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Abstract

Motivation: Expression quantitative trait loci (eQTLs) are genetic variants that affect gene expres-

sion. In eQTL studies, one important task is to find eGenes or genes whose expressions are associ-

ated with at least one eQTL. The standard statistical method to determine whether a gene is an

eGene requires association testing at all nearby variants and the permutation test to correct for

multiple testing. The standard method however does not consider genomic annotation of the vari-

ants. In practice, variants near gene transcription start sites (TSSs) or certain histone modifications

are likely to regulate gene expression. In this article, we introduce a novel eGene detection method

that considers this empirical evidence and thereby increases the statistical power.

Results: We applied our method to the liver Genotype-Tissue Expression (GTEx) data using dis-

tance from TSSs, DNase hypersensitivity sites, and six histone modifications as the genomic anno-

tations for the variants. Each of these annotations helped us detected more candidate eGenes.

Distance from TSS appears to be the most important annotation; specifically, using this annotation,

our method discovered 50% more candidate eGenes than the standard permutation method.

Contact: buhm.han@amc.seoul.kr or eeskin@cs.ucla.edu

1 Introduction

Many studies over the past decade examined the contribution of

genetic loci to phenotypic variation in complex traits. Genetic loci

that are associated with gene expression are called expression quan-

titative trait loci (eQTLs) (Brem and Kruglyak, 2005; Gilad et al.,

2008; The GTEx Consortium, 2015). One important task in eQTL

studies is to find eGenes or genes whose expressions are associated

with at least one genetic variant. The standard method to determine

whether a gene is an eGene requires association testing at all vari-

ants near the gene (cis-variants) and the permutation test to correct

for multiple testing. The permutation test is the gold standard for

multiple-testing correction, as it properly accounts for the linkage

disequilibrium (LD) structure in the genome.

However, this standard method does not consider which variants

are more likely to regulate gene expression. In order to better detect

eGenes, we can increase the statistical power of this standard

method by using annotation data. In practice, regulatory variants

found near the transcription start sites (TSSs) and certain histone

modifications are more likely to be associated with gene expression

(van de Geijn et al., 2015). Additionally, recent large-scale genomics

studies have annotated regions of the genome that are likely to alter

gene expression in individuals (Ernst and Kellis, 2015; The

Roadmap Epigenomics Mapping Consortium, 2015). For example,

almost 80% of the chip-based heritability of disease risk for 11

human diseases examined in the Wellcome Trust Case Control

Consortium (WTCCC) can be explained by genome variation in

DNase I hypersensitivity sites. These variations are likely to regulate

chromatin accessibility and thus transcription (Gusev et al., 2014).

These genomic annotations for the variants can be used to increase

the power to detect eGenes.

Although several methods were recently developed to address

challenges in multiple-testing correction in eQTL studies, these

methods do not improve statistical power in comparison to the

standard method. Sul et al. (2015) improved the runtime of the

standard permutation test by replacing the permutation procedure

with sampling from the multivariate normal distribution (Mvn).

Davis et al. (2016) further improved this runtime by estimating the

effective number of tests based on the eigen-decomposition of the

genotype correlation matrix. These methods aim to reduce runtime

but do not attempt to increase statistical power of the standard
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approach. Therefore, these methods are not capable of detecting

more eGenes.

In this article, we introduce a new method for discovering

eGenes (Func-eGene) that uses genomic annotation of the variants

to increase statistical power. Although gene expression can be af-

fected by trans-variants (Bryois et al., 2014), in this article, we focus

on methods to detect cis-acting eQTLs. We rely on the multi-

threshold association test that specifies different significance thresh-

olds for the variants when correcting for multiple testing (Darnell

et al., 2012; Eskin, 2008). In this multi-threshold association study

mindset, we can assign less stringent significance thresholds to vari-

ants that have a high propensity to contribute to gene expression,

thereby increasing power. If an appropriate prior is provided, this

multi-threshold association method has a closed-form solution that

guarantees the best statistical power for the association test (Darnell

et al., 2012). However, there are two key difficulties we encounter

when directly applying this multi-threshold association study

method to discover eGenes. First, the multi-threshold association

test depends on a permutation test to correct for LD. This permuta-

tion test is slow when applying to a large dataset. Second, we rarely

know of an appropriate prior based on the annotation for genetic

variants under study.

Our new method Func-eGene avoids these difficulties. To reduce

runtime, we replace the permutation test with the sampling proced-

ure in Sul et al. (2015). To find an appropriate prior, we do a grid

search over possible sets of scores assigned to annotation categories.

The goal of our search is to find the set of scores that maximizes the

number of eGenes. To avoid data re-use and over-fitting, we use a

cross-validation strategy.

We applied our method to the liver dataset from the Genotype

Tissue Expression (GTEx) Consortium. First, we used the distance

from the TSS as a genomic annotation because variants near the TSS

are likely to affect gene expression. Using this annotation alone, our

method Func-eGene increased the number of candidate eGenes by

50% compared with the standard method. Then, we added DNase

hypersensitivity sites as a second genomic annotation. The TSS and

DNase annotations together did not discover more candidate

eGenes than the TSS annotation alone. Third, we separately applied

the binding sites for histones H3K27ac, H3K27me3, H3K4me1,

H3K4me3, H3K9ac and H3K9me3 as genomic annotations. These

histone marks found more candidate eGenes than the standard

method but less than the number reported by using the TSS annota-

tion alone. Distance from TSS appears to create the most inform-

ative prior for detecting eGenes.

2 Methods

2.1 Standard method to detect eGenes
An eGene is a gene that has an associated eQTL (Sul et al. 2015).

Let s be a test statistic such as a t-distributed statistic from Pearson

or Spearman correlation between a genetic variant and gene expres-

sion. Define F(s) as its cumulative density function. Suppose as is the

desired false-positive rate. In a two-tailed hypothesis test, assuming

that the distribution is symmetric, 2ð1� FðjsjÞÞ is the P-value, and

6F�1ð1� as=2Þ defines the rejection region for s. We use ðxÞp�q to

specify a matrix x of dimension p�q. Parentheses and subscripts

are omitted whenever the context is clear.

2.1.1 Association test

Suppose that there are N individuals. In the simplest scenario, which

considers only one variant and one gene y, the hypothesis test tests

whether gene expression ðeyÞN�1 of y is independent of the variant

genotype gN�1. If they are independent, the variant is not an eQTL

and y is not an eGene. The null hypothesis H0 is that y is not an

eGene, and the alternative hypothesis H1 is that y is an eGene. To

conduct this single hypothesis test, the standard method assumes a

linear model

ey ¼ Xbþ gbþ � (1)

In Equation 1, the design matrix XN�P contains P fixed effects

(i.e. gender, ethnicity, age, etc.). The vector bP�1 is their regression

coefficients. b is the regression coefficient of the variant genotypes.

�N�1 is a vector of independent sampling errors that is normally dis-

tributed (�N�1 � Nð0; Ir2Þ). In Equation 1, linear regression is used

to estimate bb and its variance br2
b̂ .

Our test statistic s is the normalized bb (s ¼ bb=brb̂ ). Under the null

hypothesis, s follows a t-distribution with N � P� 1 degrees of free-

dom. If we suppose N is large, then FðsÞ � UlðsÞ where Ul is a nor-

mal cumulative density with mean l and variance one. This mean l
is also known as the z-score non-centrality parameter. Our null and

alternative hypotheses can then be written as

H0 : Gene y is not an eGene$ H0 : l ¼ 0

H1 : Gene y is an eGene$ H1 : l ¼ w where w 6¼ 0

H0 is rejected if the P-value is less than a. This P-value is named

eGene P-value (Sul et al., 2015).

2.1.2 Multi-association test

In a more common scenario, many variants in-cis with gene y are

tested. In this case, the test consists of M univariate association tests.

The hypothesis test tests whether the expression ðeyÞN�1 of y is inde-

pendent of all variant genotypes ðgiÞN�1 ði ¼ 1 . . . MÞ. As before, one

assumes

ey ¼ Xbþ gibi þ �i i ¼ 1 . . . M (2)

In Equation 2, XN�P contains P fixed effects, and bP�1 is their re-

gression coefficients. bi is the regression coefficient for the genotypes

of variant i. ð�iÞN�1 is a vector of independent sampling errors, and

follows ð�iÞN�1 � Nð0; Ir2Þ. In Equation 2, linear regression is again

used to estimate bbi and its variance br2
b̂ i

.

Our test statistic si is the normalized bbi (si ¼ bbi=brb̂ i
). Let li be the

expected value of each test statistic si. We write the hypothesis as

H0 : Gene y is not an eGene$ H0 : li ¼ 0 for all i

H1 : Gene y is an eGene $ H1 : li ¼ wi

where wi 6¼ 0 for some i 2 f1 . . . Mg

(3)

We then compute the P-value at each variant i and reject H0 if

their minimum P-value P is less than ac (Sul et al., 2015). ac is the

false-positive rate adjusted for multiple testing. For example, if

Bonferonni correction is applied, ac ¼ a=M. Bonferonni correction is

conservative because it ignores linkage-disequilibrium among the vari-

ants. The permutation test is thus the gold standard method (Sul

et al., 2015).

2.2 Functional annotation-based multi-threshold

eGene (Func-eGene)
The standard method applies an identical univariate association test

to each variant and uses the minimum P-value as a test statistic. This

is equivalent to assigning to all variants a uniform prior of being

associated with the gene expression. However, we often have
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annotations that specify whether the variants are in some regulatory

regions of the genome. We developed a new method named Func-

eGene that considers this evidence to increase statistical power to

find candidate eGenes.

2.2.1 Multi-threshold association test

Our Func-eGene is built upon the multi-threshold association test

method that assigns different significance thresholds to different hy-

pothesis tests (Darnell et al., 2012; Eskin, 2008). We briefly describe

their method here, assuming that we have data about the relative im-

portance of the genetic variants in our study. Let this information

about the M variants be given as c1 . . . cM, where
PM

i¼1 ci ¼ 1 and

ci � 0 for all i. For example, regulatory variants can be assigned

higher ci than those which are not. We assume that c1 . . . cM are

given beforehand. Later, we drop this assumption and determine an

appropriate c1 . . . cM from the data.

Darnell et al. (2012) and Eskin (2008) use this data to create a non-

uniform prior in the hypothesis test by giving the M observed statistics

s1 . . . sM their own thresholds t1 . . . tM, which are functions of c1 . . . cM.

These ti must be corrected for multiple testing by using the constraintPM
i¼1 ti ¼ a, where a is the genome-wide false-positive rate. This con-

straint holds only if the variants are independent. Later, we remove this

requirement and properly account for LD. We then maximize the statis-

tical power of the hypothesis test, which is a function of ti.

Statistical power is defined as the probability of an observed stat-

istic being significant when the alternative hypothesis is true. In the

simplest case, there is only one variant i and the gene y. The power

of the two-tail hypothesis test denoted as Psðti;liÞ is the probability

that jsij > F�1ð1� ti=2Þ when the true mean of si is not zero.

Suppose N is large so that Psðti; liÞ can be approximated using the

standard normal cumulative density U.

Psðti; liÞ ¼ Pðjsij > F�1ð1� ti=2ÞÞ (4a)

¼ UðU�1ðti=2Þ � liÞ þ 1� UðU�1ð1� ti=2Þ � liÞ (4b)

In a more common scenario, one considers M variants in-cis

with gene y. The statistical power to detect y being an eGene

denoted as Pðt1 . . . tMÞ is the weighted average over M variants,

Pðt1 . . . tMÞ ¼
PM

i¼1 ciPsðti; liÞ. For a more detailed discussion of this

definition, see Eskin (2008) and Rubin et al. (2006).

Darnell et al. (2012) and Eskin (2008) find t1 . . . tM so that the

statistical power Pðt1 . . . tMÞ is maximized under the constraintPM
i¼1 ti ¼ a and ti � 0 for all i. This solution is obtained by taking

the gradient of the Lagrangian Lð‘; t1 . . . tMÞ with respect to the

Lagrangian multiplier ‘, and the unknown variables t1 . . . tM.

Optimal solution is achieved when rti
Lð‘; t1 . . . tMÞ ¼ rtj

Lð‘; t1

. . . tMÞ for all i; j 2 f1 . . . Mg (Eskin, 2008). Moreover, this equality

has a closed form (Darnell et al., 2012)

ci /li
ðU�1ðti=2ÞÞ þ /�li

ðU�1ðti=2ÞÞ
� �

=2

/0ðU�1ðti=2ÞÞ

¼
cj /lj

ðU�1ðtj=2ÞÞ þ /�lj
ðU�1ðtj=2ÞÞ

� �
=2

/0ðU�1ðtj=2ÞÞ
8i; j 2 f1 . . . Mg

(5)

The symbol /z is the probability density function of a normal

distribution having mean z and variance one. U�1ðwÞ is the quantile

of w under a normal distribution of mean zero and variance one.

Once the observed statistics s1 . . . sM are estimated, we compare

their P-values pi ¼ 2ð1� FðjsijÞÞ to t1 . . . tM. If pi< ti, then variant i is

an eQTL. If at least one variant is an eQTL, then the gene is an

eGene.

This method can be used to calculate the multiple-testing-cor-

rected P-values p�1 . . . p�M. In fact, finding per-marker significance

thresholds and computing the corrected P-value are two related

tasks in multiple-testing correction. Briefly, to obtain the corrected

P-value p�i , we begin with a small a�, find optimal t�1 . . . t�m with con-

straint
PM

i¼1 t�i ¼ a� in which case t�i < pi due to small a�. We repeat

this analysis while increasing a� until t�i ¼ pi. a� will be our cor-

rected P-value p�i . If p�i < a, then variant i is an eQTL. If any of the

variants is an eQTL, then the gene is an eGene. The multiple-testing-

corrected eGene P-value becomes

p�eGene ¼ minfp�i g
M
i¼1 (6)

Comparing pi against ti and comparing p�i against a give identical

eQTLs and eGenes. These are two different viewpoints of the same

multiple-testing correction.

2.2.2 LD-corrected P-value

When LD among the variants is unignorable, corrected P-values p�i
and eGene P-value p�eGene violate the independence assumption and

become conservative. To avoid this, Darnell et al. (2012) and Eskin

(2008) suggested using a permutation test to compute p�eGene.

Because these studies did not describe in detail how a permutation

test is done, we explain the procedure here. We do one permutation

by permuting the expression measurements among the individuals

while keeping their genotype data unchanged so that LD is retained.

Leaving the LD intact keeps the correlation between the genotypes of

the individuals which then retains the correlation of the test statistics.

Suppose that we do such permutation B times. In the j-th permuta-

tion, we find M corrected P-values p�i;j and their eGene P-value as

p�eGene;j ¼ minfp�i;jg
M
i¼1 Let p�eGene;obs be the eGene P-value in the

observed data. Define the LD-corrected eGene P-value as

p�eGene;LD-corrected ¼

XB

j¼1

1ðp�eGene;obs � p�eGene;jÞ

B
(7)

where 1 is an indicator function. This LD-corrected eGene P-value is

not conservative and has correct false-positive rate. This permuta-

tion however is time-consuming. In each permutation, we need to

find the corrected P-values p�i which requires a search for a� as

described above. Repeating this search B times makes the permuta-

tion test very time-consuming.

2.2.3 LR-based permutation test

To speed up the permutation test, Func-eGene uses the likelihood

ratio (LR). The permutation using P-values in Darnell et al. (2012)

and Eskin (2008) is slow because every permutation finds the cor-

rected P-value p�i . Func-eGene uses a test statistic that does not re-

quire p�i . To do this, we interpret Equation 5 as a LR multiplied by a

prior probability. Define giðsiÞ such that

giðsiÞ ¼
ci /li

ðsiÞ þ /�li
ðsiÞ

� �
=2

/0ðsiÞ
(8)

Equation 8 becomes a LR evaluated at si where H0 : EðsiÞ ¼ 0

and H1 is an average of two two-tail hypotheses H1 : EðsiÞ ¼ li and

H1 : EðsiÞ ¼ �li.

Here giðsiÞ is a monotonic increasing in jsij. The key concept is that

we can replace p�i in Equation 6 with giðsiÞ. Define the eGene LR to be

geGene ¼ maxfgiðsiÞgM
i¼1 (9)
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Let geGene;obs be the observed eGene LR in the data computed as

in Equation 9 using the observed test statistics s1 . . . sM. Define

geGene;j as the eGene LR computed as in Equation 9 using the test

statistics s1;j . . . sM;j in the j-th permutation. The LD-corrected

P-value becomes

p�eGene;LD-corrected ¼

XB

j¼1

1ðgeGene;obs � geGene;jÞ

B
(10)

and is equivalent to Equation 7. By using LR instead of P-value, we

avoid finding p� and make the permutation test faster.

2.2.4 LR-based Mvn sampling

Even with the LR-based permuation test, the method’s runtime de-

pends on the number of individuals. To overcome this problem, we

observe that Equation 8 is a simple function in si. Applying the

method in Sul et al. (2015), we use the Mvn density instead of the

permutation test. We sample s0
1 . . . s0

M from a null density Mvnð0;RÞ.
RM�M measures the LD among the M variants, and is computed as
1
N G>G where GN�M is the genotype data. When there are few indi-

viduals, the null density in the permutation test and one formed by

s0
1 . . . s0

M are mismatched. Following Sul et al. (2015), we correct

s0
1 . . . s0

M using the variant minor allele frequencies and the sam-

ple size. The corrected s0
1 . . . s0

M are used to compute geGene;j in

Equation 10.

2.2.5 Finding appropriate priors using genomic annotations

We demonstrated that Func-eGene can maximize statistical power

and approximate eGene P-values when the functional priors are

specified beforehand. However, these priors are hardly known a pri-

ori. In this section, we introduce a heuristic data-adaptive procedure

to determine an appropriate prior that can yield the most number of

candidate eGenes. Suppose we categorize the cis-variants using J dif-

ferent annotations. Each annotation j is given a score bj. A variant

belonging to j inherits its score. Define kij 2 f0;1g so that kij¼1 if

the variant i belongs to j. The score ui at a variant i is defined as

ui ¼
XJ

j¼1

bjkij (11)

The normalized prior ci at variant i is

ci ¼
uiXM

m¼1

um

(12)

where M is the number of variants. Equation 11 assumes that the

functional annotations behave in an additive manner. It is possible

to include interaction terms among the annotations, and the opti-

mization procedure below remains applicable. Equations 11 and 12

imply that Equations 8, 9 and 10 are functions of the annotation

score b ¼ ðb1 . . . bJÞ.
Using these priors in Func-eGene, we calculate Equation 10. It is

important to see that Equation 8 is the product of ci and the function

hðsiÞ ¼
/li
ðsiÞþ/�li

ðsiÞ
2/0ðsiÞ . Thus, we compute hðsiÞ from the observed data

only once, and then use them when evaluating eGene LR at each

possible b to get p�eGene;LD-corrected.

Our objective is to determine the optimal score b� ¼ ðb�1 . . . b�J Þ
for the annotations that yield the most number of candidate eGenes.

One immediate but impractical solution is to search all possible b.

To do this, Func-eGene must be run for each b to get the threshold

for the observed eGene LR in Equation 9, which corresponds to the

specified significance threshold a. This threshold is some upper a

quantile under a null density of geGene. This quantile depends on b.

Let QyðbðkÞÞ be the quantile threshold of geGene at gene y, using some

k-th choice of b denoted as bðkÞ. If geGene > QyðbðkÞÞ, then y is an

eGene. Using these quantile thresholds, the number of eGenes can

be estimated for a choice bðkÞ.

Running Func-eGene for all b is time demanding. Thus, for find-

ing a good choice of b, we use the following procedure. We aim to

approximate quantile thresholds of all b, while implementing Func-

eGene only once. One can pick a starting bð0Þ, compute Qyðbð0ÞÞ for

all genes y in the data. In each subsequent choice k, find QyðbðkÞÞ for

only a subset of genes, and estimate the ratio change of the quantile

threshold

dyðbðkÞ;bð0ÞÞ ¼
QyðbðkÞÞ
Qyðbð0ÞÞ

(13)

Determine the average �dðbð0Þ; bðkÞÞ using the dyðbðkÞ;bð0ÞÞ com-

puted over the subset. Use Qyðbð0ÞÞ and �dðbð0Þ;bðkÞÞ to estimate

QyðbðkÞÞ for all genes y in the data, assuming that the ratio Equation

13 changes only slightly for all the genes.

This procedure quickly calculates the observed eGene LR and its

threshold at all b, using the permutation test or the sampling scheme

in Sul et al. (2015) only once. We emphasize that this approximation

is based on a subset of genes and is best used for finding a good

choice b�. After we find b�, ideally, we would apply a complete

Func-eGene run using b� to determine the number of eGenes.

Because we determine good choices for b from the data, data

re-use and over-fitting are two issues which can inflate the false-

positive rate. To avoid this, we use a cross-validation method that

divides the data into two subsets. We obtain best scores from one set

and apply these scores to find eGenes in the other set, and vice

versa.

3 Results

We applied our method Func-eGene to the GTEx dataset. The

GTEx pilot study collected 9365 tissue samples from more than 30

distinct tissues from 237 post-mortem donors and performed RNA-

seq to quantify gene expression in those tissues (The GTEx

Consortium, 2015). We used the liver tissue data that has 97 sam-

ples. All individuals were genotyped at 5M SNPs and imputed with

1000 Genomes Phase I as the reference panel. The number of genes

expressed in this tissue is 21 868.

3.1 Func-eGene controls false-positive rate
There are two ways to apply Func-eGene. Permutation Func-eGene

relies on the traditional permutation test to calculate the null density

of the observed statistic, whereas Mvn Func-eGene relies on the

Mvn-sampling procedure in Sul et al. (2015).

Simulations demonstrate that both the permutation and the Mvn

Func-eGene control the false-positive rate well. The gene

ENSG00000204219.5 expressed in the liver tissue is chosen as an

example. This gene belongs to chromosome 1 and has 3872 cis-

variants of which 431 are in the TSS region. For the sake of simpli-

city, variants in the TSS region are assumed 100 times more likely to

affect gene expression. The non-uniform priors are then specified

such that the ratio of priors for variants inside and outside TSS is

100/1. This ratio is reset to 1/1 in the uniform prior. In the alterna-

tive hypothesis, our method requires the true effects (i.e. z-score

non-centrality parameters) of the variants as input parameters li’s.
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In this experiment and onward, in the alternative hypothesis, we use

li ¼ 3:5—this choice is addressed in Section 4.

To simulate gene expression data under the null hypothesis, we

permuted the gene expression measurements among the 97 individ-

uals and kept the genotype data unchanged. In each simulation, we

computed the eGene P-value using permutation and Mvn Func-

eGene with both uniform and non-uniform priors. We applied the

permutation procedure using 104 permutations and the Mvn method

using 106 samplings. Simulated eGene P-values under 0.05 are con-

sidered significant. Permutation and Mvn Func-eGene have false-

positive rates of 0.046 and 0.044, respectively, using a uniform

prior. Both have false-positive rates of 0.051 and 0.052, respect-

ively, using a non-uniform prior. Q–Q plots against the uniform

density illustrate that the simulated densities under the null hypoth-

esis match the uniform distribution well (Fig. 1(a)).

3.2 Func-eGene increases statistical power
An appropriate prior when applied in Func-eGene increases statis-

tical power to detect candidate eGenes. To demonstrate this, we

conducted simulation studies where there exists one variant that in-

duces the gene expression. The gene ENSG00000204219.5 is again

chosen as an example.

To simulate the gene expression measurements for 97 individ-

uals, we consider only variants within 150 kb up- and down-stream

of the TSS, and presume that the maximum absolute effects of these

variants (denoted as bmax) to be the only genetic contribution to-

ward the gene expression.

Gene expression measurements are thus simulated as

ey ¼ gbmax þ � where ðeyÞ97�1 is the simulated gene expression meas-

urements, g97�1 is the genotype of the variant corresponding to

bmax, and �97�1 is sampled from Mvnð0; Ir2Þ.
In our experiment, we vary this standard deviation r from 0.00

to 1.50 At each instance of r, we simulate 200 sets of gene expres-

sion data and compute the eGene P-value for each of them. The

simulated power at this r is the fraction of eGene P-values from the

200 simulated datasets that are less than 0.05. As we increase r, the

randomness effect dominates the effects of variants and the statis-

tical power to discover any association between a variant and the

gene expression diminishes.

We applied the uniform and non-uniform priors to the simulated

data. In the non-uniform prior, the ratio of prior for a variant inside

and outside the TSS region is 100/1. This non-uniform prior reflects

the fact that eQTLs tend to reside near the TSS. Figure 1(b) indicates

that the non-uniform prior increases statistical power in both the

permutation and Mvn Func-eGene and that conditioned on the

priors, permutation and Mvn Func-eGene archive equivalent statis-

tical power.

3.3 Func-eGene discovers more candidate eGenes in

the liver GTEx data
Permutation and Mvn Func-eGene are applied to the liver GTEx data

which contains 21 868 quantile normalized gene expression measure-

ments across 22 autosomal chromosomes in 97 individuals. Both uni-

form and non-uniform priors are tested. Our goal in this experiment

is to demonstrate that: (i) using an informative non-uniform prior in-

creases the number of candidate eGenes and (ii) Mvn Func-eGene is a

good estimation of the gold-standard permutation test.

We computed eGene P-values by using 106 samplings for Mvn

Func-eGene and 104 permutations for the permutation Func-eGene

as indicated in the GTEx pilot analysis (The GTEx Consortium,

2015). The efficiency gain of Mvn sampling over the permutation

test diminishes when the number of cis-variants for a gene is much

greater than the number of sample size. Following Sul et al. (2015),

we divide the cis-variants for a gene into blocks of size 500 kb, and

apply Mvn sampling separately to each block. The most significant

P-value taken across these blocks is the eGene P-value.

Cis-variants are variants located within the 1 Megabase up- and

down-stream of TSS of a gene (The GTEx Consortium, 2015). In the

liver GTEx data, the average number of cis-variants per gene is 4681.

We define gene TSS-region to be 150 kb up- and down-stream of the

gene TSS. The average fraction of variants inside this region is 14.74%.

Spurious effects on gene expression might dominate the effects

of the cis-variants. To remove them, we regress out the following

covariates: the first three genotyping principal components, the first

15 expression Probabilistic Estimation of Expression Residuals

(PEER) factors, and gender (Stegle et al., 2012; The GTEx

Consortium, 2015). To be consistent with the GTEx pilot analysis,

we transform eGene P-values into Q-values to control the false dis-

covery rate over the entire sample. Genes having Q-values under

0.05 are considered eGenes (Storey and Tibshirani, 2003; The GTEx

Consortium, 2015).

For the sake of simplicity, non-uniform priors are assigned so

that the ratio of prior for a variant inside and outside the TSS region

is 100/1, an assumption we address later.

Using an informative non-uniform prior increases the number

of candidate eGenes in both permutation and Mvn Func-eGene

(Table 1). The number of candidate eGenes has increased by 50.4%
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Fig. 1. (a) Q–Q plots of the uniform density quantiles against the simulated

eGene P-value quantiles using Func-eGene at the gene ENSG00000204219.5

under the null hypothesis. (b) Func-eGene simulated statistical power at the

gene ENSG00000204219.5

Table 1. Number of candidate eGenes discovered by permutation

and Mvn Func-eGene using uniform and non-uniform priors for

21 868 genes in the liver tissue GTEx data

Permutation Mvn Overlapa

eGeneb Yes No Yes No Yes No

Uniformc 1626 20 242 1582 20 286 1549 20 209

Non-uniformd 2445 19 423 2449 19 419 2379 19 353

Overlape 1484 19 281 1457 19294

aCondition on uniform prior or non-uniform prior and count the number

of eGenes (or not eGenes) that permutation Func-eGene agrees with Mvn

Func-eGene.
bIndicates the number of genes detected to be eGenes.
cUniform prior uses the prior ratio 1/1 for all variants.
dNon-uniform prior uses the prior ratio 100/1 so that variants in the TSS

are 100 times more likely to affect gene expression.
eCondition on permutation or Mvn Func-eGene and count the number of

eGenes (or not eGenes) that the uniform prior agrees with non-uniform prior.

i160 D.Duong et al.

Deleted Text: the discussion section
Deleted Text: p-
Deleted Text: p-
Deleted Text: -
Deleted Text: kilobases 
Deleted Text: p-
Deleted Text: p-
Deleted Text:  
Deleted Text: ,
Deleted Text: 1
Deleted Text: 2
Deleted Text: p-
Deleted Text: p-
Deleted Text: p-
Deleted Text: ,
Deleted Text: kilobase 
Deleted Text: p-
Deleted Text: <italic>q-</italic>
Deleted Text: q-


in permutation Func-eGene (from 1626 to 2445) and by 54.8% in

Mvn Func-eGene (from 1582 to 2449) by applying non-uniform pri-

ors. The numbers were comparable between the two implementa-

tions, indicating that Mvn approximates the null distribution of

observed statistics well.

Sul et al. (2015) have shown that Mvn sampling and permuta-

tion test have comparable eGene P-values without using any prior.

Here we show that the results are also comparable when using a

non-uniform prior. Figure 2(a) compares Mvn eGene P-values

against those in the permutation test, and Figure 2(b) indicates the

Mvn method is at most 60.10 units from the gold-standard permu-

tation test P-values. Our Mvn method and the permutation test

agree on 2379 candidate eGenes. Because Mvn method is an ap-

proximation to the permutation test, we analyze the candidate

eGenes that the Mvn method misses and falsely discovers. Of the 66

missed eGenes, the maximum Q-value is 0.079 and the median is

0.053. Of the 70 falsely discovered eGenes, the minimum Q-value is

0.028 and the median 0.045. Thus, these misclassified eGenes are

genes with borderline Q-values.

The function Q-value in R requires that the distribution of input

P-values has a fairly flat right tail (Storey and Tibshirani, 2003).

Our eGene P-values meet this condition (Fig. 3).

Figure 4(a) compares our eGene Q-values against those in the

permutation test, and Figure 4(b) indicates that accuracy of Mvn

Func-eGene is at most 60.05 units from the gold-standard permuta-

tion test Q-values.

3.4 Func-eGene chooses appropriate priors
So far, we have assumed that the priors are defined a priori. In this

section, we applied the method in Section 2.2.5 to determine appro-

priate priors from the data. To demonstrate this method, we con-

sider two functional annotations ATSS and ADNase. ATSS contains

variants within 150 kb of the TSS. ADNase contains variants within

the E066 DNase hypersensitivity narrow gapped peaks (http://egg2.

wustl.edu/roadmap/data) in the liver tissue. Across 21 868 auto-

somal genes, the average fraction of cis-variants belonging in the

ATSS and the ADNase are 14.74% and 4.66%, respectively. The over-

lap between them is 0.88%.

The relative prior ratio between annotations can be represented

by three numbers, b1, b2 and b3, which correspond to the scores for

ATSS;ADNase and neither. For example, a variant in ATSS has b1=b2

times higher score than a variant in ADNase. Since the scores are

assumed to be additive in Equation 11, a variant in both ATSS and

ADNase has ðb1 þ b2Þ=b3 times higher score than a variant in neither

classes. We constrained each of b1, b2, and b3 to be between 100

times greater and 100 times smaller than the other two. Only the

relative ratios of the scores matter. Given this constraint, we did a

grid search over the parameter space evaluating a total of 441

choices of score b ¼ ðb1;b2; b3Þ.
We implemented Mvn Func-eGene only once with the functional

scores bð0Þ ¼ ð1;1;1Þ. At each gene, we recorded the upper 1%

quantile of the observed statistics, which corresponds to the signifi-

cance threshold a ¼ 0:01. We used this P-value threshold because

this threshold roughly corresponds to the maximum eGene P-value

of genes whose Q-values are under the threshold 0.05 in our data of

Section 3.3. Using this complete Mvn Func-eGene run at bð0Þ, we

computed new observed statistics and their thresholds at another

choice bðkÞ using the approximation method in Section 2.2.5.

Table 2. The number of eGene discovered at 19 annotation score

ratios

Row Ratioa eGene b Row Ratioa eGeneb

1 1:1:1 2057 10 1:1:10 1579

2 1:10:1 2032 11 1:10:10 1747

3 1:100:1 1890 (1834) 12 1:100:10 1904

4 10:1:1 2450 13 10:1:10 2060

5 10:10:1 2331 14 100:1:10 2473 (2413)

6 10:100:1 1991 15 1:1:100 1280

7 100:1:1 2493 (2449) 16 1:10:100 1391

8 100:10:1 2489 (2449) 17 1:100:100 1673

9 100:100:1 2329 18 10:1:100 1548

19 100:1:100 2014

aPrior ratios of variants inside and outside an annotation. These ratios are

in order ATSS : ADNase : other.
bThe numbers are obtained using the approximation method in Section

2.2.5. Numbers in parentheses are obtained using Mvn Func-eGene

Fig. 2. (a) Scatter plot of eGene P-values using Mvn Func-eGene and the per-

mutation test. (b) Histogram of the difference between eGene P-values using

Mvn Func-eGene and the permutation test

Fig. 3. Histogram of the eGene P-values using Mvn Func-eGene and the per-

mutation test

Fig. 4. (a) Scatter plot of the eGene Q-values using Mvn Func-eGene and the

permutation test. (b) Histogram of the difference between eGene Q-values

using Mvn Func-eGene and the permutation test
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We tested 441 choices of b. Table 2 displays 19 of these 441

choices and the number of candidate eGenes discovered using these

scores. The score b ¼ ð100;1; 1Þ had the most candidate eGenes,

indicating that using ATSS alone is enough to increase the number of

eGene discovered. For a few choices of b, we ran the Mvn Func-

eGene without using the approximation method, and the results are

comparable.

3.5 Evaluation using histone marks
Because there exist other genomic annotations, we hope to evaluate

their effects on eGene detection. Ideally, we would use all annota-

tions simultaneously in the model and find the optimal prior param-

eters. Unfortunately, our method uses grid search which is

prohibitively time-consuming in high dimensional space. For this

reason, we evaluate each annotation separately, which at least can

provide an overview of which annotation contains useful informa-

tion for eGene discovery.

We applied the optimization to six histone marks, ATSS, and

ADNase. In each annotation, we find the best prior ratio of the variants

inside and outside the annotated site. Table 3 indicates that using

these annotations can increase the number of candidate eGenes. These

numbers are from a complete Mvn Func-eGene run using all genes in

the liver tissue data and not from the method in Section 2.2.5. The

marks associated with activation of gene expression (H3K27ac,

H3K4me1, H3K4me3, H3K9ac) have prior ratios more than one,

whereas the marks associated with suppression of gene expression

(H3K27me3, H3K9me3) have prior ratios less than one. All of the his-

tone marks yield more candidate eGenes than the uniform prior.

In Table 3, TSS has the best prior ratio at 60/1. This prior gives

more eGenes than the prior 100/1 reported in Table 1. Figure 5(a)

indicates that the false-positive rate at the gene

ENSG00000204219.5 using prior 60/1 matches well to the uni-

form density and is not inflated. Figure 5(b) indicates that the simu-

lated statistical power at this gene using Mvn Func-eGene with the

prior ratio 60/1 is not worse than the guessed ratio 100/1. It is im-

portant to stress that the ratio 60/1 is best with respect to all the

genes in liver tissue data and not this particular gene.

3.6 Mvn Func-eGene has better runtime

than permutation method
In this section, we compare the runtime of the permutation and Mvn

Func-eGene. In this experiment, the Mvn method uses 1000

samples, and the permutation-based procedure uses 1000 permuta-

tions. In both cases the number of individuals is 97. The standard

permutation method computes one eGene P-value in time linear in

the number of cis-variants for a gene (Sul et al., 2015). The

permutation-based Func-eGene relies on this basic permutation pro-

cedure and has almost identical runtime to the standard permutation

method. Figure 6 displays the runtime for a few randomly chosen

genes from the GTEx liver tissue data. Mvn Func-eGene is consider-

ably faster than permutation approaches but runs in polynomial

time. In the GTEx liver tissue data, the 5% upper quantile of cis-

variants per gene is 6833 variants. Thus in practice the polynomial

nature of the Mvn Func-eGene does not impede its application.

4 Discussion

In this article, we have introduced a new method Func-eGene that

relies on the association study methods in Darnell et al. (2012) and

Eskin (2008) and uses genomic annotations of the cis-variants to

create a non-uniform prior that can detect more eGenes. We applied

our method to the liver tissue dataset from the GTEx Consortium,

and the results indicate that distance from TSS appears to contain

enough information that is needed to find more candidate eGenes.

Our method has many layers of procedures which can be time-

consuming. To reduce runtime, we introduced many ideas. We em-

ployed LR statistic which is more efficient to obtain than a P-value

in a multi-threshold association study. We replaced the time-

consuming permutation test with the use of Mvn sampling. To avoid

reassessing significance thresholds at each new prior in our grid

Table 3. The number of candidate eGenes detected by Mvn Func-

eGene at the best priors in each annotation

Annotation (%)a Ratiob eGenec

H3K27acd 12.25 40/1 1944

H3K27me3e 7.26 1/70 1880

H3K4me1d 16.38 80/1 1858

H3K4me3d 7.73 50/1 1917

H3K9acd 9.74 100/1 1861

H3K9me3e 11.92 1/50 1879

TSS 14.74 60/1 2479

DNase 4.66 100/1 1834

Uniform 100 1/1 1592

aAverage percent of variants in an annotation.
bBest prior ratios of variants inside and outside an annotation given by the

method in Section 2.2.5.
cNumbers are obtained by using Mvn Func-eGene at the best ratios.
dAssociated with gene activation.
eAssociated with gene suppression
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Fig. 5. (a) False-positive rate for permutation and Mvn Func-eGene using prior

ratio 60/1. (b) Mvn Func-eGene statistical power at gene ENSG00000204219.5

using ratio 60/1 is not worse than the ratio 100/1
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search, we developed an approximation method which uses a subset

of the tested genes. Due to these heuristics, we were able to conduct

a grid search using TSS, DNase and six histone modifications as

functional classes. Because our method uses grid search where the

runtime increases exponentially with the number of annotations,

our current method is not yet applicable for simultaneously handling

a large number of annotations. One future goal is to develop a better

optimization method than a grid search.

Lastly, we address the fact that in the alternative hypothesis, the

true effects of the variants on the gene expression are unknown in

practice. It has been demonstrated in previous studies that different

choices of these effect sizes do not greatly change the outcome

(Darnell et al., 2012; Eskin, 2008). Another option is to consider

some continuous prior density on these true effects and then inte-

grate over their valid domain (Benner et al., 2016; Hormozdiari

et al., 2014, 2015). This idea is another future research plan.
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