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Objective. Hypercholesterolemia is a strong risk factor for cardiovascular diseases. Side effects associated with the use of
pharmaceutical agents can cancel out their benefits. Dietary management of hypercholesterolemia is, therefore, receiving much
attention due to fewer side effects. In this study, we explored the effectiveness of edible bird’s nest (EBN) in the prevention of
hypercholesterolemia in rats.Methods. High-cholesterol diet (HCD) (4.5% cholesterol and 0.5% cholic acid) with or without EBN
(low (2.5%) or high dose (20%)) was given to rats for 12 weeks, and their weights were observed. Simvastatin (10mg/kg/day) was
administered for the same period as a control drug. Serum and tissue samples were collected at the end of the study, from which
biochemical parameters (lipid profiles, oxLDL, liver enzymes, urea, creatinine, uric acid, and lipase activity) and hepatic mRNA
levels were measured. Results. ,e HCD group had higher levels of serum lipids, liver enzymes, uric acid, urea, and lipase activity
compared with those of the other groups. ,e hepatic mRNA levels of cholesterol metabolism genes (APOB, PCSK9, HMGCR,
LDLR, and CYP7A1) in the HCD group also tended toward increased cholesterol production and reduced cholesterol clearance.
EBN, especially the highest dose, attenuated the HCD-induced changes, partly through improving the transcriptional regulation
of hepatic cholesterol metabolism genes with fold changes of 0.7, 0.6, 0.5, 1.7, and 2.7, respectively, in comparison to the HCD
group. In fact, EBN produced better results than simvastatin. Conclusion. ,us, the results suggest that EBN can regulate
cholesterol metabolism and, therefore, be a source of functional ingredients for the management of hypercholesterolemia.

1. Introduction

Hypercholesterolemia is a common metabolic problem that
is implicated in the development of cardiovascular diseases
(CVD) [1]. Genetic predisposition can be the basis of hy-
percholesterolemia, although the majority of metabolic
perturbations leading to hypercholesterolemia result from
lifestyle factors. Accordingly, dietary choices and level of

physical activity are strong determinants of the levels of
lipids in the blood of individuals [2]. In addition to CVD,
hypercholesterolemia tends to develop in patients with other
metabolic diseases like type 2 diabetes and metabolic syn-
drome [3]. Clinical diagnosis of hypercholesterolemia is
performed using the lipid profile levels, in which case ele-
vated serum total cholesterol (TC), low-density lipoprotein
and triglycerides, and decreased serum high-density
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lipoprotein have been associated with the development of
clinical disease and poor outcomes if not managed
appropriately.

Lipid-lowering drugs have been used to control the risk
of diseases caused by hypercholesterolemia, although suc-
cess has been limited due to side effects or lack of efficacy [4].
What makes clinical management particularly challenging is
the underlying metabolic perturbations leading up to overt
hypercholesterolemia. Transcriptional changes in several
cholesterol metabolism genes have been shown to underlie
the changes in lipid profiles, and as such, effective man-
agement of hypercholesterolemia should not only entail the
biochemical regulation of serum lipids but also the regu-
lation of lipid-producing machinery. ,e pharmaceutical
agents that target a single biochemical process are limited in
their efficacy due to this challenge, and in recent years,
dietary management has received attention with a view to
targeting multiple biochemical and possibly transcriptional
mechanisms that underlie hypercholesterolemia. ,us,
foods with multiple bioactive compounds have been pro-
posed for managing diseases with multiple metabolic per-
turbations [5, 6].

Edible bird’s nest (EBN) is produced by swiftlets and has
been consumed for over a thousand years in China. It is
increasingly becoming a famous nutraceutical in Asia as a
result of its health-promoting effects. Although it has been
used in the past, based on traditional belief, scientific evi-
dence is now providing an explanation for its efficacy [7].We
have previously demonstrated the anti-inflammatory, anti-
oxidative, anticoagulant, and antihyperglycemic effects of
EBN in high-cholesterol diet-fed rats [8–10]. In the present
study, we show that EBN is also able to prevent hyper-
cholesterolemia in HFD-fed rats through the regulation of
hepatic cholesterol metabolism.

2. Materials and Methods

2.1.Materials. EBN was purchased from Blossom View Sdn.
Bhd (Terrengganu, Malaysia) while simvastatin was pur-
chased from Hangzhou MSD Pharmaceutical Co., Ltd
(Hangzhou, China). Standard rat pellets were purchased
from Specialty Feeds (Glen Forrest, WA, USA), cholesterol
was purchased from Amresco (Solon, OH, USA), cholic acid
was purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA), and palm oil was purchased from Yee Lee Edible
Oils Sdn. Bhd. (Perak, Malaysia). Analytical grade ethanol
was purchased from Merck (Darmstadt, Germany), while
RCL2 solution was purchased from ALPHELYS (Toulouse,
France). Lipid profile kits were purchased from Randox
Laboratories Ltd. (Crumlin, County Antrim, UK), while an
oxLDL ELISA kit was purchased from Elabscience Bio-
technology Co., Ltd (Wuhan, China). An RNA extraction kit
was purchased from RBC Bioscience Corp. (Taipei, Taiwan),
and a GenomeLab™ GeXP Start Kit was purchased from
Beckman Coulter Inc (Miami, FL, USA).

2.2.AnimalHandlingandFeeding. In this study, we followed
the methods of Hou et al. [11]. Similarly, we have previously

reported the compositional analysis of the EBN sample used
in this study [8]. Accordingly, the ethical permission for the
animal study was given by the Animal Care and Use
Committee (ACUC) of the Faculty of Medicine and Health
Sciences, Universiti Putra Malaysia (Project approval
number: UPM/IACUC/AUP-R011/2014). ,irty Sprague-
Dawley rats (10 weeks old, 230–280 g) were handled as
stipulated by standard guidelines for handling animals. ,e
rats were housed at 25± 2°C, 12/12 h light/dark cycle and
allowed to acclimatize for 2 weeks with free access to normal
pellets and water. ,e rats were then divided into 5 groups:
the normal group fed with normal pellet; the HFD group fed
with HFD containing 4.5% cholesterol and 0.5% cholic acid;
the HFD+ SIM group fed with HFD and simvastatin (10mg/
kg/day); and 2 EBN groups fed with low- (2.5%) or high-
dose (20%) EBN and HFD.,e intervention lasted 12 weeks,
and body weights were measured weekly while food intake
was calculated every day by subtracting the leftover from
what was added the previous day. Rats were sacrificed at the
end, and their blood and tissue samples were collected for
further analyses.

2.3. Biochemical Analyses. Serum samples were analyzed for
lipid profile (TC, LDL, HDL, and triglyceride), liver enzymes
(ALT, AST, and ALP), LDH, urea, creatinine, uric acid, and
lipase activity using Randox analytical kits on Selectra XL
instrument (Vita Scientific, Dieren, the Netherlands).

2.4. SerumOxidizedLDL. Serum oxidized LDL was analyzed
using an oxLDL ELISA kit according to the manufacturer’s
recommendations. Absorbances were read using a BioTeK
Synergy H1 Hybrid Reader (BioTek Instruments Inc.,
Winooski, VT, USA) at the recommended wavelength
(450 nm), and results were analyzed on https://www.
myassays.com using linear regression (R2 � 0.9989,
y� 0.1258x− 0.0041).

2.5.Histology. Liver samples were fixed in 10% formalin and
used for histological evaluation using an automated tissue
processor (Leica TP 1020). Slides were then stained with
haematoxylin and eosin, and examined under a standard
light microscope.

2.6. Gene Expression

2.6.1. Primer Design. ,e primers used in this study were
designed with the GenomeLab eXpress Profiler software
using input sequences from the National Center for Bio-
technology Information website (https://www.ncbi.nlm.nih.
gov/nucleotide/). ,e primers were tagged with an 18-nu-
cleotide universal forward and a 19-nucleotide universal
reverse sequence, respectively (Table 1). ,ey were syn-
thesized by Integrated DNA Technologies (Singapore).

2.6.2. RNA Extraction, Reverse Transcription, and PCR.
RNAwas extracted using an RNA isolation kit (RBC Biotech
Corp., Taipei, Taiwan) and diluted to 20 ng/mL. Reverse
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transcription and PCR programs were performed according
to the GenomeLab™ GeXP Start Kit protocol (Beckman
Coulter, USA), as shown in Table 1.

2.6.3. GeXP Genetic Analysis System and Multiplex Data
Analysis. A sample loading solution (38.5 μL) and DNA size

standard 400 (0.5 μL) (GenomeLab GeXP Start Kit; Beckman
Coulter, Inc, USA) were mixed with 1 μL PCR products, and
the mixture was loaded onto a 96-well sample plate for
analysis on the GeXP genomelab genetic analysis system
(Beckman Coulter, Inc, Miami, FL, USA). Gene expression
results were analyzed with the Fragment Analysis module of
the GeXP system software to get the real peak for the
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Figure 1: Serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH)
in high-cholesterol diet-fed rats after 12 weeks of intervention. Bars with different letters in each panel indicate a statistical difference
(p< 0.05).
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each panel indicate a statistical difference (p< 0.05).
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corresponding gene, and the data were exported and nor-
malized on eXpress Profiler software [10].

2.7. Data Analysis. Data are presented as a mean± standard
deviation. A normality test was conducted to confirm
normal distribution, and comparisons of the means were
performed using a one-way analysis of variance (ANOVA)
on SPSS 17.0 software (SPSS Inc., Chicago, IL, USA). ,e
significance of the difference between the comparisons was
determined by Tukey’s range test. p< 0.05 was considered
significantly different.

3. Results and Discussion

3.1. Food Intake and Body Weight. Table 2 shows that the
food intake (calories) of the different groups during the
intervention period was similar. Similarly, the body weights
after 12 weeks are shown in Table 2. No significant differ-
ences were observed between the groups after 12 weeks of
intervention although the percentage body weight changes
were different. ,e HFD, HFD+ SIM, HFD+EBNL, and
HFD+EBNH groups had 50%, 40%, 45%, and 43% changes
in body weights, respectively.

3.2. Lipid Profile. Table 2 also shows the lipid profiles of the
different groups. ,e normal group had a significantly lower
cholesterol level than the other groups.,e cholesterol levels
of the EBN groups were lower than those of the HFD group,
although it was only significantly so for the HFD+EBNH
group (p< 0.05), suggesting that the high dose of EBN used
in this study was effective in preventing hypercholesterol-
emia. Simvastatin is used to manage hypercholesterolemia,
and the present results demonstrate its effectiveness [12].
However, the results from this study also suggest that EBN
may be as effective as simvastatin in preventing hyper-
cholesterolemia, possibly because it contains multiple bio-
active compounds that can regulate different processes [13].
,ere was a significant increase in triglycerides level of the
HFD group compared to that of the control group. ,is
effect was ameliorated by the administration of both low and
high doses of EBN as similarly observed with simvastatin. In
addition, elevated levels of LDL are a known risk factor for
cardiovascular diseases [14, 15]. However, as opposed to
simvastatin, a high dose of EBN significantly reduced the
elevated LDL levels observed in the HFD group. ,us, EBN
plays a potential role in preventing cardiovascular diseases.

3.3. Liver Enzymes, Urea, and Creatinine. Serum alanine
transaminase (ALT), aspartate transaminase (AST), alkaline
phosphatase (ALP), and lactate dehydrogenase (LDH) are
important liver enzymes that are used clinically to determine
the health status of the liver [16]. Normally, liver enzyme
levels remain within a normal range in the absence of
damage in the liver. In the presence of a toxic factor, they
become deranged [17]. Hyperlipidemia has been associated
with elevated liver enzymes due to fatty liver deposits [18]. In
this study, the liver enzyme levels were significantly different

between the normal and HFD groups (Figure 1), suggesting
that hyperlipidemia which was induced by HFD caused liver
damage. Although simvastatin is effective in managing
hypercholesterolemia, it could not ameliorate the negative
effects of HFD on liver function enzymes. ,is is demon-
strated by the elevated enzyme levels in the present study.
EBN groups, on the other hand, attenuated the HFD-in-
duced deterioration of liver enzymes, significantly better
than the HFD and HFD+ SIM groups.

Similarly, EBN attenuated HFD-induced kidney damage
(Figure 2). ,e kidneys play an important role in removing
metabolic wastes from the body, and they are common
targets of toxic damage. Studies have demonstrated that
hyperlipidemia often leads to kidney damage [19] similar to
what was observed in the HFD group. Higher serum lipid
levels may have increased the viscosity of blood in the HFD
group leading to reduced blood flow to the kidneys. ,e
kidneys are sensitive to the reduced blood flow volume and,
as such, may have resulted in increased urea and uric acid
levels.,e improved urea and uric acid levels in the EBN and
simvastatin groups may also have been a result of the
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improved lipid profiles and subsequently reduced blood
viscosity [20, 21].

3.4. Lipase Activity. Lipase is an esterase enzyme that cat-
alyzes the hydrolysis of lipids and plays an important role in
the digestion, transport, and processing of dietary lipids [22].
Increased lipase activity is most commonly associated with
pancreatitis [22]. ,is study showed a significant decrease in
the level of triglycerides in the EBN groups compared to that
of the HFD group. Moreover, coupled with the increased
triglycerides levels in the HFD group, elevated levels of lipase
activity may also indicate lipid abnormalities as seen in the
present study. Figure 3 shows the results of the lipase ac-
tivity. ,e HFD group had a higher level than the normal
and HFD+EBNH groups. ,e reason may be due to the
higher level of lipids which increased the burden on the
pancreas, thus stimulating the release of more lipase.
Moreover, this can also be explained by the documented
links between hypertriglyceridemia and pancreatitis [23].

3.5. OxLDL. OxLDL is produced from the oxidative mod-
ification of LDL and has been shown to cause more damage
than LDL. OxLDL has been demonstrated to play a key role
in the development of atherosclerosis, and its circulating
concentrations have been shown to reflect the state of
pathological atherosclerosis and the risk of coronary artery
disease [24]. Figure 4 shows that the HFD group had a
significantly higher oxLDL level than normal and
HFD+EBNH groups. ,is suggests a high risk of CVD in
the HFD group, which can be attenuated by EBN.

3.6. Histological Analyses. Fatty liver is often seen in hy-
perlipidemia, as seen in the HFD group in the present study
(Figure 5). ,e histological data corroborate the hyper-
cholesterolemia in the HFD and the worsened liver enzymes.
Conversely, the EBN group had fewer fatty deposits in the
liver confirming the effectiveness of EBN in attenuating
HFD-induced lipid abnormalities.

HCD

EBNL EBNH

SIM

Normal

Figure 5: ,e histological changes in the liver of different groups.
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3.7. Hepatic mRNA Levels of Lipid Metabolism Genes. ,e
HFD group worsened the transcriptional regulation of
cholesterol-related genes, which were attenuated by EBN
(Figure 6). ,ese transcriptional changes possibly underlie
the lipid profile changes observed in the groups. HFD
feeding downregulated the expressions of LDLR and
CYP7A1 genes, which are involved in the mediation of
endocytosis of cholesterol-rich LDL and cholesterol syn-
thesis, respectively. Moreover, low LDLR levels have been
associated with high serum cholesterol levels due to reduced
LDL clearance and have been linked to the progression of
atherosclerosis [25], while upregulation of CYP7A1 con-
tributes to increased bile acids production and reduced
cholesterol levels [26]. Furthermore, HFD feeding upregu-
lated the PCSK9, APOB, and HMGCR genes, which are key
cholesterol metabolism genes. PCSK9 regulates cholesterol
homeostasis by inducing LDLR degradation [27, 28], which
may then prevent the clearance of LDL from the blood and
eventually lead to hypercholesterolemia [28]. HMGCR, on
the other hand, is the rate-limiting enzyme in cholesterol
synthesis through the mevalonate metabolic pathway, whose
expression is closely regulated with that of LDLR. HMGCR
activity can be suppressed by cholesterol synthesis, leading
to an increased hepatic LDLR expression. ApoB is the
primary apolipoprotein of LDL, IDL, VLDL, and chylo-
microns, which is responsible for transporting lipids from
the liver to the cells. Increased ApoB levels have been as-
sociated with higher concentrations of LDL and an increased
risk of CVD [29] and insulin resistance [30]. Overall, the
HFD-induced lipid perturbations were regulated by EBN
similar to simvastatin indicating that EBN was effective in
regulating hepatic cholesterol metabolism.

4. Conclusions

In the present study, we have demonstrated that HFD-in-
duced hypercholesterolemia worsened liver and kidney
functions, partly through dysregulation of hepatic choles-
terol metabolism. EBN, on the other hand, attenuated HFD-
induced lipid perturbations partly via transcriptional reg-
ulation of cholesterol metabolism genes as against simvas-
tatin used to manage hypercholesterolemia which could
have acted through a different mechanism. EBN can,
therefore, be used as a supplement to lower the risk of CVD
due to lipid abnormalities.
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TC: Total cholesterol
TG: Triacylglycerol.
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