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Abstract: Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes 
(“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although 
CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implemen-
tations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-
line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading 
eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory 
to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. 
Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source 
software available from http://pypi.python.org/pypi/CMCpy/.
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Introduction
Code-Message Coevolution (CMC) models were 
introduced to facilitate the study of co-evolutionary 
systems in which a large population of individuals 
share an evolvable genetic code coupled to many and/
or long protein-coding genes (“messages”). Initial 
study of these models demonstrated that base muta-
tions in protein-coding genes can significantly influ-
ence the fitness of genetic codes.1 More detailed study 
of CMC models has yielded formal demonstrations 
for how natural selection likely contributed to the ori-
gins of codon redundancy2 and non-random patterns 
of amino acid assignments3,4 in genetic codes. CMC 
models have been extended to study the effects of 
population structure and gene sharing on coevolving 
systems of codes and messages.5

In their original formulations, CMC models are 
deterministic evolutionary genetic models that cou-
ple together sets of large populations of asexually 
reproducing genotypes evolving under mutation and 
natural selection. One such population is called a 
“quasispecies”,6 a concept reviewed recently both 
generally7 and specifically in connection to popu-
lation genetics theory.8,9 In CMC models, each of 
multiple quasispecies represents a large population 
of codons evolving to meet the same physicochemi-
cal requirements of a “site-type” in proteins under 
translation by a given genetic code. The coupling of 
multiple quasispecies through a genetic code occurs 
through reuse of the same codon type (or allele) in 
different site-types. CMC models follow determinis-
tic trajectories that alternate between equilibration of 
messages to an established genetic code by mutation 
and selection, and locally adaptive “gradient ascent” 
hill-climbing of the genetic code through single 
codon assignments and reassignments. This “qua-
sistatic” dynamic continues until no single codon 
reassignment yields higher fitness with the current 
message population. Published CMC models always 
converge to a stable local fitness optimum—a pro-
cess called “code freezing.”

Because CMC models compound quasispecies 
models, analytical solutions to quasispecies models 
are relevant to their study. Previous applications of 
perturbation theory for approximate solutions to qua-
sispecies models assume uniqueness of maximally fit 
genotypes and small perturbation parameters (small 
mutation rates).10–12

In this work, we present two analytical methods 
that relax these assumptions. The first is a perturba-
tive method that clarifies, extends and generalizes the 
perturbative approach to quasispecies models. Our 
presentation provides a derivation to arbitrary order, 
which relaxes any restriction on the magnitude of the 
perturbation parameter. The second method is the first 
published application of homotopy methods to qua-
sispecies models, which handles cases with non-unique 
maximally fit genotypes. Numerical tests show that, 
for two example problems, both algorithms converge. 
Notably, the error of the perturbative method decreases 
exponentially in the number of iterations, suggest-
ing its potential to outperform the power method. 
Both approaches are flexible and can be extended to 
a variety of quasispecies mutation models and fitness 
schemes. Also, both methods have been formulated so 
as to facilitate future connections between quasispecies 
models and established results in eigenvalue perturba-
tion theory13–15 and homotopy methods.16

In addition to these analytical results, we present 
a new code-base implementing CMC models. The 
dissemination and further study of CMC models has 
been sorely hindered by the lack of a modern code-
base implementing them. The original C/C++ CMC 
code-base has been rendered obsolete by evolution of 
compilers and language standards from the time of its 
writing in the late 1990s. This has created a need for 
reimplementation of the original models in an easy-
to-use and program, powerful, and efficient, high-
level scripting language like Python.

Here we present CMCpy, a free open-source code-
base that implements CMC models in an easy to use 
object oriented Python API. The code-base comes 
with a front-end command-line executable called 
cmc that can drive the exploration of a variety of 
CMC models and reproduce published results.

Implementation
CMCpy was developed in Python 2.7. Figure 1 shows 
the organization of classes in CMCpy. A rich class hier-
archy allows convenient specification of a wide-range 
of CMC models with very few lines of Python code.

An element not shown in Figure 1 is that the 
ArdellSellaEvolver class is an abstract base class for a 
variety of subclasses implementing different strategies 
to solve dominant eigenpairs. The default solver 
relies on the Numpy eig() function for its speed and 
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accuracy, but for reasons of flexibility, verification, 
and to experiment with different methods, we include 
a legacy central processing unit (CPU)-based power 
method, a multicore CPU-based power method imple-
mentation and an experimental graphics processing 
unit (GPU) implementation of the power method that 
relies on pyCUDA.17

The pyCUDA solver is implemented in a CUDA 
C kernel with supportive Python code. The Python 
code uses NumPy for simple operations, to cast data 
to types acceptable by the CUDA platform, and to 
reshape matrices to one-dimensional data frames, for 
use by CUDA C. The CUDA C implementation of 
the power method approximately solves the eigen-
vector of each site-type, in parallel. Each site-type 
is assigned to one virtual “block” of the GPU, each 
of which corresponds to a physical processor when 
the number of blocks is below a hardware limit. This 
organization of the parallel workload was chosen to 
stay below CUDA specification limits, access GPU 
memory efficiently, and avoid excess complexity. 
Ultimately, the CUDA power method implementation 
is faster than the CPU power method implementation. 
Figure 2 shows system clock execution times of vari-
ous methods on a 3.0 GHz Core 2 Duo with an Nvidia 
GeForce 460 GTX GPU running Ubuntu 12.04. The 
benchmark script in R that generated this figure is 
provided as supplementary data.

CMCpy comes with a front-end command-line 
executable in Python called cmc. This executable 
provides users, including non-programmers, the 
capability to reproduce (at least qualitatively) all of 

the published results on CMC models1–4 as well as run 
individual and batch simulations of other models and 
parameter spaces. In Table 1 we list command-line 
options to the cmc executable and their correspond-
ing model parameters.

A variety of observables and statistics are imple-
mented including the Normalized Encoded Range2 
for one-dimensional amino acid/site-type spaces. 
Although CMC models are deterministic, exact quan-
titative differences may arise in results with CMCpy 
depending on floating point representation differences 
by platform and differences in convergence thresh-
olds using power method-based eigensolvers.

It may be useful to restate the assumptions of the 
“Ardell-Sella” models currently implemented and 
available in CMCpy. These include the following:

1.	 The numbers and/or lengths of protein-coding 
genes, or “messages,” translated by a common 
genetic code, are large with respect to every pos-
sible site-type in proteins.

2.	 For every possible site-type in proteins there cor-
responds a uniquely most fit amino acid.

3.	 The machineries to decode codons, and to asso-
ciate any codon to any amino acid, pre-exist the 
evolution of the genetic code.

4.	 Fitness contributions of amino acids across sites 
are independent and multiplicative.

5.	 Fitness contributions of different amino acids 
within the same site are independent and additive.

6.	 Bases in messages mutate independently of one 
another.

GeneticCode
CodonSpace AminoAcidSpace

CodonSpace

RingCodonSpace WordCodonSpace

AminoAcidSpace

RingAminoAcidSpace RegionAminoAcidSpace

InitiallyAmbiguous
GeneticCode

UserInitialized
GeneticCode

 Misreading CodonSpace

RingMisreading PositionalMisreading

 MirroringSiteTypeSpace
AminoAcidSpace

Observables

ArdellSellaEvolver
InitialCode

Misreading

Observables
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Class

Class
Component
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"Is a"
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Figure 1.  Overview of class hierarchy and containment relationships in CMCpy.
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Figure 2. Comparison of wall-clock execution times of the cmc executable with three different eigensystem solvers using the double ring model4 with eight 
codons, µ = 0.1 and φ = 0.25.

Table 1. Options to the cmc executable and corresponding model parameters.

Option Long version Description Default
–a ––numaas Number of amino-acids/site-types (AA/ST) 10
–d ––numdims Dimensionality of AA/ST space 1
–s ––seed Seed for random initialization of AA/ST coordinates 42
–t ––numtrials Num. trials with reinitialized AA/ST spaces 1
–c ––numcodons Num. codons in a “double ring” model N/A
–b ––numbases Alphabet size for word-based codon model 4
–p ––numpositions Length of codons for word-based codon model N/A
–m ––mu Base (word models) or codon mutation rate 0.1
–k ––kappa Transition/transversion mutation bias ratio 1
–f ––phi Missense tolerance parameter 0.25
–r ––misreading Misreading parameters N/A

7.	 Messages are haploid and asexually reproducing.
8.	 Genetic codes evolve much slower than messages, 

through discrete and independent assignments or 
reassignments of amino acids to codons.

Analytical Methods for Quasispecies 
Solutions
In this section we develop two different analytical 
methods to solve for the equilibrium growth rate and 
genotype distributions for a wide range of quasispecies 

models. The Matlab/Octave code used to implement 
these solutions are provided as supplementary data.  
A version of the homotopy method is also imple-
mented in CMCpy for ring models. Full implemen-
tions of both methods will be incorporated into 
CMCpy at a later date.

Perturbative method: quasispecies  
with unique fittest genotype
We start with a ring mutation model discussed in prior 
work.1 Let µ denote the N × N mutation matrix
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where blank spaces should be interpreted as zeros. 
Throughout this derivation and the following one, we 
assume 0 # µ , 1 and N . 1. Let w denote the N × N 
fitness matrix
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We assume that w1 is the unique maximum of the 
finite set {w1, . . . , wN }. We also assume wi . 0 for 
each i, consistent with prior work.1

Our goal in this derivation is to determine the 
leading eigenpair, consisting of the largest eigenvalue 
together with its corresponding eigenvector, of the 
matrix

	 Q( ) .µ µ= w � (2)

We write Q( )µ  to emphasize the fact that since µ 
is a function of µ, so is Q. The diagonal matrix w is 
constant with respect to µ. Next we define

	 Q Q w( ) ( ) ./ / / /µ µ µ= =−w w w1 2 1 2 1 2 1 2
 � (3)

Since the matrices Q and Q are related by a simi-
larity transformation, their eigenpairs are closely 
related. One can check that

	 Qv v Q v v= =− −λ λif and only if w w

1 2 1 2/ / � (4)

We focus our attention on Q because it is symmet-
ric, i.e., Q(µ)T = Q(µ) for all µ.

For Q(µ), the leading eigenpair (λ(µ), v(µ)) must 
satisfy

	 Q(µ)v(µ) = λ(µ)v(µ).� (5)

When µ = 0, the matrix µ reduces to the N × N 
identity matrix. Therefore, Q(0) = w, and the leading 
eigenpair of Q(0) is given by

	 λ( ) ( ) .0 01 1= =w v eand � (6)

Here ej denotes the j-th basis vector in N-dimensional 
space, i.e., the vector with all zeros except for 1 in the 
j-th slot.

Guiding principle
Since Q(µ) is symmetric for all real µ, standard 
theoretical results in eigenvalue perturbation the-
ory14 guarantee that both the eigenvalue λ(µ) and 
eigenvector v(µ) are analytic functions of µ. This 
means that there exists M . 0 such that for µ ∈ 
(−M, M), the following power series expansions 
converge:
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In this notation, (6) can be written as λ0 = w1 and 
v0 = e1. Note also that we have arranged the coeffi-
cients so that
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Our strategy now will be to derive from (5) a recur-
sive set of equations for the coefficients λj, µj. Once 
we have these coefficients for j = 0, 1, ..., J, we have 
an approximation to the leading eigenpair.

Let I denote the n × n identity matrix. Then 
µ = I + µs, where

	

s =

−
−

−
−





















2 1 1

1 2 1

1

2 1

1 1 2

 



.

http://www.la-press.com


Becich et al

116	 Evolutionary Bioinformatics 2013:9

This implies that

	

d

d

j

j

j

jµ
µ =

=
≥





s 1

0 2.

By (3), we have

	

d

d
Q

j

j

j

jµ
µ( ) =

=
≥





w sw1/2 1 2 1

0 2

/

.
� (9)

Perturbative solution: part I
Armed with the above facts, we differentiate (5) with 
respect to µ on both sides:

	 Q′(µ)v(µ) + Q(µ)v′(µ) = λ′(µ)v(µ) + λ(µ)v′(µ).

We then set µ = 0 and use (8), (3), (9), and (6) to 
obtain

	 w1/2sw1/2e1 + wv1 = λ1e1 + w1v1� (10)

Multiply this equation on the left by the row vec-
tor eT

1
:

	 e e e w eT T T
1

1 2 1 2
1 1 1 1 1w sw w 1 1

/ / .+ = +v vλ � (11)

Note that e w eT T
1 1 1w = , which implies eT

1 1wv = 
w eT

1 1 1v . Using this equality in (11), we have

	 e eT
1

1 2 1 2
1 1w sw/ / .= λ

This shows that if we already know (λ0, v0), we 
can determine λ1. To determine v1, we return to (10) 
except now we treat λ1 as known. Rearranging the 
equation, we have

	 [w - w1I]v1 = [λ1I - w1/2sw1/2]e1.

We substitute our definition of w on the left-hand 
side to obtain
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Suppose that v1 = (v1
(1), v1

(2), …, v1
(N)). We set v1

(1) = 0. 
For the remaining components, we solve the above 
matrix-vector system to obtain
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We have completed the loop, showing how to pro-
ceed from the zeroth-order eigenpair (λ0, v0) to the 
first-order eigenpair (λ1, v1).

In the next section, we show how to iterate this 
procedure to generate the j-th order eigenpair (λj, vj) 
from the previously obtained eigenpairs.

Perturbative solution: part II
We return to (5) and take j derivatives with respect to 
µ on both sides. Using the general Leibniz rule, we 
have
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After differentiating, we set µ = 0 and use (8) to 
obtain
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Applying (3) and (9) yields
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We peel off the m = 0 term from the right-hand side:
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Multiplying on the left by eT
1

 and using 
e w e eT

j
T

j
T

j1 1 1 0 1wv v v= = λ , we see that the first term on 
the left-hand side cancels the first term on the right-
hand side. We are left with
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Now on the right-hand side, we peel off the m = j 
term—note that this the only term in which λj appears. 
Hence
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We use (6) and e eT
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We have therefore shown that if we already know 
(λm, vm) for m = 0, 1, …, j – 1, we can solve for λj. 
Now, using this λj, we can solve for vj in the same 
way as before. We go back to (12), isolate all terms 
involving vj, and apply (6) to derive
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The right-hand side is clearly valid only for j $ 1. 
The matrix on the left-hand side is the same one that 
appeared earlier:
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We again set v j
1 0( ) = . For the remaining compo-

nents, we have
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for k = 2, 3, …, N.

Algorithmic improvements
Equations (13) and (14) complete the step of deriv-
ing both (λj, vj) using only the previously derived 
eigenpairs (λm, vm) for m = 0, 1, …, j – 1, giving us 
a recursive solution procedure. Once we have deter-
mined (λj, vj) for j = 0, 1, …, J, we can use these coef-
ficients in (7) and thereby obtain approximations to 
the the leading eigenpair (λ(µ), v(µ)). Hence we view 
(13) and (14) as an algorithm for computing the lead-
ing eigenpair.

Turning to the numerical implementation, we now 
describe two improvements to the algorithm given by 
(13) and (14).

First, we note that in (14), we always set v j
1 0( ) = . 

This implies that eT
j1 0v =  for all j $ 1. This means 

that all terms under the summation symbol in (13) 
vanish, yielding the simplified update formula:
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Second, we note that (14) contains a binomial 
coefficient that becomes prohibitively large to com-
pute for large j. A natural question is whether these 
large coefficients are compensated by the inverse fac-
tors of j! in (7). To quantify this, we define
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Dividing through by j! and using (16), we derive, 
again for j $ 1,
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Applying the same substitutions in (15), we 
derive

	
1/ 2 1/ 2

1 1
ˆ ˆw swT

j je vλ −= � (18)

Using (16) in (7), we obtain

	 0 0

ˆ ˆ( ) and ( ) .j j
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j j

v vλ µ λ µ µ µ
∞ ∞

= =

= =∑ ∑ � (19)

Examining the equations in the λ̂  and v̂  variables, 
we see that all large binomial coefficients and factori-
als have disappeared. For this reason, in our Octave 
implementation of the perturbative method, we use 
the recursive system given by (18) and (17), together 
with the summation formula (19). Finally, applying 
(4), our answer for the leading eigenpair of the matrix 
Q( )µ  defined by (2) is (λ(µ), w−1/2v(µ)).

Example
Let us give an example of the perturbative method 
in practice. We set N = 5, µ = 0.01, and w equal to a 
diagonal matrix whose entries along the diagonal are 
(φ, φd, φ2d, φ2d, φd) where d = 0.2 and φ = 0.32768.

Let J denote the total number of iterations we run 
the perturbative method. Starting from 0λ̂  = w1 and 
0̂v  = e1 as in (6), we iterate using (18) and (17) from j = 

1 up to j = J. We then evaluate the solution using (19) 
truncated at j = J, giving us an approximate solution 
that we denote (λJ(µ), w–1/2vJ(µ)).

For an N-dimensional vector x = (x1, x2, ..., xN ), 
let ||x||∞ = max1iN |xi|, the infinity-norm of x, with 
respect to which the error of the approximate solution 
after J iterations is

	 errorJ = ||µw(w−1/2vJ(µ)) − λJ(µ)(w−1/2vJ(µ))||∞.

In Figure 3, we plot (in circles) the log10 of the 
error as a function of the number of iterations J, and 
(in solid black) the least-squares line of best fit to the 
data. From J = 1 to J = 14, the log10 errors show a 
strongly linear trend, confirmed by the R2 = 0.9958 
value for the regression line. The slope of the line is 
approximately –0.9944, implying

	 errorJ ∝ 10−0.9944J.

Machine epsilon in Octave is approximately 
2.2204 × 10–16, and the error after J = 14 iterations is 
2.2590 × 10–16. Therefore, for this particular example, 
Figure 3 shows that the perturbative method con-
verges exponentially to a solution with error on the 
order of machine epsilon.

Extension to base/codon/word mutation 
models
Consider now a matrix µB defined as follows:
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,

with constant parameters 0 , µ , 1 and k $ 1, and the 
indexing of both rows and columns corresponding to 
bases in the ordered set B = (A, G, C, T). This matrix was 
employed in prior work3 and corresponds to the Kimura 
two-parameter base mutation model.18 When k = 1, µB 
represents the Jukes-Cantor mutation model.19

Matrix µB shares with matrix µ the properties of 
linearity in parameter µ, and reduction to the identity 
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Figure 3. For a particular eigenvalue problem, we plot (in circles) the 
log10 of the error committed by the the perturbative method after J itera-
tions, where J goes from 1 to 14.
Notes: We also fit and plot (in solid black) a least-squares regression 
line to the log10 errors; for this line, R2 = 0.9958. The plot shows that the 
perturbative method converges exponentially to an eigenpair with a final 
error of 2.2590 × 10–16.
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matrix when µ = 0. The methods of this section there-
fore apply to µB directly.

More biologically realistic CMC models2–4 employ 
codon mutation models. Let C = Bp, the p-th Cartesian 
product of the set B. A codon c ∈ C is a string of bases 
b1b2...bp of pre-specified length p with bi ∈ B.

The codon mutation models studied by Ardell 
and Sella assume independence of mutation of bases 
within codons and that all bases mutate accord-
ing to the same model of evolution µB. With these 
assumptions, mutation from any codon c1 ∈ C to 
another codon c2 ∈ C is represented by a matrix µC 
that is the p-th Kronecker power of a matrix µB as  
follows:

	 µ µC B= ⊗
=i

p

1
,

where (⋅ ⊗ ⋅) is the Kronecker product, and codons are 
indexed in both rows and columns in lexicographic 
order.

If λ is the leading eigenvalue µB, then λC = λp is the 
leading eigenvalue of µC. Similarly, if v is the eigen-
vector corresponding to the leading eigenvalue of µB, 
then v vC i

p= ⊗ =1  is the eigenvector corresponding to 
the leading eigenvalue of µC.

Therefore, the methods of this section allow cal-
culation of the leading eigenpairs of matrices µC as 
Kronecker powers of leading eigenpairs of µB.

Homotopy method: quasispecies  
with multiple most fit genotypes
We now give a second method for finding the lead-
ing eigenpair of the matrix Q defined in (3). This 
method, which we call the homotopy method, is 
motivated by the desire to handle a fitness matrix 
w that does not have a unique maximal element 
along its diagonal. The homotopy method produces 
accurate approximations of the leading eigenpair for 
such problems.

Problem formulation
Our goal is still to find the leading eigenpair of Q 
defined in (2). As before, we will instead focus our 
attention on the symmetric matrix Q defined by (3). 
We define the matrix-valued function

	 F(∈) = µ + ∈(w1/2µw1/2 − µ).� (20)

Note that F(0) = µ and F(1) = Q. The function F 
smoothly deforms µ into Q—such a function is often 
called a homotopy in the mathematical literature.16 
Note that for all ∈ ∈ [0,1], the leading eigenpair (λ(∈), 
v(∈)) of F must satisfy

	 F(∈)v(∈) = λ(∈)v(∈).� (21)

The basic idea behind the homotopy method is to 
use F to form a bridge between µ, a matrix whose 
leading eigenpair we already know, and Q, a matrix 
whose leading eigenpair we seek.

When ∈ = 0, (21) reduces to µv(0) = λ(0)v(0). By 
the results provided in supplementary materials, we 
know that the leading eigenvalue of F(0) = µ is 1 with 
corresponding eigenvector 1



 = (1, 1, ..., 1)T, the col-
umn vector of N ones. This implies that

	 λ( ) ( ) .0 1 0 1= =and v


� (22)

When ∈ = 1, (21) reduces to Qv(1) =  λ(1)v(1). 
Thus the question is how we can use our knowledge 
of (λ(0), v(0)) and the function F(∈) to derive (λ(1), 
v(1)), the leading eigenpair of Q.

Unlike the perturbative solution, at no point will we 
assume that the entries of w have a unique maximum. 
To make the derivation easier to read, we define

	 P = w1/2µw1/2 − µ,� (23)

so that F(∈) = µ + ∈P and

	
′ = =F

d

d
F P( ) ( ) .∈

∈
∈ � (24)

Homotopy solution
We differentiate both sides of (21) once with respect 
to ∈ and obtain

	 ′ + = ′ +F F( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∈ ∈ ∈ ′ ∈ ∈ ∈ ∈ ′ ∈v v v vλ λ
� (25)

Since F(∈) is symmetric for all ∈, we see that the 
transposition of (21) can be written v(∈)TF(∈) = λ(∈)
v(∈)T. Thus, after multiplying (25) through on the left 
by v(∈)T, the second term on the left-hand side can-
cels the second term on the right-hand side, leaving
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′ =λ ( )

( ) ( )

( ) ( )
.∈ ∈ ∈

∈ ∈
v v

v v

T

T

P � (26)

Now let us substitute (26) back into (25). Solving 
for v′(∈), we have

	 v v′ ∈ ∈ ∈ ∈ ∈( ) [ ( ) ( ) ] ( ) ( ).= − − ′−F I Fλ 1 � (27)

We now recognize (26) and (27) as a system of 
ordinary differential equations (ODEs) with ∈ play-
ing the role of a time-like independent variable:

	

d

d

P

v
P I P

T

T

∈
∈
∈

∈ ∈
∈ ∈

∈ ∈ ∈

λ

µ λ

( )
( )

( ) ( )

( ) ( )
[ ( ) ] ( )

v

v v

v
v
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


 =

− + −



−1











� (28)

We also recognize (22) as the initial conditions for 
this system of ODEs. Let us now describe an elemen-
tary algorithm for solving this system:

1.	 Set λ = 1 and v =


1. Fix an integer number of steps 
nsteps and then set ∆∈ = 1/nsteps. Also set ∈  =  0, 
initially.

2.	 While ∈ , 1:
a. � Compute λ′ using (26), i.e., λ′ = (vTPv)/(vTv).
b. � Set λ ← λ + (∆∈)λ′.
c. � Using this updated λ, compute v′ using (27), 

i.e., v′ = −[µ + ∈P − λI]−1 Pv.
d. � Set v ← v + (∆∈)v′.
e. � Set ∈ ← ∈ + ∆∈.

The algorithm will terminate in nsteps steps, yield-
ing an approximation to the leading eigenpair of Q 
that is stored in λ and v.

To obtain the leading eigenvector of Q, we com-
pute 1/ 2˜ w−=v v . The leading eigenpair of Q is then 
( , ˜)vλ .

Example
We now give test results for the homotopy method 
applied to a particular problem. We set N = 8, µ = 0.1, 
and w equal to a diagonal matrix whose entries 
along the diagonal are (a, b, b, b, b, b, b, b)T with 
a = 0.63631836 and b = 0.73306514. We also set the 
parameter, ϕ = 1.

We repeatedly run the algorithm given above 
for different values of nsteps; specifically, we take 

nsteps = 10j, where j = 1, 2, 3, 4, 5, 6. For each value 
of nsteps, we compute an approximation to the leading 
eigenpair, which we denote by (λj, vj). We then evalu-
ate the residual error of this approximation using

	 error w w wj j j j= − ∞− −|| ( ) ( ) || ./ /µ λ1 2 1 2v v

In Figure 4, we plot (in circles) the log10 of the 
error as a function of the log10 of the number of steps. 
We also plot (in solid black) the least-squares line of 
best fit to the data; for this line, R2 = 0.9899 and the 
slope is approximately –1.0115, implying

	 error steps steps
j n nα − −≈ =1 0115 1. ∆ ∈.

Note that with nsteps = 103, the error is approximately 
2 × 10−5. This level of error is acceptable if we seek 
to use the homotopy method to reproduce, for exam-
ple, Figure 4 in a previously published paper.4 Hence 
we use this value of nsteps as the default value in the 
CMCpy implementation of the homotopy method.

Further note that when nsteps = 106, even the ele-
mentary algorithm described above to solve the sys-
tem of nonlinear ODEs (28) is capable of producing a 
residual error of approximately 2 × 10–8.

For this example, the homotopy method displays 
convergence that is linear in ∆∈—this relatively slow 
rate can be improved dramatically by using more 
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Figure 4. For a particular eigenvalue problem, we plot (in circles) the 
log10 of the error committed by the the homotopy method using a number 
of steps given by nsteps = 10j, where j goes from 1 to 6.
Notes: We also fit and plot (in solid black) a least-squares regression 
line to the log10 errors; for this line, R2 = 0.9899. The plot shows that the 
homotopy method’s error is linear in ∆∈ = 1/nsteps.
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sophisticated methods to solve the system of nonlinear 
ODEs (28), an issue we leave for future work.

Extension to base/codon/word mutation models
In order to apply the homotopy method to models 
where the mutation matrix is given by µB as defined 
earlier, there is one requirement: we must be sure that 
µB has a unique maximal eigenvalue of 1. For the µB 
matrix, it turns out that we can explicitly derive all 
eigenvectors and eigenvalues, for general values of 
both µ and k. With the constraints 0 , µ , 1 and 
k $ 1, the derivation that we give in supplementary 
materials below proves that the µB matrices have a 
unique largest eigenvalue of 1. Matrices µB therefore 
fulfill the minimum requirements for applicability of 
the methods of this section, after which the leading 
eigenpair for corresponding matrices µC may be cal-
culated using Kronecker powers as before.

Future outlook
We succeeded in programming a GPU-based power 
method implementation that is faster than its CPU 
analogue; however, the performance gain that we 
obtained with it was not as great as we had hoped. 
Furthermore, even though our implementation is cor-
rect, we could not completely eliminate divergence in 
evolutionary trajectories in power method implemen-
tations arising from differences in machine number 
representations and precision across platforms. We 
believe that this arises from deviations in the way 
double precision floating point numbers are repre-
sented, computed on, and rounded in CUDA compute 
capability 1.3. Perhaps utilization of the cuBLAS 
library in the future would make performance closer 
to Numpy and better conform to IEEE standards.

Furthermore, while the power method converges 
linearly, our new perturbation method provides expo-
nential convergence with the same accuracy. However, 
this method cannot handle the case of non-unique most 
fit genotypes that occurs in CMC models at their ini-
tialized state. On the other hand, our new homotopy 
method does handle this case, yet as currently imple-
mented it also converges linearly, rather slower than 
the power method (results not shown). Incorporation 
of more sophisticated methods to solve systems of 
nonlinear ordinary differential equations should dra-
matically improve performance of our new homotopy 
method application. We leave further development of 

both methods and their implementation in CMCpy for 
future work; perhaps other CPU or GPU implementa-
tions of them will compete with Numpy. More gener-
ally, our analytical results greatly expand the domain of 
quasispecies models that can be accurately solved using 
analytical approaches, particularly multi-site models 
with biologically realistic mutation parameters.

A variety of open problems remain concerning 
CMC models and in the field of the evolution of the 
genetic code.20–24 CMCpy can easily be extended to 
implement the model studied by Vetsigian et al. (2006)5 
with variations, or alternative observables, such as 
the “evenness” of amino acids.23 Current models of 
the genetic code have not yet integrated a theory for 
the origin of translation per se.5,21 We believe that 
extensions to CMC models will better address such 
fundamental questions and hope that CMCpy and our 
analytical solutions to quasispecies models will play 
a role in that work.
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Supplementary Materials
Supplementary 1: Derivation of complete 
eigendecomposition of circulant  
µ matrices
The matrix µ is circulant, an important property 
because the eigenvalues and eigenvectors of any 
circulant matrix can be written in closed form. Let 
i = −1  and define for j = 0, 1, …, N – 1 the roots of 
unity

	
ω π

j

ij

N
= 



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exp .
2

Then the N eigenvalues of µ are, for j = 0, 1, …, 
N – 1, given by
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Let us now show that the maximum eigenvalue is 
always equal to 1 and that this eigenvalue is unique. 
Consider the function

	
f x

x

N
( ) ( ) cos= − + 



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1 2 2
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where x is a real variable satisfying −(N − 1) # x # 
N − 1. Then using the methods of calculus, we find that 
the only x ∈ (−(N − 1), N − 1) that satisfies f′(x) = 0 
and f″(x) , 0 is x = 0. At the boundary, we have

	

f N N N
N

( ( ) ( ) cos( ( )/
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as long as µ . 0 and N . 1. Hence x = 0 is the unique 
global maximum of f(x) on the interval x ∈ [−(N − 1), 
N − 1]. If we restrict x to integer values in [0, N − 1], 
then x = 0 will still be the unique global maximum 
of f(x). Therefore, the unique maximum eigenvalue sj 
occurs at j = 0 and is always equal to s0 = 1.

Eigenvectors
Let v* denote v–T, the conjugate transpose of the vec-
tor v. The eigenvector of µ that corresponds to the 
eigenvalue sj is

	
y

N
j j j j

N T= −1
1 2 1( , , , , ) ,ω ω ω

� (30)

written here as a column vector. The 1/ N  factor is 
included to normalize the eigenvalue so that y yj j

* .= 1  
Note that the eigenvector corresponding to the eigen-
value s0 = 1 is particularly simple:

	
y

N N
T

0

1
1 1 1

1
1= =( , , , ) .



Since we have explicit expressions for the eigen-
values (29) and eigenvectors (30), we can write down 
a useful outer product representation of µ:

	
µ =

=

−

∑ s y yj j j
j

N
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0

1

� (31)

Let us now show that (30), as defined, is an ortho-
normal system of eigenvectors. We take the Hermitian 
inner product of an eigenvector yj with an eigenvector 
yk, assuming j ≠ k:
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If instead we have k = j, then we obtain from the 
third line above:

	
y y

Nj j
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N
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Hence { }y j j
N

=
−
0
1 is an orthonormal system of 

eigenvectors.
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Supplementary 2: Derivation of complete 
eigendecomposition of µB matrices
It is clear that each row of µB sums to 1. This, by 
itself, implies that v1 = (1, 1, 1, 1)T is an eigenvector 
of µB with corresponding eigenvalue s1 = 1.

In what follows, we use the fact that
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The four column vectors that appear on the right-
hand side are the four columns of µB.

It is clear that if we subtract the fourth column of µB 
from the third column of µB, then the first two entries 
cancel, while the last two entries are exact opposites 
of one another:
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By fact (32), we can rewrite the left-hand side and 
thereby derive:
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Hence we have shown that v2 = (0, 0, 1, –1)T is an 
eigenvector of µB with corresponding eigenvalue

	
s2 1

2
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+
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κ
.

In a very similar way, we can see that
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showing that v3 = (1, –1, 0, 0)T is an eigenvector of µB 
with corresponding eigenvalue

	
s3 1

2
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µ κµ

κ
.

Note that s2 = s3. Since v2 and v3 are clearly orthog-
onal, we see that {v2, v3} span a two-dimensional 
eigenspace, and that the geometric multiplicity of s2 
equals its algebraic multiplicity. This is consistent 
with the fact that µB is, by definition, a real symmetric 
matrix and therefore, by the spectral theorem, must 
possess four real eigenvalues together with an ortho-
normal basis of eigenvectors.

As we have found three orthogonal eigenvectors 
{v1, v2, v3}, we appeal to orthogonality to find v4. Let 
v4 = (1, x, y, z)T. Orthogonality with v2 and v3 respec-
tively imply 1 – x = 0 and y – z = 0, so v4 = (1, 1, y, y)T. 
Now, orthogonality with v1 implies that 2 + 2y = 0, so 
y = –1, and we have v4 = (1, 1, -1, –1)T. Multiplying 
µB by v4, we see that
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confirming that v4 is an eigenvector with correspond-
ing eigenvalue

	
s4 1

2

2
1

4

2
= − + −

+






= −
+

µ κ
κ

µ µ
κ

.

Normalizing the eigenvectors, we obtain the set
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where (yj)*yj = 1 for j = 1, 2, 3, 4, and each eigenvec-
tor yj corresponds to the eigenvalues sj given above. 
Indeed, examining the expressions of the eigenvalues 
sj, and using the fact that 0 , µ , 1 and k  1, it is clear 
that s1 = 1 is the unique maximal eigenvalue of µB.

Supplementary 3: Benchmark script in R to generate Figure 2.

Supplementary 4: Matlab/Octave implementations of the perturbative and homotopy 
methods presented in this manuscript.
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