cycle 1 to
maintain blinding). Adherence to vitamin D3 was monitored using participant diaries and pill
bottle reconciliation. Plasma 25(OH)D concentrations were quantified using a radioimmunoassay
(DiaSorin, Inc., Saluggia, Italy). Participants continued to receive the study intervention until disease
progression, intolerable toxicity, or decision to discontinue treatment.

4.5. Body Composition Outcome Measures

Height (meters) and weight (kilograms) were measured by trained medical assistants. Body mass
index was calculated as kilograms of body weight per square meter of height (kg/m2). Body composition
was measured using computed tomography (CT) images that were obtained with standard clinical
contrast-enhanced protocols using slice-O-matic software (V4.3, TomoVision, Montreal, QC, Canada).
A single slice transverse image at the third lumbar vertebra was used because tissue cross-sectional
areas at this lumbar region are correlated with whole-body tissue volume [34,35]. Tissues were
demarcated with a semiautomated procedure using Hounsfield Unit thresholds of −29 to 150 for
muscle tissue (including all paraspinal and abdominal wall muscles), −150 to −50 for visceral adipose
tissue, and −190 to −30 for subcutaneous adipose tissue. Cross-sectional areas were calculated
for each tissue compartment by summing tissue pixels and multiplying by the pixel surface area.
Muscle radiodensity quantified the average radiation attenuation rate as a radiologic measure of the
extent of lipid contained within muscle [36]. Images were analyzed by trained staff who were blinded
to study hypothesis, trial design, and image order (baseline vs. restaging follow-up). Coefficients of
variation were 0.5% for muscle (individual reader range: 0.5–1.1%), 0.7% (0.4–1.0%) for visceral
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adipose tissue area, and 0.4% (0.2–0.5%) for subcutaneous adipose area [37]. Final data verification
was performed by a board-certified radiologist who was blinded to randomized group assignment
(M.H.R.). Body composition was analyzed at baseline (pre-treatment) and at the second tumor restaging
(cycle 8 of chemotherapy = 16 weeks of randomized study treatment).

4.6. Other Measures

Data for participant characteristics including age, sex, race and ethnicity, ECOG performance
status, primary tumor location, primary tumor resection status, receipt of prior cancer-directed therapy,
number of metastatic sites, carcinoembryonic antigen (CEA) concentration, and tumor mutational
profile—including microsatellite instability, KRAS, NRAS, and BRAF V600E status—were obtained
from a combination of participant self-report, physician assessment, and the medical record.

4.7. Statistical Analysis

The sample size was selected to provide sufficient statistical power to detect change in the primary
endpoint of progression-free survival [19]. Measures of body composition were analyzed as exploratory
study outcomes. Descriptive statistics presented for baseline variables include counts with proportions
for categorical variables and medians with interquartile (25–75%) ranges for continuous variables.
Categorical baseline characteristics were compared using the Fisher’s exact or χ2 tests, and continuous
baseline characteristics were compared using the Kruskal–Wallis or t-tests.

All analyses adhered to the modified intention-to-treat principle. The primary modeling strategy
evaluated the treatment policy estimand (i.e., the treatment effect regardless of adherence or discontinuation)
quantified using a generalized linear model for repeated measures with missing data imputed by a pattern
mixture model with multiple imputation [38,39]. The secondary modeling strategy evaluated the trial
product estimand (i.e., the treatment effect assuming all patients remained on trial) quantified using a
mixed model for repeated measures with observed data (e.g., no imputation) [38]. The baseline value of
the dependent variable was included as a covariate in the regression models [40]. Treatment effects were
estimated as the group-by-time interaction with least-square means ± standard error or corresponding 95%
confidence intervals. Model fit was assessed using graphical and numeric techniques. Sensitivity analyses
excluded participants who experienced tumor progression within the first 8 cycles of chemotherapy.
The Pearson correlation coefficient with bootstrapped 95% confidence intervals were used to quantify the
strength of the association between change in plasma 25(OH)D and body composition [41].

The degree to which change in skeletal muscle and adipose tissue mediate the previously-reported
treatment effect on progression-free survival was estimated using techniques for continuous mediators
and time-to-event outcomes [42]. Additional analyses that consolidated the two randomized groups
were conducted to quantify the association between body composition with progression-free survival
and overall survival outcomes. Multivariable-adjusted Cox proportional hazards models were used
to estimate hazard ratios and 95% CIs with restricted cubic splines [43]. Models were adjusted a
priori for age, sex, race/ethnicity, ECOG performance status, and the number of metastatic sites [19].
The proportionality of hazards assumption was examined with visual inspection of log–log plots and
tested in a regression model of the scaled Schoenfeld residuals on time [44].

5. Conclusions

Among patients with advanced or metastatic colorectal cancer, the addition of high-dose vitamin
D3, vs standard-dose vitamin D3, to standard chemotherapy did not result in any differences in body
composition. The findings from this exploratory study indicate that the benefits of vitamin D3 on
reducing cancer progression and death are unlikely to be mediated by changes in body composition.
A multicenter, double-blind, randomized phase III trial is currently underway to evaluate the efficacy
of high-dose vs. standard-dose vitamin D3 on progression-free survival in 400 patients with metastatic
colorectal cancer, and the correlative studies embedded into this trial will offer unprecedented insight
into mechanisms of treatment benefit [45].
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