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The immune system plays a central role in the development and progression of human

disease. Modulation of the immune response is therefore a critical therapeutic target

that enables us to approach some of the most vexing problems in medicine today

such as obesity, cancer, viral infection, and autoimmunity. Methods of manipulating

the immune system through therapeutic delivery centralize around two common

themes: the local delivery of biomaterials to affect the surrounding tissue or the

systemic delivery of soluble material systems, often aided by context-specific cell or

tissue targeting strategies. In either case, supramolecular interactions enable control

of biomaterial composition, structure, and behavior at the molecular-scale; through

rational biomaterial design, the realization of next-generation immunotherapeutics and

immunotheranostics is therefore made possible. This brief review highlights methods

of harnessing macromolecular interaction for immunotherapeutic applications, with an

emphasis on modes of drug delivery.
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INTRODUCTION

Drug delivery strategies seek to improve therapeutic efficacy by increasing the proportion of drug
that reaches its target site (drug targeting), increasing the duration of drug presentation (controlled
release), or presenting the drug in response to appropriate triggers (responsive delivery) (Farokhzad
and Langer, 2009; Tibbitt et al., 2016; Webber and Langer, 2017). Supramolecular chemistries can
advance these goals through the provision of specific, tunable, and thermodynamically reversible
bonds. These properties lend themselves to the development of drug delivery systems (Rodell et al.,
2015a; Webber and Langer, 2017), especially those that can sequester drugs for subsequent release
at the target site, can be tuned to improve pharmacological properties, and can release therapeutic
cargo passively or via responsive chemistries.

Immune system dysfunction is a driver of human disease, for which the delivery of biologic and
small molecule drugs to specific tissues and cells is critically needed. Prevalent immune-related
diseases include those rooted in non-resolving inflammation, such as cardiovascular disease,
arthritis, and tissue injury (Nathan and Ding, 2010). Inmany such cases, non-specific inflammation
manifests in the development of maladaptive autoimmune responses, wherein the body mounts
an immune attack against its tissues (Epelman et al., 2015; Jain and Pasare, 2017). Conversely,
conditions such as cancer can co-opt the innate immune system to suppress inflammation,
thereby thwarting adaptive immunity necessary to combat tumor growth (Engblom et al., 2016).
Therapeutic modulation of the immune system is therefore essential and may be used to home in
the body’s response to various diseases, including mitigation of tissue-damaging inflammation or
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provocation of an immune response against cancer or infection.
To achieve these goals, macrocyclic supramolecules are
foundational building blocks that enable drug formulation, cell-
and tissue-targeted drug carriers, and local delivery depots to
instruct immune cell and systems behavior (Figure 1).

MACROCYCLES FOR DRUG
SOLUBILIZATION AND DELIVERY

The development of stable drug formulations and the
targeted delivery of therapeutics remain major challenges
in pharmacology (Rosenblum et al., 2018; Pasut, 2019;
Sanku et al., 2019), and many drugs and drug classes are
directly relevant to immune modulation. These include
biopharmaceuticals (antibodies, cytokines, chemokines,
or peptides) that exhibit biological specificity with well-
characterized functions. Many biopharmaceuticals, however,
face challenges in formulation stability or rapid blood clearance
(Shire et al., 2004; Veronese and Pasut, 2005), and exhibit limited

FIGURE 1 | Host macrocycles include the families of cyclodextrins, cucurbiturils, pillararenes, and calixarenes. These molecules contribute to the development of

dynamic supramolecular materials, including as formulation excipients and functional building blocks for polymers, nanoparticles, and hydrogels. Through the

inclusion of therapeutic cargo (drugs, cells), a range of immunomodulatory outcomes are possible that may span activity throughout the body (systemic effects) or

activity at a specific location (local effects), achieved through either targeted systemic delivery or local biomaterial implantation.

interaction with host macrocycles due to large size and aqueous
solubility. Alternatively, small molecule pharmaceuticals are
more amenable to guest-host interaction and benefit directly
from improved solubility, shielding from degradation, and
altered bioavailability. These same supramolecular interactions
may also be used to reduce the toxicity of poisonous compounds,
either through sequestration or improved clearance (Yin et al.,
2021). Macrocycles aid in these processes by acting as hosts
to small molecules, imparting aqueous solubility and altered
pharmacokinetics by properties inherent to the host molecule
structure, through selective chemical functionalization, or by
accessing higher-order material structures.

Guest-host interactions are a subset of supramolecular
associations characterized by the transient complexation of
a macrocyclic cavitand (host) with a small molecule (guest)
through hydrophobic interaction, often aided by van der Waal’s
or electrostatic forces. These macrocycles include cyclodextrins
(α-, β-, and γ-CD), cucurbit[n]urils (CB[n]), calix[n]arenes,
and pillar[n]arenes (Szejtli, 1998; Lagona et al., 2005; Song and
Yang, 2014); all of which potentially enhance drug solubility
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and bioavailability (Brewster and Loftsson, 2007; Carrier et al.,
2007; Loftsson and Brewster, 2011; Walker et al., 2011; Zhou
et al., 2015). In many cases, chemical modifications are beneficial
toward these goals. For example, sulfobutylether-β-cyclodextrin
(SBE-β-CD, Captisol R©) is a sulfonic acid derivative of β-CD,
currently in 13 FDA approved formulations including antibiotics,
antifungals, and antivirals (remdesivir; emergency use approval
for COVID-19) (Stella and Rajewski, 2020). Studies by Rajewski
demonstrated the derivative’s ability to improve drug solubility,
formulation stability, and toxicity (Rajewski et al., 1995). Another
common CD derivative, 2-hydroxypropyl-β-cyclodextrin (HP-β-
CD), possesses excellent water solubility and an improved affinity
toward guests such as anti-inflammatory flavonoids, polyphenols,
and other compounds (Gould and Scott, 2005; D’Aria et al., 2017;
dos Santos Lima et al., 2019). In comparison to CDs, CBs can
confer higher affinity interactions that contribute to their utility
as potential pharmaceutical excipients, but use may currently
be limited by cost and sparing water solubility (Walker et al.,
2011; Kuok et al., 2017). Calix[n]arenes and pillar[n]arenes are
emergent, synthetically flexible platforms from which a toolbox
of drug delivery vehicles is emerging (Zhou et al., 2015; Xiao et al.,
2019a,c; Xue et al., 2020).

Macrocyclic delivery vehicles can improve drug
pharmacokinetics, including through improved drug solubility
(Brewster and Loftsson, 2007; Loftsson and Brewster, 2011) or via
receptor-mediated targeted delivery. At the most rudimentary
level, macrocycles themselves can serve as targeting agents.
CD or its mannose conjugated derivatives are internalized
by macrophages and dendritic cells via recognition by cell
surface receptors, scavenger receptor A1 (SR-A1) and mannose
receptor (MRC1) (Chao et al., 2012; Pustylnikov et al., 2014).
For example, mannose-modified β-CD served as a vehicle
for the delivery of molecular chaperones to the cytoplasm of
macrophages to correct protein misfolding (Rodríguez-Lavado
et al., 2014). Similarly, CD-based nanoparticles (NPs) exhibit
macrophage uptake, used to achieve trafficking of NPs into
glioma (Alizadeh et al., 2010) and the delivery of encapsulated
immune agonists to tumor-associated macrophages (TAMs)
for cancer immunotherapy (Rodell et al., 2018). Mannose and
folate are well-recognized targeting agents for anti-inflammatory
(M2-like) and pro-inflammatory (M1-like) macrophages
(Ngambenjawong et al., 2017; Rodell et al., 2019a), respectively,
and the modification of macrocycles by these moieties enables
both macrophage- and tumor-targeted therapies (Okamatsu
et al., 2013; Ye et al., 2016; Elamin et al., 2018; Li et al., 2019).

Interestingly, some macrocycles have been investigated for
their ability to directly modulate immune response. HP-β-
CD may serve as a functional vaccine adjuvant, reportedly
altering human dendritic cell maturation, as indicated by
an upregulation of inflammatory cytokines (IL-6, TNF-α),
production of costimulatory molecules (MHC, PD-L1/2), and
activation of co-cultured T lymphocytes (Kim et al., 2016).
CB[7] exhibited similar immunostimulatory properties. When
complexed with tuftsin, an immunostimulatory tetrapeptide, the
complex induced inflammatory cytokine production (TNF-α, IL-
2, and IFN-γ) exceeding that of tuftsin alone in mononuclear
cells (Kovalenko et al., 2017). While both of these macrocycles

exert adjuvant effects, the exact mechanisms of action remain
ambiguous. In contrast to these immunostimulatory effects,
Zimmer et al. rationalized that the ability of HP-β-CD to bind
cholesterol would reduce cholesterol crystal formations known
to stimulate macrophage activation. In atherosclerotic plaques,
HP-β-CD increased cholesterol efflux, reducing crystal load,
inflammation, and disease progression (Zimmer et al., 2016).
Similar effects have been observed in monocytes derived from
HIV-positive donors (Matassoli et al., 2018), and the compound
has been explored clinically for treatment of Niemann-Pick
disease type C1, a neurodegenerative disease characterized by
excessive cholesterol and lipid accumulation (Liu, 2012; Ottinger
et al., 2014).

POLYMER-BOUND MACROCYCLES

Conventionally, polymer-drug conjugates are formed through
the covalent tethering of drugs to a polymer. Owing to
their relatively large size, polymers dominate the resultant
physiochemical properties, and can therefore improve drug
solubility, reduce drug clearance rate, and offer sites for
attachment of targeting moieties. A distinguishing property
of these systems is the structural diversity, which includes
end-modified linear polymers, dendrimeric architectures, or
pendant modified polymer systems (Elvira et al., 2005; Larson
and Ghandehari, 2012). While supramolecular polymer-drug
conjugates parallel this structural diversity, they possess
advantageous qualities in terms of biocompatibility, ease of
modular assembly, and capacity for dynamic behavior (Das et al.,
2019).

Conjugation to PEG (i.e., PEGylation) is common in
biopharmaceutical modification (Roberts et al., 2002; Alconcel
et al., 2011), used to overcome aggregation and denaturation
during storage or rapid blood clearance in vivo (JevsìŒEvar et al.,
2010; Aggarwal, 2014). The interaction between end-modified
CB[7]-PEG and the aromatic amino acid residues of proteins
enabled PEGylation without chemical modification, including
for anti-CD20 antibodies similar to clinical Rituximab (Webber
et al., 2016). For small-molecule delivery applications, end-
modification of dendrimeric structures has also been explored,
including poly(amidoamine) dendrimers modified by α-, β-, or
γ-CD that exhibited selective interaction of CD units with small
molecule drugs (Wang et al., 2012). Interchain modifications of
PEG may also be useful, as for self-assembly of polymeric NPs.
CRLX101 (i.e., IT-101) was formed through covalent conjugation
of camptothecin to a linear β-CD-PEG copolymer (Davis, 2009).
Due to interaction of camptothecin and β-CD, the polymer
chains condensed into NPs that modulated the immune response
in tumor-bearing mice, including activation of natural killer cells
and T cell proliferation (Chen Y. F. et al., 2019).

The modification of linear polymers by pendant groups
has been accomplished through several means. Polyrotaxanes
are one such dynamic macromolecular structure, composed of
macrocycles threaded along a polymer chain. When modified
by targeting ligands, such as maltose or mannose, macrocycles
slide along the polymer chain to form multivalent interactions
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with target receptors, improving molecular recognition and
macrophage uptake (Ooya et al., 2003; Shibaguchi et al.,
2019). These methods emphasize how the design of dynamic
supramolecular structures can improve targeted delivery.
In an excellent example of modular conjugation, Jung et al.
covalently modified hyaluronic acid with pendent CB[6]
groups (Jung et al., 2011). The resulting CB[6]-HA was
decorated with FITC for bioimaging and/or a formyl peptide
receptor like 1 (FPRL1) peptide ligand with application
in leukocyte recruitment, both using spermidine (CB[6]
guest) as a supramolecular tether. The multi-functional
approach provides a means of modular on-demand assembly
that can achieve targeting, bioimaging, and drug delivery
in a single supramolecular vehicle; such supramolecular
theranostics have been recently reviewed (Yu and Chen,
2019).

NANOPARTICULATE SYSTEMS

Particulate platforms are among the most explored systemic
drug delivery systems, exhibiting similar effects as polymeric
drug conjugates: enhanced drug solubility, prolonged blood
clearance, and targeted delivery (Mudshinge et al., 2011).
Numerous methods have been developed to leverage guest-
host interactions in nanotherapeutic design, including the self-
assembly of subunits, surface modifications of pre-formed
particles, and nanogels for affinity-based delivery.

An excellent application of supramolecular assembly is in
gene delivery systems, wherein cationic polymers complex
with nucleic acids through electrostatic interactions to form
polyplexes, protecting the cargo from enzymatic degradation
and facilitating cytoplasmic delivery (Lächelt and Wagner,
2015). While branched polyethyleneimine (PEI) is regarded
as the “gold standard” polymeric vehicle, it is limited by
cytotoxicity (Godbey et al., 1999; Lungwitz et al., 2005).
CD-PEI conjugated systems have therefore been established
that decrease the molecular weight of PEI necessary for
effective transfection, hence improving cell viability (Wong
et al., 2018). Similar methods have been applied to other
cationic polymers with comparable limitations, like poly(2-
dimethylaminoethyl methacrylate) (PDMAEMA) and dioleoyl-
3-trimethylammonium propane (DOTAP) (Cherng et al., 1996;
Loh and Wu, 2015; Fan et al., 2018; Zhou et al., 2018).
Arima et al. prepared a sugar-appended CD-dendrimer conjugate
as a macrophage-targeted carrier for systemic delivery of
gene therapies (Arima et al., 2013), while local delivery has
been enabled by CD-PEI conjugates for siRNA delivery from
injectable hydrogels (Wang et al., 2017). In addition, Chang
and colleagues investigated the co-delivery of an anticancer drug
and small interfering RNA (siRNA) in a self-assembled redox-
responsive pillar[5]arene nanocarrier, designed to overcome
chemotherapeutic drug resistance (Chang et al., 2014). In sum,
macrocycles are effective in enhancing gene delivery, due to their
ability to reduce the cytotoxicity of cationic polymeric vectors,
increase membrane permeability, and contribute to targeted or

responsive delivery systems. Further developments in these areas
have been recently reviewed (Xiao et al., 2019a; Haley et al., 2020).

Particulate materials are likewise of utility in vaccine delivery,
aided by modular supramolecular assembly. In anti-tumor
applications, the self-assembly of a MUC1 vaccine nanoparticle
was achieved through CB[8] linkage of an amphiphilic
TLR2 agonist (Pam3CSK4) with the desired antigen. Resulting
nanostructures triggered a more robust immune response in
mice than soluble controls (Gao et al., 2014). Interestingly,
macrocycles may also serve to open new avenues for orally
administered vaccines. He et al. encapsulated an ovalbumin
β-CD complex in chitosan NPs. Oral administration to mice
increased antibody levels in the digestive tract mucosa and
serum, demonstrating the nanostructure’s ability to induce an
adaptive immune response (He et al., 2019). Anti-inflammatory
regulation of the digestive tract has also been achieved, including
by the intravenous administration of rosiglitazone-loaded redox-
responsive nanoparticles that modulated macrophage response
in ulcerative colitis (Sun et al., 2020).

Hydrogel NPs, or nanogels, are composed of cross-linked
polymeric networks that provide a large surface area for
multivalent supramolecular conjugation, making them excellent
materials for drug loading, targeting, and release (Oh et al.,
2008; Suhail et al., 2019). Park and colleagues formulated
liposomal polymeric gels, composed of β-CD (for conjugation
of a TGF-inhibitor) and a polymeric network (for IL-2
encapsulation) that significantly delayed tumor growth by
synergistically activating the innate and adaptive immune
response, increasing survival of tumor-bearingmice (Park J. et al.,
2012). More recently, cyclodextrin nanoparticles were prepared
by crosslinking succinylated β-CD with L-lysine. Resulting
NPs exhibited uptake by myeloid cells (macrophages, dendritic
cells) for the targeted delivery of immunostimulatory drugs,
including TLR7/8 agonists (Kim et al., 2018; Rodell et al., 2018,
2019b), non-canonical NF-κB activators (Koch et al., 2020),
and other drugs (Ahmed et al., 2019). These applications have
demonstrated improved targeting of drugs to macrophage-rich
tissues and a concurrent reduction in off-target drug effects,
particularly for drugs with high-affinity interactions.

BULK MATERIALS FOR LOCALIZED
ACTION

Complementary to systemic drug delivery by soluble polymeric
and nanomaterial systems, macroscale biomaterials provide an
opportunity for highly localized therapeutic delivery. Local
therapy poses potential advantages (Weiser and Saltzman, 2014),
including a reduction in off-target side effects such as adverse
immune suppression or activation, which place patients at risk
for infection or hyperinflammatory conditions (cytokine release
syndrome), respectively. Related applications encompass device
coatings, implantable delivery depots, and injectable hydrogels
that leverage supramolecular guest-host interactions either for
therapeutic drug sequestration or hydrogel crosslinking.

Medical device implantation is commonplace in modern
medicine, such as for diagnostic or reconstructive procedures.
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FIGURE 2 | Schematic representation of local delivery from implantable and injectable hydrogels. (A) Polymer-bound macrocycles form inclusion complexes with

desired deliverables in implantable hydrogels, allowing for (i) sequestration of drugs through guest-host complexation and (ii) affinity-based release by diffusion of

unbound drug molecules. (B) Polymer-bound host macrocycles can form reversible physical bonds with hydrophobic guest molecules, allowing for the formulation of

dynamic supramolecular crosslinks. These shear-thinning and injectable materials enable (i) drug sequestration through guest-host affinity, (ii) diffusive release of

soluble biomolecules, and (iii) dynamic bond rearrangement necessary for cell migration into or out of the scaffold.

Yet, these devices are hampered by biofilm formation: the
colonization of the implant surface by bacteria or fungi (Arciola
et al., 2018). To impede biofilm formation, antifouling and/or
drug-eluting surfaces are of great interest. Covalent tethering
of CD to implant surfaces (El Ghoul et al., 2008; Nava-
Ortiz et al., 2010), as well as polymerized CD coatings have
been investigated (Learn et al., 2020). These methods generally
reduced protein adsorption and cell adhesion. Moreover, they
provided affinity-based release of antibiotic and antifungal drugs,
thereby inhibiting biofilm formation (El Ghoul et al., 2008;
Nava-Ortiz et al., 2010; Thatiparti and Von Recum, 2010; Learn
et al., 2020). In sum, surface modification by macrocycles is a
promising method for the provision of antifouling surfaces that
allows for biofilm inhibition by local prophylactic drug delivery.

To achieve local delivery within tissues, the formation of
hydrogel depots is widely used for various applications. These
water-swollen polymer networks enable controlled release
via diffusive, degradation-mediated, or externally triggered
mechanisms (Li and Mooney, 2016). Small molecule drugs,
however, exhibit rapid diffusive release due to the relatively
large mesh size (Bertz et al., 2013), motivating the development
of hydrogels which include macrocyclic supramolecules for
affinity-based delivery (Figure 2A). Partially crosslinked CDs
and CD-modified gellan gum have been used to develop
injectable polymers useful as viscosupplements with concurrent
intraarticular release of anti-inflammatory glucocorticoids
with applications in osteoarthritis treatment (Rivera-Delgado
et al., 2018; Choi et al., 2020). Researchers have used these
hydrogel formulations to deliver cyclosporin A (CsA), an

immunosuppressant used to prevent organ transplant rejection
and whose systemic administration is limited by off-target
effects (Liddicoat and Lavelle, 2019; Park et al., 2020). Hydrogels
prepared from poly(HEMA-co-HP-β-CD) provided controlled
release of CsA over 2 months in vitro, with potential applications
in subjunctival delivery following corneal graft procedures
(Başbag et al., 2014). For the promotion of burn wound healing,
dual delivery strategies have been described, including in situ
polymerizable hydrogels for affinity-based release of resveratrol
(an anti-inflammatory) and a plasmid encoding vascular
endothelial growth factor (to promote vascularization) (Wang
et al., 2019). Co-delivery of resveratrol and histatin-1 has been
similarly demonstrated, using co-polymerization of acrylated
β-CD and methacrylated gelatin for controlled release (Zheng
et al., 2020).

Injectable hydrogel formulations are a convenient means of
delivery, requiring less invasive procedures for implantation than
solid hydrogels formed ex vivo (Yu and Ding, 2008). Injectable
hydrogels may be delivered in a liquid state, later solidifying
as a result of thermo-responsive condensation or external
triggers (Nguyen and Lee, 2010). In contrast, supramolecular
assembly enables the formation of shear-thinning, injectable
hydrogels (Guvendiren et al., 2012; Rodell et al., 2015a). The
hydrogels can be pre-formed in a syringe with encapsulated
therapeutics, injected into the tissue, and re-form as a depot
for subsequent therapeutic release. One avenue for hydrogel
formation is through pseudo-polyrotaxane formation between
α-CD and PEG (Li et al., 1994). These hydrogels have found
recent use in cancer immunotherapies, where the constraint
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of immune activation to the tumor environment is desirable
to prevent systemic toxicity. Wang and colleagues used a
hydrogel composed of α-CD and 4-arm PEG for local delivery
of an adenoviral vector encoding Flagrp170, a flagellin-
derived NF-κB stimulating sequence shown to enhance tumor
immunogenicity (Wang et al., 2020). In a murine melanoma
model, the hydrogel improved vector retention at the tumor
site, facilitating local immune activation and suppression of
tumor growth. CDs have also been recently used to create
a hydrogel-particle composite for synergistic photothermal
immunotherapy. In this work, IR820-α-CD was used in
hydrogel formation, and localized heating by IR light induced
tumor cell death; embedded CpG nanoparticles supported the
immunotherapeutic effect of tumor-derived antigens (Dong
et al., 2019).

The modification of polymers by pendant guest and host
groups is an alternative means of constructing supramolecular
hydrogels (Rodell et al., 2015a; Xiao et al., 2019b). Hydrogels
crosslinked by β-CD and adamantane interaction have been
widely investigated as injectable therapeutics (Loebel et al., 2017),
including for the delivery of small-molecule drugs (Mealy et al.,
2015; Zheng et al., 2020), biomolecules (Rodell et al., 2013, 2015b;
Soranno et al., 2016), extracellular vesicles (Chen et al., 2018;
Chung et al., 2020), and cells (Gaffey et al., 2015, 2019; Sisso et al.,
2020) (Figure 2B). The delivery of IL-10 has been demonstrated,
both from these guest-host hydrogels in the injured kidney
(Rodell et al., 2015b; Soranno et al., 2016), and from related
supramolecular hydrogel/microgel composites in the infarcted
heart (Chen M. H. et al., 2019) as a means of promoting
tissue healing. Similar guest-host hydrogels may be formed
through the association of CB[n] hosts with polymer-bound
guests (Appel et al., 2010), which has been used to improve local
cell retention and in the development of numerous responsive
drug delivery systems (Park K. et al., 2012; Ding et al., 2019).
In an interesting application, guest-host hydrogels were prepared
from the interaction of gelatin with photocrosslinkable acrylated
β-CD as a 3D co-culture platform for TAM repolarization.
IFN-γ reverted macrophages to a pro-inflammatory phenotype
in vitro and decreased tumor cell migration and proliferation.
Hydrogels were readily disassembled by competitive binding of
free adamantane, allowing co-cultured cells to be transplanted
into tumor growth models in vivo, where TAM repolarization
inhibited tumor growth (Huang et al., 2020). Such platforms are
a valuable drug discovery tool, and such accessible platforms
for 3D cell culture are highly desirable (Caliari and Burdick,
2016; Rodell et al., 2019a). These self-assembling systems may
furthermore be useful for immune modulation in vivo. For
example, Widener et al. recently reported the preparation of
granular hydrogel assemblies, wherein microgels were separately
modified by β-CD or adamantane groups to yield self-assembling
and injectable granular assemblies (Widener et al., 2020). The
highly interconnected pores between the microgels allowed rapid
immune cell migration andmay provide an excellent platform for
cellular reprogramming. Indeed, related polymer-nanoparticle
composites enable recruitment and differentiation of discrete cell

subsets (Fenton et al., 2019), and microgel architecture itself can
promote distinct changes in the secretory profile of cells upon
their arrival (Caldwell et al., 2020).

CONCLUSION

Supramolecular chemistry has emerged as a new frontier
for biomedicine, providing a synthetically tractable route to
the design of dynamic supramolecular, macromolecular, and
multiscale material systems. By appropriate use of the custom
design of macrocyclic building blocks, influence over material
properties and biological outcomes is made possible. In immune
engineering, these tools uniquely enable access to the same
thermodynamic principles that underly biological structures,
which has rapidly led to the development ofmethods to overcome
previously insurmountable pharmacological obstacles, including
drug solubility and instability or roadblocks to physiological
transport. Moreover, the expanding toolbox of macrocyclic
biomaterials now accessing multifunctional materials, such as
immunotheranostics that perpetuate the combined study of
vehicle and drug pharmacokinetics alongside pharmacodynamic
outcomes. Such platforms will allow the unification of cell and
tissue level response with vehicle and drug biodistributions,
which previously have been difficult to access (Rodell et al.,
2020). Moreover, the modularity of macrocyclic interactions
perpetuates the development of delivery systems with tunable
drug compositions. Importantly, cargo sequestration typically
requires no chemical modification and therefore forgoes the
formation of new chemical entities. In contrast, the addition
of well-understood guest anchors to existing drugs also allows
for tunable drug affinities for applications in controlled release,
responsive delivery, and in situ refillable drug reservoirs
(Rodell et al., 2019b; Zou et al., 2019; Dogan and von
Recum, 2020; Dogan et al., 2020). Looking forward, these
tools may be leveraged to directly address shortcomings
in therapeutic efficacy, off-target drug effects, and dosing
frequency that hamper the success of immunotherapeutic drugs
in practice.
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