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Abstract: For the surgical technique of guided bone regeneration (GBR), the choice of available barrier
membranes has until recently not included an option that is mechanically strong, durable, synthetic
and resorbable. The most commonly used resorbable membranes are made from collagen, which are
restricted in their mechanical strength. The purpose of this study is to evaluate the degradation and
regeneration potential of a magnesium membrane compared to a collagen membrane. In eighteen
beagle dogs, experimental bone defects were filled with bovine xenograft and covered with either
a magnesium membrane or collagen membrane. The health status of the animals was regularly
monitored and recorded. Following sacrifice, the hemimandibles were prepared for micro-CT (µ-CT)
analysis. Complications during healing were observed in both groups, but ultimately, the regenerative
outcome was similar between groups. The µ-CT parameters showed comparable results in both
groups in terms of new bone formation at all four time points. In addition, the µ-CT analysis showed
that the greatest degradation of the magnesium membranes occurred between 1 and 8 weeks and
continued until week 16. The proportion of new bone within the defect site was similar for both
treatment groups, indicating the potential for the magnesium membrane to be used as a viable
alternative to collagen membranes. Overall, the new magnesium membrane is a functional and safe
membrane for the treatment of defects according to the principles of GBR.

Keywords: NOVAMag membrane; resorbable membrane; GBR; healing; magnesium degradation;
micro-CT

1. Introduction

The concept of guided bone regeneration (GBR) is based on the placement of a bar-
rier membrane to exclude unwanted tissues and cells from a secluded bony defect. The
membrane provides space for slowly proliferating bone cells to populate the defect space,
which would otherwise be occupied by faster proliferating soft tissue cells [1,2]. In addition
to the exclusion of unwanted tissues, the membrane creates space for undisturbed bone
regeneration, protects the underlying blood clot and stabilizes the wound.
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Collagen barrier membranes are currently one of the most commonly used resorbable
membranes for GBR surgeries [3,4], and they demonstrate an excellent biocompatibility [5].
Due to their structure, collagen nanofibers have a good bioactive potential in bioregenera-
tion [6].

Yet a relatively low mechanical strength means that they are susceptible to tearing
or collapse into the defect void [7], which has been reported as the main drawback for
using collagen membranes [8], because it does not provide sufficient volume stability at
the time of bone formation [9]. In order to better control the degradation and improve the
mechanical and chemical properties of collagen, new synthetic approaches have emerged
that improve the properties of the collagen membrane [10,11].

There is also the potential issue of conflicting patient views, who may opt for synthet-
ic materials.

To address these issues, a new pure magnesium barrier membrane has been developed
for GBR applications (Figure 1) and has previously been reported on [12]. The membrane
is intended to function similarly to other degradable barrier membranes; however, due to
its metallic structure, it provides better mechanical properties (than e.g., collagen) and has
an initial form stability to protect the defect void from collapse.
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Magnesium is a biodegradable metal that has been used for medical applications for
over 100 years [13], owing to its excellent biocompatibility, bioabsorbability and biome-
chanical properties [14]. As it degrades, its metallic structure is converted into magnesium
salts that are then resorbed by the body [15–17]. As a fully biodegradable metal membrane,
no removal surgery is necessary, resulting in fewer surgical interventions. During its degra-
dation under physiological conditions, hydrogen gas is released [18,19]. The release of
hydrogen gas has previously been reported to form gas cavities around magnesium metal
implants; however, these gas cavities are also reported to spontaneously resolve and not
have a negative effect on bone regeneration [15–17,20].

As with other degradable membranes, it is important that the resorption rate enables a
sufficient barrier between the soft and the hard tissues during the initial healing phase, but
also for it to be fully removed from the site once it is no longer needed. The resorption time
should not exceed 6–12 months; otherwise, the benefits provided by using a resorbable
material might be lost [21].

Studies performed using collagen membranes give an indication for the optimal
functional lifespan of a barrier membrane. An in vivo study using rat calvarial defects
performed by Kim et al. reported that the collagen membrane, Bio-Gide®, remained intact
after 2 weeks, but after 4 weeks, it had lost its barrier function [22]. A study by von Arx et al.
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performed in rabbit tibias showed that the collagen membrane was intact after 2 weeks
but reduced in size after 6 weeks healing. After 12 weeks, no differentiation to the host
collagen could be made [23].

In a GBR canine model, collagen membrane degradation has been reported with more
varied rates, even when using the same type of collagen membrane. Ivanovic et al. used
a double layer technique to prolong functionality and reported the presence of residual
membrane material at 12 weeks post-implantation [24]. Rothamel et al. reported that the
membrane was resorbed between 4 and 8 weeks post-implantation [25], whilst Zubery et al.
reported complete degradation of the membrane at different stages of the study, ranging
from the first (8 weeks) to the last (24 weeks) time point [26].

Based on these studies reporting the degradation of a collagen membrane, it can be
assumed that the barrier membrane must function for a minimum period of 2–4 weeks.
After this point, some of these studies have reported differing degrees of degradation and
loss of barrier function; however, all resulted with a successful regenerative outcome.

The magnesium membrane and all the ideal qualities for a barrier membrane were
previously reported on [12]. In this article, the application of a pure magnesium barrier
membrane to treat GBR defects in a canine model is reported on. The success of the
membrane is determined by comparison to a standard collagen membrane. Magnesium
membrane degradation and regenerative outcome are assessed using µCT.

2. Results
2.1. Post-Surgical Follow-Up

As expected, for the 2 week period post-surgery (preparatory and implantation), the
dogs showed signs of acute inflammation and pain. For the duration of the study, weight
variations of the animals occurred as expected and remained within the anticipated ranges
for beagle dogs under the conditions of this kind of study. All animals survived until their
scheduled sacrifice. Following the teeth extraction surgery (preparatory phase), some dogs
required additional antimicrobial treatment or bone sequestrum removal; however, all sites
ended up with a good healing result.

Post-implantation (experimental phase), eight animals required an additional inter-
vention, such as additional chlorhexidine rinsing or re-suturing; however, all sites ended
up healing well. Additional interventions were mainly caused by swelling associated
with magnesium membrane treated sites; however, in two of the eight animals, additional
intervention was also required for collagen membrane treated sites. Most observations
of swelling or lesions present at the magnesium membrane treated sites were reported
during the scheduled surgical wound re-evaluation at 28 ± 2 days. Around this timepoint,
13 magnesium membrane treated sites in a total of 7 dogs reported observations of swelling.
Two of these sites also reported the presence of lesions. After an additional treatment of
chlorhexidine rinsing (for 3 dogs) and a varying healing period between 3 and 10 days,
there were no abnormal findings reported by the veterinarian.

At the next scheduled re-evaluation (42 ± 2 days), one additional magnesium membrane-
treated site was reported to have swelling and a lesion, both of which resolved after 10 days.
Another surgical site in another dog was also observed to be open, however without the
presence of swelling, and it resolved itself after 10 days. The redness of the surgical site
was reported for four dogs and did not occur in conjunction with any swelling. Of these
dogs, two were observed to have one site treated with magnesium membrane that had
a slight redness. The slight redness was reported at only one timepoint for each dog (at
day 36 and 43, respectively). Another dog was reported to have a slight redness for both
magnesium membrane-treated sites. This was reported over a prolonged period of time,
which was mentioned at day 36 and 52 for both sites; however, no abnormal findings were
reported at day 57. The last animal with reported redness was observed to have a small
red spot (3 mm in diameter) at a collagen membrane-treated site. The small red spot was
reported after the healing of a lesion at the same site.
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2.2. Micro-CT

The results of the measured µCT parameters are shown in Table 1 and visually compared
in Figure 2. One week post-implantation, the measured µCT parameters of new bone and
soft tissue appear similar between the magnesium and collagen membrane groups. At this
timepoint, the only significantly different value was the volume of the void space (p < 0.001).
This developed in the magnesium membrane group due to the release of hydrogen gas
during the magnesium corrosive process.

Table 1. µCT volume measurements for GBR defects treated with either a magnesium membrane or
collagen membrane.

Week Membrane No. of Treated
Defects

Volume
Total Defect

(TV)
New Bone

(BV) Soft Tissue Void
BV/TV

(mm3) (mm3) (mm3) (mm3)

1 Magnesium 12 76.92 ± 9.41 0.34 ± 0.30 46.21 ± 10.47 4.51 ± 3.19 0.00 ± 0.00
Collagen 12 80.15 ± 11.16 0.40 ± 0.30 51.20 ± 8.31 0.07 ± 0.07 0.00 ± 0.00

8 Magnesium 12 59.93 ± 10.89 17.71 ± 4.34 30.02 ± 6.92 0.06 ± 0.10 0.30 ± 0.07
Collagen 12 74.73 ±9.73 19.65 ± 4.72 37.72 ± 6.62 0.08 ± 0.13 0.26 ± 0.05

16 Magnesium 12 64.14 ± 8.85 25.93 ± 5.02 25.74 ± 6.49 0.05 ± 0.05 0.41 ± 0.09
Collagen 12 65.97 ± 7.57 22.63 ± 6.72 30.15 ± 8.75 0.06 ± 0.06 0.34 ± 0.10

52 Magnesium 4 47.89 ± 5.94 29.17 ± 5.81 11.32 ± 6.63 0.01 ± 0.01 0.62 ± 0.17
Collagen 4 62.31 ± 2.35 35.37 ± 2.88 15.42 ± 3.90 0.00 ± 0.00 0.57 ± 0.05
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Figure 2. Volumetric measurements of GBR defects treated with either a magnesium membrane (blue)
or collagen membrane (red): (a) New Bone Volume/Total Defect Volume; (b) Soft Tissue Volume;
(c) Void Space Volume. Standard deviation and statistical significance are shown. p ≤ 0.05 is
represented by “*” and p ≤ 0.001 is represented by “***”.

At 8 weeks post-implantation, the void space for the magnesium membrane had
been resorbed and was no longer significantly different to that measured for the collagen
membrane. There was no significant difference between the new bone volume between
each group; however, there was more soft tissue present in the collagen membrane group
(p ≤ 0.05) than in the defects treated with the magnesium membrane. The ratio of bone
volume to total defect volume was comparable between the two groups (0.30 ± 0.07 for
the magnesium membrane-implanted defects compared to 0.26 ± 0.05 for the collagen
membrane-implanted defects).

By 16 weeks, there were no significant differences between either of the groups for any
of the measured parameters. The average soft tissue volume remained slightly higher in the
collagen membrane treated defect sites (30.15 ± 8.75 mm3 for the collagen group compared
to 25.74 ± 6.49 mm3 for the magnesium group), although it was non-significant. The bone
volume to total volume ratio appears to be slightly higher for the magnesium membrane-
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treated defects (0.41 ± 0.09 mm3) compared to (0.34 ± 0.10 mm3) for the collagen group,
but again, it was non-significant.

For the 52-week timepoint, the new bone volume and soft tissue volume appear to
be slightly lower for the magnesium membrane-treated defects, although this is related to
the measured total defect volume being slightly lower than that of the collagen membrane-
treated defects. Similarly, for the 16 week timepoint, the bone volume to total volume
ratio appears to be slightly higher for the magnesium membrane defects, 0.62 ± 0.17 mm3

compared to 0.57 ± 0.05 mm3 for the collagen membrane-treated group.
The implanted magnesium membranes were successfully detected and segmented.

The magnesium metal was denser than the surrounding tissue, thus enabling it to be iden-
tified. Remnants of the metallic magnesium membrane could be identified and separated
from other objects in the 3D gray-scale images. Representative images of the segmented
magnesium membranes and the surrounding bone tissue at each timepoint are shown in
Figure 3. In only one of the samples from the 16-week timepoint (n = 12) could remnant
magnesium metal and salty phase still be detected. At the 52-week timepoint, there was no
metallic magnesium present at any of the defect sites (n = 4). At the one week timepoint,
metallic magnesium, magnesium salts and small gas cavities are shown to seclude the
overlying soft tissue from the bony defect.
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Figure 3. Reconstructed µCT images showing the residual metallic magnesium membrane (indicated
in pink and blue magnesium salts). Only a minor amount of the metallic magnesium is left after
8 weeks and is completely corroded at 16 weeks (in 11/12 samples). At 52 weeks after implantation,
no residual of the remaining magnesium membrane could be observed, whilst the surrounding bone
of the defect has fully integrated bone substitute material.

Measurements of the residual magnesium are shown in Figure 4. These measurements
indicated an average total volume of residual magnesium metal at 1 week to be 7 ± 2 mm3.
This average decreases significantly by week 8 to 0 ± 1 mm3 (p < 0.001) and then further
to 0 ± 0 mm3 at week 16 (p < 0.05). Surface area measurements of the magnesium metal
measured an average area of 198 ± 38 mm2 at week 1. This significantly dropped to
17 ± 22 mm2 at week 8 (p < 0.05) and then further to 0 ± 0 mm2 by week 16 (p < 0.05).
All of the magnesium membranes appeared to have completely degraded at the 52-week
timepoint, with both surface area and total volume measured at 0 ± 0 mm2 and 0 ± 0 mm3,
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respectively. Although not indicated by the surface area and volume measurements, small
remnants of the magnesium membrane were still visible in one of the samples at 16 weeks.
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Figure 4. Box and whisker diagrams of (a) volume and (b) surface area measurements of the
magnesium membrane remnants after implantation. Range and mean values are shown. Statistical
significance is shown as p ≤ 0.05 represented by “*” and p ≤ 0.001 represented by “***”.

Gas pockets formed as the magnesium metal degraded, which are visible around the
membrane at the 1 week timepoint (Figure 3). The gas pockets were predominantly situated
between the overlying soft tissue and the magnesium membrane upper surface, although
some gas pockets were visible under the membrane as well. After 8 weeks, the majority of
the gas pockets have been resorbed by the tissue, and at 16 weeks post-implantation, there
are no remaining gas pockets in the vicinity of the defect site.

3. Discussion

A magnesium membrane has been investigated for its use in GBR surgeries. Applied
to GBR defects in beagle dogs, the membrane has shown a comparable efficiency to that of
a standard collagen membrane.

The first important outcome of this study was that the animals had a satisfactory
general condition for the duration of the study when a magnesium membrane was applied
in a GBR setting. Post-implantation monitoring showed a limited number of healing
irregularities, such as swelling and lesions that were more frequently occurring in the
magnesium membrane group. Although additional intervention was required for some
of these animals, in all cases, the conditions stabilized or healed well without affecting
the regenerative outcome. Both the magnesium membrane and the collagen membrane
treatment groups did not present signs of a chronic inflammation reaction such as prolonged
redness, swelling, pain and loss of function. Over the course of the study, the dogs
maintained a healthy weight, which demonstrates a lack of pain and the preservation
of function.

Signs of acute inflammation such as redness and swelling during healing are an ex-
pected potential outcome of GBR surgery. This was observed at both magnesium membrane-
treated sites and collagen membrane-treated sites. In the sites treated with magnesium
membrane, this phenomenon can be explained by the perfusion of magnesium ions into
the soft tissue after the degradation of the magnesium membrane [27]. In a retrospective
study of the clinical outcomes and complications of biodegradable magnesium screws in
humans, similar observations were made for soft tissue complications [28]. However, this
was also shown to be a short-term tissue reaction, as was the case in the current study.
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Overall, soft tissue complications were expected in both the magnesium membrane group
and the collagen membrane group, but they did not affect the success of regeneration.

In this study, degradation of the magnesium membrane and its influence on the regen-
erative outcome have been evaluated using µCT. The µCT data show that the magnesium
membrane was initially stable and remained largely intact 1 week post-implantation. Between
1 week and 8 weeks, the membrane underwent significant degradation that continued until
week 16, when all but one of the membranes had completely degraded (Figures 3 and 4).

As magnesium metal degrades, it produces hydrogen gas [19], the presence of which
has been linked to a moderate inflammation reaction [28,29]. During the period between
1 and 8 weeks, the magnesium membrane experienced its largest change in volume; hence,
it produced the largest volume of hydrogen, which correlates with instances of swelling that
were primarily reported by the veterinarian at a 28 ± 2 days (4 weeks) post-implantation
evaluation. After a maximum period of 10 days, the reported swellings had resolved, which
could indicate a reduction in hydrogen gas production.

Hydrogen gas released by the degrading magnesium can lead to the formation of gas
cavities around magnesium implants. These were visible around the magnesium membrane
at the 1 week and 8 week timepoints (Figure 3). Nevertheless, previous studies have also
reported that gas cavity formation has been followed by their spontaneous regression, and
that new bone formation had not been negatively affected [15–17,20]. This is supported by
the current study, as at the first timepoint (1 week), there was significantly more void space
measured within the magnesium membrane group compared to the collagen membrane
group. As the magnesium continued to degrade, the void space disappeared and remained
non-significantly different to that of the collagen membrane in the subsequent timepoints
(8, 16 and 52 weeks). Despite the formation of gas cavities around the magnesium mem-
brane during the early timepoints of the study, the relative volume of new bone within the
defect space consistently remained non-significantly different between defects treated with
either the magnesium membrane or the collagen membrane.

The ideal degradation rate for a resorbable GBR membrane should support the re-
generation of the periodontium by secluding the defect site from unwanted tissues, but it
could also fully and rapidly remove the membrane once its function is no longer required.
To establish an ideal degradation rate, it is possible to compare the magnesium membrane
to collagen membranes, which are a popular choice for GBR surgeries [3].

There are very few studies available that directly include the degradation of collagen
membranes in vivo as a specific outcome; however, three studies were found where the
degradation and integration of a collagen membrane were evaluated for a similar canine
defect model that was used in this study [24–26]. In the current study, the degradation of
the magnesium membrane was monitored using µCT, whilst for the other studies, collagen
membrane degradation was evaluated histologically. Although different timepoints were
chosen, these studies give an indication of a comparable degradation rate.

Using a study by Rothamel et al. as a reference for collagen membrane degradation,
both the magnesium and collagen membranes had an early onset of degradation that was
noted at the first post-implantation timepoint; 1 week in this study for the magnesium
membrane and 4 weeks for the collagen [25]. After 8 weeks, both membranes had under-
gone extensive degradation, with few remnants remaining. At the next sequential time
point, which was 16 weeks in this study and 12 weeks for the collagen membrane, neither
membrane had any visible remnants remaining. This would indicate that the degradation
rates of both membranes were similar.

µCT analysis of the magnesium membrane indicated that at one week post-implantation,
the metallic structure had begun to develop corrosion pits and holes, although the majority
of the membrane remained intact. By week 8, even though the metallic structure of magn-
esium had almost completely corroded away, the bone grafting material remained in place.
This is shown, as no bone substitute material can be observed outside the initially drilled
bone defect. A potential reason for this is the formation of magnesium salts and hydrogen



Materials 2022, 15, 3106 8 of 12

gas development during the magnesium metal degradation process, which could maintain
a seclusion of the defect site [19].

This phenomenon has previously been reported on for the magnesium membrane,
where its degradation kinetics were studied in a minipig model [12]. It was shown that as
the membrane degraded, the resultant magnesium salt layers and gas cavities provided a
secondary phase to the barrier functionality of the barrier membrane. This affect can be
clearly seen at the 1 week timepoint of the segmented µCT scans (Figure 3).

4. Materials and Methods
4.1. Test Item

The Test Article to be evaluated in this study is a magnesium membrane (NOVAMag®

membrane, botiss biomaterials GmbH, Berlin, Germany) that is produced at biotrics bioim-
plants AG (Berlin, Germany) from pure magnesium (99.95%). The final dimensions of the
membrane are 30 × 40 mm with rounded corners that have a 4 mm radius, a thickness of
140 µm, and a weight between 245 and 330 mg. The membrane can be cut using a pair
of scissors before being bent to shape and placed over the defect. It is required that the
membrane be fixed into position from both the buccal and oral sides.

4.2. Animals and Anesthesia

In total, 20 adult male beagle dogs (Canis familiaris) were used in this study, which
was performed at the Charles River Laboratories, Montreal, ULC. The investigatory study
was approved by the Testing Facility’s Institutional Animal Care and Use Committee
(IACUC). The testing facility is also accredited by the Association for the Assessment and
Accreditation of Laboratory Animal Care (AAALAC) and the Canadian Council on Animal
Care (CCAC). Cohorts of six animals were assigned to 1 week, 8 weeks and 16 weeks
timepoints. The remaining two animals were available as spares should there be any
morbidity or mortality associated with the investigation. As these spare animals were not
needed, they were transferred to a 52-weeks cohort.

Two surgeries were performed as part of this study: a preparatory tooth extraction
surgery and the experimental implantation surgery. Prior to both surgeries, the animals
underwent general anesthesia using an injection composed of a mix of Buprenorphine,
Acepromazine and Glycopyrrolate administered intramuscularly. Anesthesia induction
for tracheal intubation was achieved with Propofol injected intravenously via a catheter
in a vessel of the left or right cephalic or saphenous vein. Upon induction of anesthesia,
the subject animal was intubated and supported with mechanical ventilation. Isoflurane
in oxygen was administered to maintain a surgical plane of anesthesia, and Propofol was
injected intravenously as needed to improve the efficacy of the anesthesia.

To achieve local anesthesia for teeth extraction and implantation procedures, as well as
manage pain after surgery, 0.8–1.2 mL of Lidocaine mixed with Epinephrine 1:50.000 was
administered in each side of the lower jaw. For teeth extraction surgeries, local anesthesia
was also administered in each side of the upper jaw.

4.3. Surgery

The procedure was performed in two phases: a preparatory and an experimental
phase. The preparatory phase involved the surgical extraction of four teeth on each side of
the jaw, from the mandibular second premolar to the first molar. The corresponding teeth
on the upper jaw were also extracted. Teeth extraction was followed by wound closure and
suturing of the upper jaw, whilst the lower jaw remained open during a healing period
of 12 ± 2 weeks. Daily oral cavity flushing was performed for 13–14 days post extraction.
Sutures were removed from the upper jaw after 2 ± 1 weeks.

For the experimental phase surgery, two independent bone defects were created on
each side of the lower jaw. The defects were filled with a bone substitute material (Bio-Oss®,
Geistlich, Wolhusen, Switzerland) and covered with either a magnesium membrane or a
control collagen membrane (Bio-Gide®, Geistlich).
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Membranes were not allocated randomly; however, an even distribution across the
different sides of the lower mandible was a control of bias. Each membrane was fixed
with 4 titanium screws (1.5 mm × 3 mm ProFix titanium screws, Osteogenics); 2 on the
buccal side and 2 on the lingual side, followed by wound closure with sutures. Representa-
tive photos of the magnesium membrane and collagen membrane after implantation are
displayed in Figure 5.
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Figure 5. Surgical placement of (a) magnesium membrane and (b) collagen membrane in a GBR
model in the lower left jaw of beagle dogs. In both images, two treatment sites are visible.

Daily oral cavity flushing was performed for 6 days post-implantation for the 1 week
cohort and for 14 days post-implantation for the 8, 16 and 52-week cohorts. Sutures were
removed 2 ± 1 weeks post-implantation. Upon euthanasia, hemimandibles were extracted
and stored individually in 100% ethanol and kept refrigerated between 4 and 8 ◦C.

4.4. Veterinary Intervention and Care

For the duration of the study, the animals were monitored and observed (cage side
observation) at least twice a day by a trained professional. The animals’ health status was
followed up by a veterinarian team, as necessary.

Post-operative examinations carried out by the veterinarian team were performed
under anesthesia using Propofol. Scheduled examinations post-implantation occurred
three times in the first week (day 1, 3, and 7), once a week for the following three weeks
(approximately day 14, 21, and 28), and thereafter once every 2 weeks (approximately day
42, 56, 70, 84, and 90), or until the day of scheduled sacrifice. The animals were weighed
prior to the teeth extraction surgery, the implantation surgery and sacrifice, as wells as
during veterinarian follow-ups.

4.5. Micro-CT Collection and Reconstruction

Prior to histological processing, each explanted hemimandible was scanned using a
Nikon XTH 225 ST Micro CT scanner (Nikon, Chiyoda, Tokyo, Japan). Images were then
used to reconstruct a 3D image of each implanted site. The reconstructed µCT data had
a 16-bit volume and a 10 µm isotropic voxel size. Each scan contained 4 titanium screws
that held the membrane in place. Where possible, each scan was used to calculate: the new
bone volume/ total defect volume (BV/TV), soft tissue volume, void volume, and residual
magnesium metal.

Further analysis was performed to determine the surface area and volume of the mag-
nesium metal. To quantify the morphology of the magnesium membrane, the membrane
had to be segmented within the CT scan volume. The data were loaded into AVIZO software
(Thermo Fisher Scientific, Waltham, MA, USA), and metallic remnants of the magnesium
membrane were segmented using the Segmentation toolbox of AVIZO. Segmentation
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was achieved by combining manual segmentation steps together with region-growing ap-
proaches. The results of the obtained mask for the metallic magnesium membrane and its
comparison to the original gray-scale images are demonstrated in Figure 6. This approach
was used to differentiate between the remaining magnesium metal and the magnesium
salts which retain the shape and position of the magnesium membrane.
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Figure 6. Representative images of the segmented magnesium metal membrane (pink) and virtual
slices (gray) at the 1-week timepoint to illustrate the allocation of remnant metallic magnesium to
gray values and image properties. Small gas cavities can be seen around the membrane, which are
resultant from hydrogen gas development during the degradation process. Magnesium salts can also
be seen retaining the shape and position of the membrane and are distinguished from the metallic
magnesium using the employed segmentation technique within the AVIZO software (Thermo Fisher
Scientific, Waltham, MA, USA).

The segmented volumes were loaded into MatLab (MATLAB and Statistics Toolbox
Release 2018b, The MathWorks, Inc., Natick, MA, USA), and every dataset was analyzed
toward its volume and surface, its surface to volume ratio as well as the number of
magnesium membrane fragments. Furthermore, the number of magnesium fragments
within each scan was analyzed in terms of fragment size by performing a connected
component analysis.

4.6. Statistical Analysis

Statistical analysis was performed by grouping the implants according to their material
and implant duration. The regeneration of the defect was analyzed using unpaired t-tests
to identify statistically significant differences for the parameters BV/BT, soft tissue volume,
and void space volume between the tested groups at each timepoint. Standard deviation
and statistical significance are shown. p ≤ 0.05 is represented by “*” and p ≤ 0.001 is
represented by “***”. To evaluate the degradation of the magnesium membrane, unpaired
t-tests were used to identify statistically significant differences between the magnesium
remnant surface area and volume between each sequential time point. Statistical analysis
was performed using GraphPad Prism 8.1.2 Software.

5. Conclusions

A pure magnesium barrier membrane has been investigated as an alternative barrier
membrane to be used in GBR treatment. Applied to GBR defects created in beagle dogs,
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veterinarian reporting and µCT analysis showed that the magnesium membrane produced
a normal healing response, had a good regenerative outcome, and degraded at a rate similar
to that of a collagen membrane. Although more swelling was reported for magnesium
membrane-treated sites, this did not affect the regenerative outcome, and overall, there
were no indications of a chronic inflammation reaction. Bone volume within the defect
site remained similar to that of defects treated with a collagen membrane throughout
the duration of this study. In conclusion, the results of this study indicate that the pure
magnesium membrane is an effective barrier membrane suitable for GBR treatments.
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