
Evolutionary Bioinformatics 2013:9 111–125

doi: 10.4137/EBO.S11169

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Open Access
Full open access to this and
thousands of other papers at

http://www.la-press.com.

Evolutionary Bioinformatics

T e c h n i c al A d v a n c e

Evolutionary Bioinformatics 2013:9	 111

CMCpy: Genetic Code-Message Coevolution Models in Python

Peter J. Becich1, Brian P. Stark2, Harish S. Bhat3 and David H. Ardell1,4

1Center for Computational Biology, University of California, Merced, CA. 2Academic Program in Computer Science
and Engineering, University of California, Merced, CA. 3Applied Mathematics Unit, University of California, Merced, CA.
4Program in Quantitative and Systems Biology, University of California, Merced, CA.
Corresponding author emails: dardell@ucmerced.edu; hbhat@ucmerced.edu

Abstract: Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes
(“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although
CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implemen-
tations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-
line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading
eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory
to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes.
Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source
software available from http://pypi.python.org/pypi/CMCpy/.

Keywords: quasispecies, CUDA, genetic code, homotopy, perturbative method

http://dx.doi.org/10.4137/EBO.S11169
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/evolutionary-bioinformatics-journal-j17
http://www.la-press.com
mailto:dardell@ucmerced.edu
mailto:hbhat@ucmerced.edu
http://pypi.python.org/pypi/CMCpy/

Becich et al

112	 Evolutionary Bioinformatics 2013:9

Introduction
Code-Message Coevolution (CMC) models were
introduced to facilitate the study of co-evolutionary
systems in which a large population of individuals
share an evolvable genetic code coupled to many and/
or long protein-coding genes (“messages”). Initial
study of these models demonstrated that base muta-
tions in protein-coding genes can significantly influ-
ence the fitness of genetic codes.1 More detailed study
of CMC models has yielded formal demonstrations
for how natural selection likely contributed to the ori-
gins of codon redundancy2 and non-random patterns
of amino acid assignments3,4 in genetic codes. CMC
models have been extended to study the effects of
population structure and gene sharing on coevolving
systems of codes and messages.5

In their original formulations, CMC models are
deterministic evolutionary genetic models that cou-
ple together sets of large populations of asexually
reproducing genotypes evolving under mutation and
natural selection. One such population is called a
“quasispecies”,6 a concept reviewed recently both
generally7 and specifically in connection to popu-
lation genetics theory.8,9 In CMC models, each of
multiple quasispecies represents a large population
of codons evolving to meet the same physicochemi-
cal requirements of a “site-type” in proteins under
translation by a given genetic code. The coupling of
multiple quasispecies through a genetic code occurs
through reuse of the same codon type (or allele) in
different site-types. CMC models follow determinis-
tic trajectories that alternate between equilibration of
messages to an established genetic code by mutation
and selection, and locally adaptive “gradient ascent”
hill-climbing of the genetic code through single
codon assignments and reassignments. This “qua-
sistatic” dynamic continues until no single codon
reassignment yields higher fitness with the current
message population. Published CMC models always
converge to a stable local fitness optimum—a pro-
cess called “code freezing.”

Because CMC models compound quasispecies
models, analytical solutions to quasispecies models
are relevant to their study. Previous applications of
perturbation theory for approximate solutions to qua-
sispecies models assume uniqueness of maximally fit
genotypes and small perturbation parameters (small
mutation rates).10–12

In this work, we present two analytical methods
that relax these assumptions. The first is a perturba-
tive method that clarifies, extends and generalizes the
perturbative approach to quasispecies models. Our
presentation provides a derivation to arbitrary order,
which relaxes any restriction on the magnitude of the
perturbation parameter. The second method is the first
published application of homotopy methods to qua-
sispecies models, which handles cases with non-unique
maximally fit genotypes. Numerical tests show that,
for two example problems, both algorithms converge.
Notably, the error of the perturbative method decreases
exponentially in the number of iterations, suggest-
ing its potential to outperform the power method.
Both approaches are flexible and can be extended to
a variety of quasispecies mutation models and fitness
schemes. Also, both methods have been formulated so
as to facilitate future connections between quasispecies
models and established results in eigenvalue perturba-
tion theory13–15 and homotopy methods.16

In addition to these analytical results, we present
a new code-base implementing CMC models. The
dissemination and further study of CMC models has
been sorely hindered by the lack of a modern code-
base implementing them. The original C/C++ CMC
code-base has been rendered obsolete by evolution of
compilers and language standards from the time of its
writing in the late 1990s. This has created a need for
reimplementation of the original models in an easy-
to-use and program, powerful, and efficient, high-
level scripting language like Python.

Here we present CMCpy, a free open-source code-
base that implements CMC models in an easy to use
object oriented Python API. The code-base comes
with a front-end command-line executable called
cmc that can drive the exploration of a variety of
CMC models and reproduce published results.

Implementation
CMCpy was developed in Python 2.7. Figure 1 shows
the organization of classes in CMCpy. A rich class hier-
archy allows convenient specification of a wide-range
of CMC models with very few lines of Python code.

An element not shown in Figure 1 is that the
ArdellSellaEvolver class is an abstract base class for a
variety of subclasses implementing different strategies
to solve dominant eigenpairs. The default solver
relies on the Numpy eig() function for its speed and

http://www.la-press.com

CMCpy: genetic code-message coevolution models in python

Evolutionary Bioinformatics 2013:9	 113

accuracy, but for reasons of flexibility, verification,
and to experiment with different methods, we include
a legacy central processing unit (CPU)-based power
method, a multicore CPU-based power method imple-
mentation and an experimental graphics processing
unit (GPU) implementation of the power method that
relies on pyCUDA.17

The pyCUDA solver is implemented in a CUDA
C kernel with supportive Python code. The Python
code uses NumPy for simple operations, to cast data
to types acceptable by the CUDA platform, and to
reshape matrices to one-dimensional data frames, for
use by CUDA C. The CUDA C implementation of
the power method approximately solves the eigen-
vector of each site-type, in parallel. Each site-type
is assigned to one virtual “block” of the GPU, each
of which corresponds to a physical processor when
the number of blocks is below a hardware limit. This
organization of the parallel workload was chosen to
stay below CUDA specification limits, access GPU
memory efficiently, and avoid excess complexity.
Ultimately, the CUDA power method implementation
is faster than the CPU power method implementation.
Figure 2 shows system clock execution times of vari-
ous methods on a 3.0 GHz Core 2 Duo with an Nvidia
GeForce 460 GTX GPU running Ubuntu 12.04. The
benchmark script in R that generated this figure is
provided as supplementary data.

CMCpy comes with a front-end command-line
executable in Python called cmc. This executable
provides users, including non-programmers, the
capability to reproduce (at least qualitatively) all of

the published results on CMC models1–4 as well as run
individual and batch simulations of other models and
parameter spaces. In Table 1 we list command-line
options to the cmc executable and their correspond-
ing model parameters.

A variety of observables and statistics are imple-
mented including the Normalized Encoded Range2
for one-dimensional amino acid/site-type spaces.
Although CMC models are deterministic, exact quan-
titative differences may arise in results with CMCpy
depending on floating point representation differences
by platform and differences in convergence thresh-
olds using power method-based eigensolvers.

It may be useful to restate the assumptions of the
“Ardell-Sella” models currently implemented and
available in CMCpy. These include the following:

1.	 The numbers and/or lengths of protein-coding
genes, or “messages,” translated by a common
genetic code, are large with respect to every pos-
sible site-type in proteins.

2.	 For every possible site-type in proteins there cor-
responds a uniquely most fit amino acid.

3.	 The machineries to decode codons, and to asso-
ciate any codon to any amino acid, pre-exist the
evolution of the genetic code.

4.	 Fitness contributions of amino acids across sites
are independent and multiplicative.

5.	 Fitness contributions of different amino acids
within the same site are independent and additive.

6.	 Bases in messages mutate independently of one
another.

GeneticCode
CodonSpace AminoAcidSpace

CodonSpace

RingCodonSpace WordCodonSpace

AminoAcidSpace

RingAminoAcidSpace RegionAminoAcidSpace

InitiallyAmbiguous
GeneticCode

UserInitialized
GeneticCode

 Misreading CodonSpace

RingMisreading PositionalMisreading

 MirroringSiteTypeSpace
AminoAcidSpace

Observables

ArdellSellaEvolver
InitialCode

Misreading

Observables

SiteTypeSpace

Class

Class
Component

Subclass

"Is a"
"Has a"

LEGEND

Figure 1.  Overview of class hierarchy and containment relationships in CMCpy.

http://www.la-press.com

Becich et al

114	 Evolutionary Bioinformatics 2013:9

Number of site-types/amino acids

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

10

0
2

4
6

8

20 30 40 50 60

NumPy

CUDA power method
CPU power method

Figure 2. Comparison of wall-clock execution times of the cmc executable with three different eigensystem solvers using the double ring model4 with eight
codons, µ = 0.1 and φ = 0.25.

Table 1. Options to the cmc executable and corresponding model parameters.

Option Long version Description Default
–a ––numaas Number of amino-acids/site-types (AA/ST) 10
–d ––numdims Dimensionality of AA/ST space 1
–s ––seed Seed for random initialization of AA/ST coordinates 42
–t ––numtrials Num. trials with reinitialized AA/ST spaces 1
–c ––numcodons Num. codons in a “double ring” model N/A
–b ––numbases Alphabet size for word-based codon model 4
–p ––numpositions Length of codons for word-based codon model N/A
–m ––mu Base (word models) or codon mutation rate 0.1
–k ––kappa Transition/transversion mutation bias ratio 1
–f ––phi Missense tolerance parameter 0.25
–r ––misreading Misreading parameters N/A

7.	 Messages are haploid and asexually reproducing.
8.	 Genetic codes evolve much slower than messages,

through discrete and independent assignments or
reassignments of amino acids to codons.

Analytical Methods for Quasispecies
Solutions
In this section we develop two different analytical
methods to solve for the equilibrium growth rate and
genotype distributions for a wide range of quasispecies

models. The Matlab/Octave code used to implement
these solutions are provided as supplementary data.
A version of the homotopy method is also imple-
mented in CMCpy for ring models. Full implemen-
tions of both methods will be incorporated into
CMCpy at a later date.

Perturbative method: quasispecies
with unique fittest genotype
We start with a ring mutation model discussed in prior
work.1 Let µ denote the N × N mutation matrix

http://www.la-press.com

CMCpy: genetic code-message coevolution models in python

Evolutionary Bioinformatics 2013:9	 115

	

µ

µ µ µ
µ µ µ

µ
µ µ

µ µ µ

=

−
−

−
−





















1 2

1 2

1 2

1 2

 



,� (1)

where blank spaces should be interpreted as zeros.
Throughout this derivation and the following one, we
assume 0 # µ , 1 and N . 1. Let w denote the N × N
fitness matrix

	

w

w

=














1



wN

.

We assume that w1 is the unique maximum of the
finite set {w1, . . . , wN }. We also assume wi . 0 for
each i, consistent with prior work.1

Our goal in this derivation is to determine the
leading eigenpair, consisting of the largest eigenvalue
together with its corresponding eigenvector, of the
matrix

	 Q() .µ µ= w � (2)

We write Q()µ to emphasize the fact that since µ
is a function of µ, so is Q. The diagonal matrix w is
constant with respect to µ. Next we define

	 Q Q w() () ./ / / /µ µ µ= =−w w w1 2 1 2 1 2 1 2
 � (3)

Since the matrices Q and Q are related by a simi-
larity transformation, their eigenpairs are closely
related. One can check that

	 Qv v Q v v= =− −λ λif and only if w w

1 2 1 2/ / � (4)

We focus our attention on Q because it is symmet-
ric, i.e., Q(µ)T = Q(µ) for all µ.

For Q(µ), the leading eigenpair (λ(µ), v(µ)) must
satisfy

	 Q(µ)v(µ) = λ(µ)v(µ).� (5)

When µ = 0, the matrix µ reduces to the N × N
identity matrix. Therefore, Q(0) = w, and the leading
eigenpair of Q(0) is given by

	 λ() () .0 01 1= =w v eand � (6)

Here ej denotes the j-th basis vector in N-dimensional
space, i.e., the vector with all zeros except for 1 in the
j-th slot.

Guiding principle
Since Q(µ) is symmetric for all real µ, standard
theoretical results in eigenvalue perturbation the-
ory14 guarantee that both the eigenvalue λ(µ) and
eigenvector v(µ) are analytic functions of µ. This
means that there exists M . 0 such that for µ ∈
(−M, M), the following power series expansions
converge:

	
λ µ λ µ

()
!

=
=

∞

∑ j

j

j j0

� (7a)

	
v v

jj

j

j

()
!

µ µ=
=

∞

∑
0

� (7b)

In this notation, (6) can be written as λ0 = w1 and
v0 = e1. Note also that we have arranged the coeffi-
cients so that

	

d

d

j

j jµ
λ µ λ

µ=

=
0

() � (8a)

	

d

d
v v

j

j jµ
µ

µ=

=
0

() � (8b)

Our strategy now will be to derive from (5) a recur-
sive set of equations for the coefficients λj, µj. Once
we have these coefficients for j = 0, 1, ..., J, we have
an approximation to the leading eigenpair.

Let I denote the n × n identity matrix. Then
µ = I + µs, where

	

s =

−
−

−
−





















2 1 1

1 2 1

1

2 1

1 1 2

 



.

http://www.la-press.com

Becich et al

116	 Evolutionary Bioinformatics 2013:9

This implies that

	

d

d

j

j

j

jµ
µ =

=
≥





s 1

0 2.

By (3), we have

	

d

d
Q

j

j

j

jµ
µ() =

=
≥





w sw1/2 1 2 1

0 2

/

.
� (9)

Perturbative solution: part I
Armed with the above facts, we differentiate (5) with
respect to µ on both sides:

	 Q′(µ)v(µ) + Q(µ)v′(µ) = λ′(µ)v(µ) + λ(µ)v′(µ).

We then set µ = 0 and use (8), (3), (9), and (6) to
obtain

	 w1/2sw1/2e1 + wv1 = λ1e1 + w1v1� (10)

Multiply this equation on the left by the row vec-
tor eT

1
:

	 e e e w eT T T
1

1 2 1 2
1 1 1 1 1w sw w 1 1

/ / .+ = +v vλ � (11)

Note that e w eT T
1 1 1w = , which implies eT

1 1wv =
w eT

1 1 1v . Using this equality in (11), we have

	 e eT
1

1 2 1 2
1 1w sw/ / .= λ

This shows that if we already know (λ0, v0), we
can determine λ1. To determine v1, we return to (10)
except now we treat λ1 as known. Rearranging the
equation, we have

	 [w - w1I]v1 = [λ1I - w1/2sw1/2]e1.

We substitute our definition of w on the left-hand
side to obtain

	

0

2 1

3 1

1

1 1
1 2 1 2

1

w w

w w

w w

I e
N

−
−

−





















= − 



v λ w sw/ / .

Suppose that v1 = (v1
(1), v1

(2), …, v1
(N)). We set v1

(1) = 0.
For the remaining components, we solve the above
matrix-vector system to obtain

	

v1
1

1
1 2 1 2

1

1

2 3

k

k
k
T

w w
e I e

k N

() =
−

− 

=

λ w sw

for

/ / ,

, , , .

We have completed the loop, showing how to pro-
ceed from the zeroth-order eigenpair (λ0, v0) to the
first-order eigenpair (λ1, v1).

In the next section, we show how to iterate this
procedure to generate the j-th order eigenpair (λj, vj)
from the previously obtained eigenpairs.

Perturbative solution: part II
We return to (5) and take j derivatives with respect to
µ on both sides. Using the general Leibniz rule, we
have

	

j

m
d

d
Q

d

d

j

m
d

d

d

d

m

m

j m

j m
m

j

m

m

j m







() ()

=






()

−

−
=

−

∑ µ
µ

µ
µ

µ
λ µ

v
0

µµ
µj m

m

j

−
=

()∑ v
0

After differentiating, we set µ = 0 and use (8) to
obtain

	

j

m
d

d
Q

j

m

m

m j m
m

j

m j m
m

j





() =




−

=
−

=
∑ ∑µ

µ λv v
0 0

Applying (3) and (9) yields

	
w w swv v vj j m j m

m

j

j
j

m
+ =





− −

=
∑1 2 1 2

1
0

/ / .λ

We peel off the m = 0 term from the right-hand side:

	
w w swv v v vj j j m j m

m

j

j
j

m
+ = +





− −

=
∑1 2 1 2

1 0
1

/ / .λ λ �(12)

Multiplying on the left by eT
1

 and using
e w e eT

j
T

j
T

j1 1 1 0 1wv v v= = λ , we see that the first term on
the left-hand side cancels the first term on the right-
hand side. We are left with

http://www.la-press.com

CMCpy: genetic code-message coevolution models in python

Evolutionary Bioinformatics 2013:9	 117

	
je

j

m
eT

j
m

j

m
T

j m1
1 2 1 2

1
1

1

1w sw/ / .v v−
=

−

−=




∑ λ

Now on the right-hand side, we peel off the m = j
term—note that this the only term in which λj appears.
Hence

	
je

j

m
e eT

j
m

j

m
T

j m j
T

1
1 2 1 2

1
1

1

1 1 0w sw/ / .v v v−
=

−

−=






+∑ λ λ

We use (6) and e eT
1 1 1= , and we solve for λj:

	
λ λj

T
j

m

j

m
T

j mje
j

m
e= −





−

=

−

−∑1
1 2 1 2

1
1

1

1w sw/ / .v v � (13)

We have therefore shown that if we already know
(λm, vm) for m = 0, 1, …, j – 1, we can solve for λj.
Now, using this λj, we can solve for vj in the same
way as before. We go back to (12), isolate all terms
involving vj, and apply (6) to derive

	
w w sw−[] = − +





−

=
−∑w I j

j

mj j
m

j

m j m1
1 2 1 2

1
1

v v v/ / λ

The right-hand side is clearly valid only for j $ 1.
The matrix on the left-hand side is the same one that
appeared earlier:

	

0

2 1

3 1

1

1 2 1 2
1

w w

w w

w w

v j
j

m

N

j j

−
−

−





















= − +




−



w sw/ / v
=

−∑
m

j

m j m
1

λ v

We again set v j
1 0() = . For the remaining compo-

nents, we have

	
v v v

j

k

k
j

m

j

m j mw w
j

j

m
()

−
=

−=
−

− +










∑1

1

1 2 1 2
1

1

w sw/ / λ

� (14)

for k = 2, 3, …, N.

Algorithmic improvements
Equations (13) and (14) complete the step of deriv-
ing both (λj, vj) using only the previously derived
eigenpairs (λm, vm) for m = 0, 1, …, j – 1, giving us
a recursive solution procedure. Once we have deter-
mined (λj, vj) for j = 0, 1, …, J, we can use these coef-
ficients in (7) and thereby obtain approximations to
the the leading eigenpair (λ(µ), v(µ)). Hence we view
(13) and (14) as an algorithm for computing the lead-
ing eigenpair.

Turning to the numerical implementation, we now
describe two improvements to the algorithm given by
(13) and (14).

First, we note that in (14), we always set v j
1 0() = .

This implies that eT
j1 0v = for all j $ 1. This means

that all terms under the summation symbol in (13)
vanish, yielding the simplified update formula:

	 λ j
T

jje= −1
1 2 1 2

1w sw/ / .v � (15)

Second, we note that (14) contains a binomial
coefficient that becomes prohibitively large to com-
pute for large j. A natural question is whether these
large coefficients are compensated by the inverse fac-
tors of j! in (7). To quantify this, we define

	
ˆ and ˆ .

! !
j j

j j

v
v

j j

λ
λ = = � (16)

We then substitute ˆ!j jjλ λ= and !ˆjjv j v= in (14)
and derive

	

(

()

() 1/ 2 1/ 2
1

1

1

1/ 2 1/ 2
1

11

1
(1)!w sw ˆ

ˆ ˆ!()!

! ˆˆ ˆw sw .

k
j j

k
j

j
m m j m

m
j

j m j m
mk

v j j v
w w

m j m v

j
v v

w w

λ

λ

−

−
=

− −
=

= − −
−


+ − 

 
= − + −  

∑

∑

Dividing through by j! and using (16), we derive,
again for j $ 1,

	

() 1/ 2 1/ 2
1

11

1 ˆˆ ˆ ˆw sw .
j

k
j j m j m

mk

v v v
w w

λ− −
=

 
= − + −  ∑

�(17)

http://www.la-press.com

Becich et al

118	 Evolutionary Bioinformatics 2013:9

Applying the same substitutions in (15), we
derive

	
1/ 2 1/ 2

1 1
ˆ ˆw swT

j je vλ −= � (18)

Using (16) in (7), we obtain

	 0 0

ˆ ˆ() and () .j j
j j

j j

v vλ µ λ µ µ µ
∞ ∞

= =

= =∑ ∑ � (19)

Examining the equations in the λ̂ and v̂ variables,
we see that all large binomial coefficients and factori-
als have disappeared. For this reason, in our Octave
implementation of the perturbative method, we use
the recursive system given by (18) and (17), together
with the summation formula (19). Finally, applying
(4), our answer for the leading eigenpair of the matrix
Q()µ defined by (2) is (λ(µ), w−1/2v(µ)).

Example
Let us give an example of the perturbative method
in practice. We set N = 5, µ = 0.01, and w equal to a
diagonal matrix whose entries along the diagonal are
(φ, φd, φ2d, φ2d, φd) where d = 0.2 and φ = 0.32768.

Let J denote the total number of iterations we run
the perturbative method. Starting from 0λ̂ = w1 and
0̂v = e1 as in (6), we iterate using (18) and (17) from j =

1 up to j = J. We then evaluate the solution using (19)
truncated at j = J, giving us an approximate solution
that we denote (λJ(µ), w–1/2vJ(µ)).

For an N-dimensional vector x = (x1, x2, ..., xN),
let ||x||∞ = max1iN |xi|, the infinity-norm of x, with
respect to which the error of the approximate solution
after J iterations is

	 errorJ = ||µw(w−1/2vJ(µ)) − λJ(µ)(w−1/2vJ(µ))||∞.

In Figure 3, we plot (in circles) the log10 of the
error as a function of the number of iterations J, and
(in solid black) the least-squares line of best fit to the
data. From J = 1 to J = 14, the log10 errors show a
strongly linear trend, confirmed by the R2 = 0.9958
value for the regression line. The slope of the line is
approximately –0.9944, implying

	 errorJ ∝ 10−0.9944J.

Machine epsilon in Octave is approximately
2.2204 × 10–16, and the error after J = 14 iterations is
2.2590 × 10–16. Therefore, for this particular example,
Figure 3 shows that the perturbative method con-
verges exponentially to a solution with error on the
order of machine epsilon.

Extension to base/codon/word mutation
models
Consider now a matrix µB defined as follows:

	

µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ

B =

−
+ + +

+
−

+ +

+ +
−

+

+ +

1
2 2 2

2
1

2 2

2 2
1

2

2

k

k k k
k

k k k

k k

k

k

k k 22 2
1

k

k

µ µ
+

−





























,

with constant parameters 0 , µ , 1 and k $ 1, and the
indexing of both rows and columns corresponding to
bases in the ordered set B = (A, G, C, T). This matrix was
employed in prior work3 and corresponds to the Kimura
two-parameter base mutation model.18 When k = 1, µB
represents the Jukes-Cantor mutation model.19

Matrix µB shares with matrix µ the properties of
linearity in parameter µ, and reduction to the identity

0 5 10 15
−20

−15

−10

−5

0

Number of iterations

L
o

g
10

 (
er

ro
r)

Figure 3. For a particular eigenvalue problem, we plot (in circles) the
log10 of the error committed by the the perturbative method after J itera-
tions, where J goes from 1 to 14.
Notes: We also fit and plot (in solid black) a least-squares regression
line to the log10 errors; for this line, R2 = 0.9958. The plot shows that the
perturbative method converges exponentially to an eigenpair with a final
error of 2.2590 × 10–16.

http://www.la-press.com

CMCpy: genetic code-message coevolution models in python

Evolutionary Bioinformatics 2013:9	 119

matrix when µ = 0. The methods of this section there-
fore apply to µB directly.

More biologically realistic CMC models2–4 employ
codon mutation models. Let C = Bp, the p-th Cartesian
product of the set B. A codon c ∈ C is a string of bases
b1b2...bp of pre-specified length p with bi ∈ B.

The codon mutation models studied by Ardell
and Sella assume independence of mutation of bases
within codons and that all bases mutate accord-
ing to the same model of evolution µB. With these
assumptions, mutation from any codon c1 ∈ C to
another codon c2 ∈ C is represented by a matrix µC
that is the p-th Kronecker power of a matrix µB as
follows:

	 µ µC B= ⊗
=i

p

1
,

where (⋅ ⊗ ⋅) is the Kronecker product, and codons are
indexed in both rows and columns in lexicographic
order.

If λ is the leading eigenvalue µB, then λC = λp is the
leading eigenvalue of µC. Similarly, if v is the eigen-
vector corresponding to the leading eigenvalue of µB,
then v vC i

p= ⊗ =1 is the eigenvector corresponding to
the leading eigenvalue of µC.

Therefore, the methods of this section allow cal-
culation of the leading eigenpairs of matrices µC as
Kronecker powers of leading eigenpairs of µB.

Homotopy method: quasispecies
with multiple most fit genotypes
We now give a second method for finding the lead-
ing eigenpair of the matrix Q defined in (3). This
method, which we call the homotopy method, is
motivated by the desire to handle a fitness matrix
w that does not have a unique maximal element
along its diagonal. The homotopy method produces
accurate approximations of the leading eigenpair for
such problems.

Problem formulation
Our goal is still to find the leading eigenpair of Q
defined in (2). As before, we will instead focus our
attention on the symmetric matrix Q defined by (3).
We define the matrix-valued function

	 F(∈) = µ + ∈(w1/2µw1/2 − µ).� (20)

Note that F(0) = µ and F(1) = Q. The function F
smoothly deforms µ into Q—such a function is often
called a homotopy in the mathematical literature.16
Note that for all ∈ ∈ [0,1], the leading eigenpair (λ(∈),
v(∈)) of F must satisfy

	 F(∈)v(∈) = λ(∈)v(∈).� (21)

The basic idea behind the homotopy method is to
use F to form a bridge between µ, a matrix whose
leading eigenpair we already know, and Q, a matrix
whose leading eigenpair we seek.

When ∈ = 0, (21) reduces to µv(0) = λ(0)v(0). By
the results provided in supplementary materials, we
know that the leading eigenvalue of F(0) = µ is 1 with
corresponding eigenvector 1



 = (1, 1, ..., 1)T, the col-
umn vector of N ones. This implies that

	 λ() () .0 1 0 1= =and v


� (22)

When ∈ = 1, (21) reduces to Qv(1) = λ(1)v(1).
Thus the question is how we can use our knowledge
of (λ(0), v(0)) and the function F(∈) to derive (λ(1),
v(1)), the leading eigenpair of Q.

Unlike the perturbative solution, at no point will we
assume that the entries of w have a unique maximum.
To make the derivation easier to read, we define

	 P = w1/2µw1/2 − µ,� (23)

so that F(∈) = µ + ∈P and

	
′ = =F

d

d
F P() () .∈

∈
∈ � (24)

Homotopy solution
We differentiate both sides of (21) once with respect
to ∈ and obtain

	 ′ + = ′ +F F() () () () () () () ()∈ ∈ ∈ ′ ∈ ∈ ∈ ∈ ′ ∈v v v vλ λ
� (25)

Since F(∈) is symmetric for all ∈, we see that the
transposition of (21) can be written v(∈)TF(∈) = λ(∈)
v(∈)T. Thus, after multiplying (25) through on the left
by v(∈)T, the second term on the left-hand side can-
cels the second term on the right-hand side, leaving

http://www.la-press.com

Becich et al

120	 Evolutionary Bioinformatics 2013:9

	
′ =λ ()

() ()

() ()
.∈ ∈ ∈

∈ ∈
v v

v v

T

T

P � (26)

Now let us substitute (26) back into (25). Solving
for v′(∈), we have

	 v v′ ∈ ∈ ∈ ∈ ∈() [() ()] () ().= − − ′−F I Fλ 1 � (27)

We now recognize (26) and (27) as a system of
ordinary differential equations (ODEs) with ∈ play-
ing the role of a time-like independent variable:

	

d

d

P

v
P I P

T

T

∈
∈
∈

∈ ∈
∈ ∈

∈ ∈ ∈

λ

µ λ

()
()

() ()

() ()
[()] ()

v

v v

v
v





 =

− + −



−1











� (28)

We also recognize (22) as the initial conditions for
this system of ODEs. Let us now describe an elemen-
tary algorithm for solving this system:

1.	 Set λ = 1 and v =


1. Fix an integer number of steps
nsteps and then set ∆∈ = 1/nsteps. Also set ∈ = 0,
initially.

2.	 While ∈ , 1:
a. � Compute λ′ using (26), i.e., λ′ = (vTPv)/(vTv).
b. � Set λ ← λ + (∆∈)λ′.
c. � Using this updated λ, compute v′ using (27),

i.e., v′ = −[µ + ∈P − λI]−1 Pv.
d. � Set v ← v + (∆∈)v′.
e. � Set ∈ ← ∈ + ∆∈.

The algorithm will terminate in nsteps steps, yield-
ing an approximation to the leading eigenpair of Q
that is stored in λ and v.

To obtain the leading eigenvector of Q, we com-
pute 1/ 2˜ w−=v v . The leading eigenpair of Q is then
(, ˜)vλ .

Example
We now give test results for the homotopy method
applied to a particular problem. We set N = 8, µ = 0.1,
and w equal to a diagonal matrix whose entries
along the diagonal are (a, b, b, b, b, b, b, b)T with
a = 0.63631836 and b = 0.73306514. We also set the
parameter, ϕ = 1.

We repeatedly run the algorithm given above
for different values of nsteps; specifically, we take

nsteps = 10j, where j = 1, 2, 3, 4, 5, 6. For each value
of nsteps, we compute an approximation to the leading
eigenpair, which we denote by (λj, vj). We then evalu-
ate the residual error of this approximation using

	 error w w wj j j j= − ∞− −|| () () || ./ /µ λ1 2 1 2v v

In Figure 4, we plot (in circles) the log10 of the
error as a function of the log10 of the number of steps.
We also plot (in solid black) the least-squares line of
best fit to the data; for this line, R2 = 0.9899 and the
slope is approximately –1.0115, implying

	 error steps steps
j n nα − −≈ =1 0115 1. ∆ ∈.

Note that with nsteps = 103, the error is approximately
2 × 10−5. This level of error is acceptable if we seek
to use the homotopy method to reproduce, for exam-
ple, Figure 4 in a previously published paper.4 Hence
we use this value of nsteps as the default value in the
CMCpy implementation of the homotopy method.

Further note that when nsteps = 106, even the ele-
mentary algorithm described above to solve the sys-
tem of nonlinear ODEs (28) is capable of producing a
residual error of approximately 2 × 10–8.

For this example, the homotopy method displays
convergence that is linear in ∆∈—this relatively slow
rate can be improved dramatically by using more

1 2 3 4 5 6
−8

−7

−6

−5

−4

−3

−2

Log10 (number of steps)

L
o

g
10

 (
er

ro
r)

Figure 4. For a particular eigenvalue problem, we plot (in circles) the
log10 of the error committed by the the homotopy method using a number
of steps given by nsteps = 10j, where j goes from 1 to 6.
Notes: We also fit and plot (in solid black) a least-squares regression
line to the log10 errors; for this line, R2 = 0.9899. The plot shows that the
homotopy method’s error is linear in ∆∈ = 1/nsteps.

http://www.la-press.com

CMCpy: genetic code-message coevolution models in python

Evolutionary Bioinformatics 2013:9	 121

sophisticated methods to solve the system of nonlinear
ODEs (28), an issue we leave for future work.

Extension to base/codon/word mutation models
In order to apply the homotopy method to models
where the mutation matrix is given by µB as defined
earlier, there is one requirement: we must be sure that
µB has a unique maximal eigenvalue of 1. For the µB
matrix, it turns out that we can explicitly derive all
eigenvectors and eigenvalues, for general values of
both µ and k. With the constraints 0 , µ , 1 and
k $ 1, the derivation that we give in supplementary
materials below proves that the µB matrices have a
unique largest eigenvalue of 1. Matrices µB therefore
fulfill the minimum requirements for applicability of
the methods of this section, after which the leading
eigenpair for corresponding matrices µC may be cal-
culated using Kronecker powers as before.

Future outlook
We succeeded in programming a GPU-based power
method implementation that is faster than its CPU
analogue; however, the performance gain that we
obtained with it was not as great as we had hoped.
Furthermore, even though our implementation is cor-
rect, we could not completely eliminate divergence in
evolutionary trajectories in power method implemen-
tations arising from differences in machine number
representations and precision across platforms. We
believe that this arises from deviations in the way
double precision floating point numbers are repre-
sented, computed on, and rounded in CUDA compute
capability 1.3. Perhaps utilization of the cuBLAS
library in the future would make performance closer
to Numpy and better conform to IEEE standards.

Furthermore, while the power method converges
linearly, our new perturbation method provides expo-
nential convergence with the same accuracy. However,
this method cannot handle the case of non-unique most
fit genotypes that occurs in CMC models at their ini-
tialized state. On the other hand, our new homotopy
method does handle this case, yet as currently imple-
mented it also converges linearly, rather slower than
the power method (results not shown). Incorporation
of more sophisticated methods to solve systems of
nonlinear ordinary differential equations should dra-
matically improve performance of our new homotopy
method application. We leave further development of

both methods and their implementation in CMCpy for
future work; perhaps other CPU or GPU implementa-
tions of them will compete with Numpy. More gener-
ally, our analytical results greatly expand the domain of
quasispecies models that can be accurately solved using
analytical approaches, particularly multi-site models
with biologically realistic mutation parameters.

A variety of open problems remain concerning
CMC models and in the field of the evolution of the
genetic code.20–24 CMCpy can easily be extended to
implement the model studied by Vetsigian et al. (2006)5
with variations, or alternative observables, such as
the “evenness” of amino acids.23 Current models of
the genetic code have not yet integrated a theory for
the origin of translation per se.5,21 We believe that
extensions to CMC models will better address such
fundamental questions and hope that CMCpy and our
analytical solutions to quasispecies models will play
a role in that work.

Acknowledgements
The authors would like to thank members of the
Ardell Lab, Jason Davis and Suzanne Sindi, for their
comments and suggestions on this work, as well as
Prof. Masakatsu Watanabe and Prof. Michael Colvin
for their leadership in creating and running the
Undergraduate Research in Computational Biology
(URCB) program at UC Merced, without which the
collaboration of undergraduate Peter Becich would
not have been possible.

Funding
DHA acknowledges the UC Merced division Gradu-
ate Research Council for a UC Faculty Research and
Chancellor’s awards that supported undergraduate
BPS, as well as the NSF-funded program in Undergrad-
uate Research in Computational Biology at UC Merced
(DBI-1040962), which supported and trained PJB and
paid publication costs.

Competing Interests
Author(s) disclose no potential conflicts of interest.

Author Contributions
Conceived CMCpy project: DHA. Wrote software:
DHA, PJB, BPS. Analyzed data: DHA, HSB, PJB,
BPS. Analytical results: HSB, with minor contribu-
tions from DHA. Wrote first draft of the manuscript:

http://www.la-press.com

Becich et al

122	 Evolutionary Bioinformatics 2013:9

DHA, HSB. Contributed to the writing of the manu-
script: DHA, HSB. Agree with manuscript results and
conclusions: DHA, HSB, PJB, BPS. Developed the
structure and arguments for the paper: DHA, HSB.
Made critical revisions and approved final version:
DHA, HSB, PJB. All authors reviewed and approved
of the final manuscript.

Disclosures and Ethics
As a requirement of publication author(s) have pro-
vided to the publisher signed confirmation of compli-
ance with legal and ethical obligations including but
not limited to the following: authorship and contribu-
torship, conflicts of interest, privacy and confidential-
ity and (where applicable) protection of human and
animal research subjects. The authors have read and
confirmed their agreement with the ICMJE author-
ship and conflict of interest criteria. The authors have
also confirmed that this article is unique and not under
consideration or published in any other publication,
and that they have permission from rights holders
to reproduce any copyrighted material. Any disclo-
sures are made in this section. The external blind peer
reviewers report no conflicts of interest.

References
1.	 Sella G, Ardell DH. The impact of message mutation on the fitness of a

genetic code. J Mol Evol. 2002;54(5):638–51.
2.	 Ardell DH, Sella G. On the evolution of redundancy in genetic codes. J Mol

Evol. 2001;53(4–5):269–81.
3.	 Ardell DH, Sella G. No accident: genetic codes freeze in error-correcting

patterns of the standard genetic code. Philos Trans R Soc Lond B Biol Sci.
2002;357(1427):1625–42.

4.	 Sella G, Ardell DH. The coevolution of genes and genetic codes: Crick’s
frozen accident revisited. J Mol Evol. 2006;63(3):297–313.

5.	 Vetsigian K, Woese C, Goldenfeld N. Collective evolution and the genetic
code. Proc Natl Acad Sci U S A. 2006;103(28):10696–701.

6.	 Eigen M. Molecular self-organization and the early stages of evolution.
Q Rev Biophys. 1971;4(2):149–212.

	 7.	 Bull JJ, Meyers LA, Lachmann M. Quasispecies made simple. PLoS Comput
Biol. 2005;1(6):e61.

	 8.	 Higgs PG. Error thresholds and stationary mutant distributions in multi-
locus diploid genetics models. Genet Res. 1994;63:63–78.

	 9.	 Wilke CO. Quasispecies theory in the context of population genetics. BMC
Evol Biol. 2005;5:44.

	10.	 Swetina J, Schuster P. Self-replication with errors. A model for polynucle-
otide replication. Biophys Chem. 1982;16(4):329–45.

	11.	 Eigen M, McCaskill J, Schuster P. Molecular quasi-species. J Phys Chem.
1988;92:6881–91.

	12.	 Hiroshi F. Application of Eigen’s evolution model to infinite population
genetic algorithms with selection and mutation. Complex Systems. 1996;10:
345–66.

	13.	 Rellich F. Pertubation Theory of Eigenvalue Problems. New York:
New York University, Courant Institute of Mathematical Sciences; 1954.

	14.	 Tosio K. Pertubation Theory for Linear Operators. Berlin: Springer-Verlag;
1995.

	15.	 Baumgartel H. Analytic Perturbation Theory for Matrices and Operators.
Basel: Birkhäuser Verlag; 1985.

	16.	 Chu MT. A simple application of the homotophy method to symmetric
eigenvalue problems. Linear Algebra Appl. 1984;59:85–90.

	17.	 Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA
and PyOpenCL: a script-based approach to GPU run-time code generation.
Parallel Comput. 2012;38:157–74.

	18.	 Kimura M. A simple method for estimating evolutionary rates of base sub-
stitutions through comparative studies of nucleotide sequences. J Mol Evol.
1980;16(2):111–20.

	19.	 Jukes T, Cantor C. Evolution of protein molecules. In: Munro H, editor.
Mammalian Protein Metabolism, III. New York: Academic Press; 1969:
21–132.

	20.	 Higgs PG. A four-column theory for the origin of the genetic code: tracing
the evolutionary pathways that gave rise to an optimized code. Biol Direct.
2009;4:16.

	21.	 Koonin EV, Novozhilov AS. Origin and evolution of the genetic code: the
universal enigma. IUBMB Life. 2009;61(2):99–111.

	22.	 Tlusty T. A colorful origin for the genetic code: information theory, statisti-
cal mechanics and the emergence of molecular codes. Phys Life Rev. 2010;
7(3):362–76.

	23.	 Philip GK, Freeland SJ. Did evolution select a nonrandom “alphabet” of
amino acids? Astrobiology. 2011;11(3):235–40.

	24.	 Caporaso JG, Knight R. New insight into the diversity of life’s building
blocks: evenness, not variance. Astrobiology. 2011;11(3):197–8.

http://www.la-press.com

CMCpy: genetic code-message coevolution models in python

Evolutionary Bioinformatics 2013:9	 123

Supplementary Materials
Supplementary 1: Derivation of complete
eigendecomposition of circulant
µ matrices
The matrix µ is circulant, an important property
because the eigenvalues and eigenvectors of any
circulant matrix can be written in closed form. Let
i = −1 and define for j = 0, 1, …, N – 1 the roots of
unity

	
ω π

j

ij

N
= 





exp .
2

Then the N eigenvalues of µ are, for j = 0, 1, …,
N – 1, given by

	

s

ij

N

ij N

N

j j j
N= − + +

= − + 





+ −

−() []

() exp exp
()

1 2

1 2
2 2 1

1µ µ ω ω

µ µ π π











= − + 





() cos .1 2 2
2µ µ π ij

N

� (29)

Let us now show that the maximum eigenvalue is
always equal to 1 and that this eigenvalue is unique.
Consider the function

	
f x

x

N
() () cos= − + 





1 2 2
2µ µ π

where x is a real variable satisfying −(N − 1) # x #
N − 1. Then using the methods of calculus, we find that
the only x ∈ (−(N − 1), N − 1) that satisfies f′(x) = 0
and f″(x) , 0 is x = 0. At the boundary, we have

	

f N N N
N

(() () cos(()/
() cos(/)

[co

± − = − + −
= − +
= +

1 1 2 2 2 1
1 2 2 2

1 2

µ µ π
µ µ π

µ ss(/)] (),2 1 0π N f− <

as long as µ . 0 and N . 1. Hence x = 0 is the unique
global maximum of f(x) on the interval x ∈ [−(N − 1),
N − 1]. If we restrict x to integer values in [0, N − 1],
then x = 0 will still be the unique global maximum
of f(x). Therefore, the unique maximum eigenvalue sj
occurs at j = 0 and is always equal to s0 = 1.

Eigenvectors
Let v* denote v–T, the conjugate transpose of the vec-
tor v. The eigenvector of µ that corresponds to the
eigenvalue sj is

	
y

N
j j j j

N T= −1
1 2 1(, , , ,) ,ω ω ω

� (30)

written here as a column vector. The 1/ N factor is
included to normalize the eigenvalue so that y yj j

* .= 1
Note that the eigenvector corresponding to the eigen-
value s0 = 1 is particularly simple:

	
y

N N
T

0

1
1 1 1

1
1= =(, , ,) .



Since we have explicit expressions for the eigen-
values (29) and eigenvectors (30), we can write down
a useful outer product representation of µ:

	
µ =

=

−

∑ s y yj j j
j

N
*.

0

1

� (31)

Let us now show that (30), as defined, is an ortho-
normal system of eigenvectors. We take the Hermitian
inner product of an eigenvector yj with an eigenvector
yk, assuming j ≠ k:

	

y yk
N

N

ijl

N

ik

j j
l

l

N

k
l

l

N

* () ()

exp exp

=

= −





=

−

=

−

∑

∑

1

1 2 2
0

1

0

1

ω ω

π π ll

N

N

i k j

N

N

i k
l

N l







= −











= −
=

−

∑1 2

1 1 2
0

1

exp
()

exp((

π

π −−
− −

=

j

i k j N

))

exp(() /
.

1 2
0

π

If instead we have k = j, then we obtain from the
third line above:

	
y y

Nj j
l

l

N
* .= =

=

−

∑1
1 1

0

1

Hence { }y j j
N

=
−
0
1 is an orthonormal system of

eigenvectors.

http://www.la-press.com

Becich et al

124	 Evolutionary Bioinformatics 2013:9

Supplementary 2: Derivation of complete
eigendecomposition of µB matrices
It is clear that each row of µB sums to 1. This, by
itself, implies that v1 = (1, 1, 1, 1)T is an eigenvector
of µB with corresponding eigenvalue s1 = 1.

In what follows, we use the fact that

	

µ

µ
µ

µ

µ

B

a

b

c

d

a

k

k

k

k

b



















=

−

+

+

+



























+

1

2

2

2

kk

k

k

k

c

k

k

k

k

µ

µ
µ

µ

µ

µ

µ
µ

+
−

+

+



























+

+

+
−

+





2
1

2

2

2

2
1

2






















+

+

+

+
−



























d

k

k
k

k

µ

µ

µ

µ

2

2

2
1

.

� (32)

The four column vectors that appear on the right-
hand side are the four columns of µB.

It is clear that if we subtract the fourth column of µB
from the third column of µB, then the first two entries
cancel, while the last two entries are exact opposites
of one another:

	

µ
κ

µ
κ

µ
κµ

κ

µ
κ

µ
κ
κµ

κ
µ

+

+
−

+



























−

+

+

+
−









2

2
1

2

2

2

2
1




















=
− − +

− + + +



















=

0

0

1 2

1 2

1

µ κµ κ
µ κµ κ

/()

/()

−− − +()()
−



















µ κµ κ/ .2

0

0

1

1

By fact (32), we can rewrite the left-hand side and
thereby derive:

	

µ µ κµ κB

0

0

1

1

1 2

0

0

1

1−



















= − − +()()
−



















/ .

Hence we have shown that v2 = (0, 0, 1, –1)T is an
eigenvector of µB with corresponding eigenvalue

	
s2 1

2
= − −

+
µ κµ

κ
.

In a very similar way, we can see that

	

µ µ κµ κB

1

1

0

0

1 2

1

1

0

0

−


















= − − +
−



















(/()) ,

showing that v3 = (1, –1, 0, 0)T is an eigenvector of µB
with corresponding eigenvalue

	
s3 1

2
= − −

+
µ κµ

κ
.

Note that s2 = s3. Since v2 and v3 are clearly orthog-
onal, we see that {v2, v3} span a two-dimensional
eigenspace, and that the geometric multiplicity of s2
equals its algebraic multiplicity. This is consistent
with the fact that µB is, by definition, a real symmetric
matrix and therefore, by the spectral theorem, must
possess four real eigenvalues together with an ortho-
normal basis of eigenvectors.

As we have found three orthogonal eigenvectors
{v1, v2, v3}, we appeal to orthogonality to find v4. Let
v4 = (1, x, y, z)T. Orthogonality with v2 and v3 respec-
tively imply 1 – x = 0 and y – z = 0, so v4 = (1, 1, y, y)T.
Now, orthogonality with v1 implies that 2 + 2y = 0, so
y = –1, and we have v4 = (1, 1, -1, –1)T. Multiplying
µB by v4, we see that

	

µ µ κ
κ

µB

1

1

1

1

1
2

2

1

1

1

1

−
−



















= − + −
+











 −

−



















,

confirming that v4 is an eigenvector with correspond-
ing eigenvalue

	
s4 1

2

2
1

4

2
= − + −

+






= −
+

µ κ
κ

µ µ
κ

.

Normalizing the eigenvectors, we obtain the set

http://www.la-press.com

CMCpy: genetic code-message coevolution models in python

Evolutionary Bioinformatics 2013:9	 125

	

y y y1 2 3

1

2

1

1

1

1

1

2

0

0

1

1

1

2

1

1

0

0

=



















=

−



















=
−






, , 













=
−
−



















,

,y4

1

2

1

1

1

1

where (yj)*yj = 1 for j = 1, 2, 3, 4, and each eigenvec-
tor yj corresponds to the eigenvalues sj given above.
Indeed, examining the expressions of the eigenvalues
sj, and using the fact that 0 , µ , 1 and k  1, it is clear
that s1 = 1 is the unique maximal eigenvalue of µB.

Supplementary 3: Benchmark script in R to generate Figure 2.

Supplementary 4: Matlab/Octave implementations of the perturbative and homotopy
methods presented in this manuscript.

http://www.la-press.com

