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Abstract: Neurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition
syndromes, affecting up to 1 in 2500 individuals. Up to half of patients with NF1 develop benign
nerve sheath tumors called plexiform neurofibromas (PNs), characterized by biallelic NF1 loss. PNs
can grow to immense sizes, cause extensive morbidity, and harbor a 15% lifetime risk of malignant
transformation. Increasingly, molecular sequencing and drug screening data from various preclini-
cal murine and human PN cell lines, murine models, and human PN tissues are available to help
identify salient treatments for PNs. Despite this, Selumetinib, a MEK inhibitor, is the only currently
FDA-approved pharmacotherapy for symptomatic and inoperable PNs in pediatric NF1 patients.
The discovery of alternative and additional treatments has been hampered by the rarity of the disease,
which makes prioritizing drugs to be tested in future clinical trials immensely important. Here, we
propose a gene regulatory network-based integrated analysis to mine high-throughput cell line-based
drug data combined with transcriptomes from resected human PN tumors. Conserved network mod-
ules were characterized and served as drug fingerprints reflecting the biological connections among
drug effects and the inherent properties of PN cell lines and tissue. Drug candidates were ranked,
and the therapeutic potential of drug combinations was evaluated via computational predication.
Auspicious therapeutic agents and drug combinations were proposed for further investigation in
preclinical and clinical trials.

Keywords: plexiform neurofibromas; neurofibromatosis type 1; drug screening; gene network

1. Introduction

Neurofibromatosis Type 1 (NF1) is a hereditary tumor predisposition syndrome with
an incidence of 1 in every 2500 newborns. Approximately half of NF1 patients will develop
a benign plexiform neurofibroma (PN), and 15% of PNs transform into a malignant pe-
ripheral nerve sheath tumor (MPNST) [1,2]. Because NF1 is a lifelong genetic syndrome,
this condition uniquely requires treatments that confer a minimal side effect profile in
order to permit long-term or recurrent drug administration [3]. The loss of NF1 potentiates
RAS/MEK signaling, which is the hallmark molecular derangement in benign tumors
arising from the Schwann cell lineage [4]. Despite the apparent simplicity of this pathoeti-
ology, identifying effective pharmacotherapy has vexed the medical community. Indeed,
Selumetinib is the sole FDA-approved drug to treat PNs, and it was not approved until
2019, and only for pediatric patients [5]. New drug targets and drug combinations are
urgently needed to treat PNs and potentially inhibit or delay malignant progression in
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both children and adults. Drug development for rare conditions such as PNs is, however,
limited by poor patient accrual, given low numbers of symptomatic tumors as well as geo-
graphic dispersion. Computer algorithms that can boost the predictive power of preclinical
models are desperately needed to better utilize patient resources and time to develop novel
treatments for PNs.

Recent scientific and technological advancements have exponentially expanded the
capacity of preclinical drug testing to identify plausible treatments for human diseases;
however, these studies rarely translate into novel medications. The challenge of high-
throughput preclinical studies to accurately mimic effective human treatments is likely
related to the inability of in vitro conditions to approximate the physiologic and molecular
milieu of the in vivo tumor microenvironment. Recently, a PN cell line-based drug screen-
ing was developed by Ferrer et al., which utilizes several immortalized cell lines tested
with the MIPE 4.0 small chemical library [6]. While providing a much-needed platform for
drug development, the inherent heterogeneity between different cell lines and the use of
non-physiologic conditions in assays can introduce significant variability in the apparent
cytotoxic effects of candidate drugs, which undermines downstream experimental verifica-
tion [7]. This may explain the observation that while multiple drugs inhibit the hyperactive
RAS/MEK signaling of NF1 tumor cells in cell culture, most tyrosine kinase inhibitors
fail in vivo and in clinical trials [8,9]. So far, Selumetinib remains the most effective and
best-tolerated MEK inhibitor in PN patients.

Transcriptome-based gene network analysis is a commonly employed tool for under-
standing essential molecular signaling within model systems [10,11]. Gene network-based
methodology can efficiently identify conserved signaling interactions by identifying co-
regulated genes across different model organisms and reveal the correlation between gene
networks and biological traits such as disease subtypes and patient survival. It has been
employed in the study of glioblastoma [12], non-small-cell lung cancer [13], and osteosar-
coma [14]. We aim to use this methodology to reduce background noise in the data and
identify salient drug responses across different PN cell lines, and to highlight key molecular
pathways that are conserved between cell lines and primary tumors that can be targeted to
maximize the success rate of potential drug candidates. Identifying consensus gene net-
works through this methodology is a valuable tool to better predict efficacious treatments
and thus legitimize subsequent validation studies in animals and humans.

Drug combination therapy serves as a fundamental strategy for cancer treatment
in order to improve tumoricidal efficacy while reducing toxicities associated with
high-dose drug monotherapy [15–17]. Pathway-based vertical drug combinations
that target one major signaling cascade at upstream and downstream effectors or
horizontal combinations that target parallel signaling cascades simultaneously have
been adapted to optimize drug treatment strategies [18,19]. Additionally, combining
drugs that are already FDA-approved, or that are actively being tested in clinical
trials for other tumor types, may provide therapeutic shortcuts for drug development
of rare tumors such as PNs [16]. Recent computational advancements have enabled
more eloquent drug combination predictions using experimentally measured high-
throughput in vitro monotherapy response data [20–23]. With a well-planned analytic
approach, these methodologies can significantly expand treatment options for rare
diseases and prioritize promising combinations for experimental testing. Therefore,
we propose a systematic analysis method to mine data from PN drug screening and
PN transcriptomes in order to characterize the drug response fingerprint, rank drug
candidates according to conserved gene regulation network modules across human
PNs and multiple cell lines, and reveal promising drug combinations guided by the
molecular drug fingerprints for the treatment of PNs in NF1 patients.
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2. Materials and Methods
2.1. Data and Code Availability

All analyses were performed under the R programming environment. Key packages
used include synapser [24], tidyverse [25], dplyr [26], WGCNA [27], ggplot2 [28], enrich-
plot [29], and ConsensusClusterPlus [30]. The experimental data were provided by the
NFhackathon 2020 competition, which were downloaded from https://www.synapse.org
(syn4940963 and syn22336443, accessed on 1 October 2020). The code of the NFhackathon
project can be found at https://git.io/Jk2iR (accessed on 25 April 2022).

2.2. Drug Screening, PN Cell Lines, and Primary PN Tissue Gene Expression Data

The transcriptome data of PN cell lines were downloaded through NTAP PN
Cell Culture Data Portal via syn22351884 [31] and NFhackathon 2020 via syn22336443
(https://www.synapse.org, accessed on 1 October 2020). The drug screening data
were contributed by Ferrer et al. using the Mechanism Interrogation PlatE (MIPE 4.0)
library [6]. This library comprises 1912 small molecules with different categories. Most
of the drugs in this library have known targets, and research has already demonstrated
effective tumoricidal activity for specific cancer types. We queried drug information
from the ChEMBL database, a manually curated database of bioactive molecules main-
tained by the European Bioinformatics Institute [32]. The statical term pCHEMBL is
unique to this database and is designed to roughly compare efficacy across different
molecules by standardizing the half-maximal response concentration, potency, and/or
affinity on a negative logarithmic scale. We filtered our drug data using a cutoff of
pChEMBL > 6. This cutoff empirically increases the reliability of the curated anno-
tation. The general drug description of the MIPE 4.0 library is downloaded through
syn17091507. In total, seven PN-derived cell lines were used, including control cells
and multiple tumor lines, and of these, five cell lines had available transcriptome data,
which were downloaded via syn22351884, including ipNF05.5 (mixed clone), ipNF05.5
(single clone), ipNF95.11bC, ipNF95.6, and ipnNF95.11c [6,33].

The human primary PN gene expression profiles used in this study were described in
Jessan et al. [34]. Transcriptome data of thirteen human primary PN samples were charac-
terized in their study, and the normalized data were downloaded through syn6130081.

2.3. Construction of Conserved Gene Regulation Networks

The gene regulation networks were constructed using the WGCNA package. The
standardized gene expression data of five PN cell lines were first filtered by the Mean
Absolute Deviation (MAD > 1000) to enrich highly expressed and variable genes and were
then merged with the primary tumor transcriptomes to build a scale-free network. A
soft-thresholding power of 8 was chosen based on the criterion of approximate scale-free
topology [35]. The consensus gene regulation networks between PN cell lines and PN
tumor tissues were established as 26 network modules and were labeled randomly using
different color names. Nine modules were determined to be conserved, as defined by the
Z-summary score >5 according to the package manual.

2.4. Construction of Consensus Drug Clustering

To impartially identify drug clusters with consistently similar transcriptional pat-
terns, we adapted the ConsensusClusterPlus package [30]. Drug clusters were determined
according to the correlation coefficients between drug responses and the eigengene of
conserved gene regulatory network modules. Parameters were tested according to the
package manual.

https://www.synapse.org
https://git.io/Jk2iR
https://www.synapse.org
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2.5. Drug Combination Prediction

The single drug dose–response data were downloaded from https://www.synapse.org
with syn5522627 (accessed on 1 June 2021). For each drug in the screening, drug responses
were recorded as the cell viability at eleven different concentrations (µM), which were
0.000780415, 0.007023779, 0.002341244, 0.02107129, 0.063213917, 0.189641751, 0.5689253,
1.706775899, 5.120327696, 15.36098309, and 46.08294931. The two extreme concentrations in
the screening, 0.000780415 and 46.08294931, were removed from the predictions. IDAPre-
dict.2drug function package was used to predict the drug combination between DrugClus-
ter pairs [23]. Combinations were ranked according to IDAcombo scores, with predicted
drug concentrations.

3. Results
3.1. Design Principle and Workflow for Prioritized Drug Candidate Lists

Tumor heterogeneity is one significant challenge when interpreting screening-
based drug discovery. The data adapted in this analysis used human immortalized
cell lines generated from primary PNs [33]. In addition to inter-individual germline
genetic diversity contributing to physiologic differences across the cell lines, these
cell lines were genetically modified to ensure that they can be cultivated indefinitely
for the purpose of longitudinal drug studies. Immortality was achieved through
genetic overexpression of mouse CDK4 and human TERT genes. While it is a common
scientific practice to introduce such genetic manipulations in order to immortalize cell
cultures, doing so alters the native biologic state and confounds the interpretation of
drug responses across different cell lines. Thus, whereas the technique is necessary, it
also presents additional challenges for interpreting data and verifying pertinent drug
candidates. To tackle this, we identified consensus gene network modules between PN
cell lines and primary PN tumors using the WGCNA package in the R programming
environment [27,36]. Furthermore, we hypothesized that correlation between drug
responses in cell culture and gene expression in preserved gene network modules can
elucidate which drugs are more likely to recapitulate tumoricidal activity in follow-up
in vivo experiments. In vitro drug cytotoxicity data were then correlated with the
gene expression eigengenes of each preserved module. The resulting drugs were then
submitted to unsupervised clustering to determine drug clusters that impact similar
gene network modules. Drug fingerprints were defined according to the pattern of
correlation coefficiency. Candidate List-1 summarizes the top-ranked candidates from
each drug cluster.

Drug combinations were evaluated by the IDAcombo package [23]. This algorithm
relies on the principle of independent drug activation (IDA), which assumes that the
expected effect of a combination of non-interacting drugs is best defined by the more
efficacious drug in the combination. Whereas individual cell lines exhibit different
sensitivities to the same drug combination, the overall average response across multiple
cell lines is almost always greater than that of monotherapy because each cell line is
proffered two or more drugs to which it may respond [37]. We predicted combinations
with the guidance of drug fingerprints, and the promising drug combinations with
Selumetinib were further prioritized as the Candidate List-2. The workflow utilized is
demonstrated in Figure 1.

https://www.synapse.org
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Figure 1. Analysis pipeline to prioritize candidates and drug combinations (A). Conserved gene 
expression network modules were constructed by cross-referencing the transcriptomes of 

Figure 1. Analysis pipeline to prioritize candidates and drug combinations. (A) Conserved gene ex-
pression network modules were constructed by cross-referencing the transcriptomes of immortalized
human PN cells against resected PN tumors. Drugs that reduced the median viability of cell lines
by more than 55% from the MIPE 4.0 library were selected for further analysis. Correlations were
then determined between the conserved gene modules and drug responses. Drugs were clustered
according to these correlations to generate a drug response fingerprint. The drugs in each cluster
were then limited to those with FDA approval or being actively studied in clinical trials (Candidate
List-1) (B). Both drug fingerprint and the IDAcombo algorithm were used to predict drugs that are
likely to be complementary to Selumetinib in Candidate List-2.

3.2. Preserved Network Modules Reveal Biological Consistencies across PN Models

The transcriptomes of cell lines used in the drug screening and the untreated surgically-
resected primary PN from Jessen et al. were downloaded through the NF Data Portal [34].
To identify the consensus gene regulatory network modules among PN cells and primary
tumor tissue, we constructed a block-wise network using the WGCNA package (see Meth-
ods, Supplementary Figure S1). Twenty-six network modules were defined with various
module sizes and preservation as Z-summary scores (Supplementary Table S1). Modules
were labeled with different color names, and the module eigengene was defined as the first
principal component of each module. The eigengene adjacency value codified the consen-
sus preserved gene network modules from both PN cells and tumor tissue (Figure 2A–C).
The modules with Z-summary scores of more than 5 were selected as preserved modules
among the different PN models, which included brown, blue, magenta, tan, pink, turquoise,
salmon, yellow, and midnight-blue modules (hereafter referred to as “preserved modules”,
indicated with arrows in Figure 2A).
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Figure 2. Preserved network modules in PN cells and primary tumors. (A–C) Eigengene adjacency
demonstrated the preserved gene network modules (indicated by black arrows in (A)) from PN cells
(B) and tumor tissue (C). (D,E) Gene ontology enrichment analysis of preserved blue module (D) and
magenta module (E) under the biological process category (GO:BP).

To interpret the biological features in preserved modules, we performed gene ontology
(GO) analysis. The top enriched GO terms from the biological process category (GO:BP)
in each conserved module are listed in Supplementary Table S2. The highly enriched
GO:BP terms of blue and magenta modules were shown in Figure 2D,E. The “Ras protein
signal transduction” term is highly associated with the blue module, reflecting the cardinal
feature of NF1-associated PNs. Interestingly, the magenta module is strongly enriched
in a series of terms describing development regulation of the peripheral nervous system
and interactions between neurons and Schwann cells. Specifically, in magenta, a subset of
neural crest progenitor markers, such as NES, SOX10, ERBB3, and NGFR, were reported
as highly expressed markers of Schwann cell progenitors and the signatures of stem-like
tumor cells in NF1 tumors [4,38]. Genes in different preserved modules are summarized in
Supplementary Table S3.

These results are consistent with the known pathoetiology of PNs that (1) loss of
function of the NF1 gene potentiates the Ras pathway signaling [39] and (2) Schwann cell
progenitors can serve as the cell of origin of PN and subsequently recruit NF1-heterozygous
non-neoplastic cells into the tumor microenvironment [38]. The preserved modules from
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unsupervised analysis independently recapitulate PN tumor biology, providing validation
for using this method to direct drug selection for further study.

3.3. Preserved Module-Based Drug Fingerprints and Candidate List-1

Drug responses in the screening were downloaded from the NF Data Portal. We
preselected drugs by setting a cutoff of cell viability <55% for the inhibitory median
response across PN cell lines. The inhibitory median response is defined by the area
under the curve, reflecting the viability of the cells in the screening. This filter yielded
1831 drug candidates from 1912 oncology-focused compounds within the MIPE 4.0 library.
The Pearson correlations between the eigengene of each preserved module and the response
to each preselected drug were calculated, as demonstrated in a heatmap in Supplementary
Figure S2. We then performed consensus clustering analysis on those drugs according to
the correlation coefficiency (see Methods) and identified six drug clusters (Figure 3A). For
each drug, the correlation coefficients related to each PN preserved network module serve
as a unique drug fingerprint relevant to the biology of PNs (Figure 3B).

Figure 3. Consensus clustering analysis using the correlations between drug responses and
eigengenes of preserved modules. (A) The consensus clustering plot revealed the 6 clusters.
(B) The heatmap demonstrated unique patterns as drug fingerprints using correlations between
the drug responses and preserved modules.

In the MIPE4.0 library, 20% of drugs are currently FDA-approved, and 40% are under-
going active testing in clinical trials (2019 annotations). Limiting drug candidates to these
two categories will allow for more immediate translation of our findings to clinical trials as
the human safety and tolerability data are already defined. We filtered drug candidates by
annotated statuses of FDA-approved, Phase II, and Phase III (advanced status hereafter)
in each cluster and ranked these drugs according to the negative correlation between a
given drug and any conserved module. Negative correlations imply that the genes in each
module are downregulated with the increased drug concentration and can thus serve as
potential treatment targets [40]. The top 15 drugs in each cluster that satisfied these criteria
are listed in Table 1, and the completed Candidate List-1 can be found in Supplementary
Table S4. Selumetinib was identified in Candidate List-1 DrugCluster 4, supporting the
validity of our analysis strategy.
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Table 1. The top 15 candidates in each drug cluster.

Cluster1 Cor. Cluster2 Cor. Cluster3 Cor. Cluster4 Cor. Cluster5 Cor. Cluster6 Cor.

Delanzomib −0.99 Reserpine −0.97 Prostaglandin E2 −0.87 Ramipril −0.98 Darunavir −0.89 Diphenhydramine
hydrochloride −0.97

Echinomycin −0.99 Sarafloxacin
hydrochloride −0.94 Methylprednisolone −0.77 Cortivazol −0.98 Daporinad −0.85 Carisoprodol −0.95

Megestrol acetate −0.99 Medroxyprogesterone
acetate −0.92 Indapamide −0.75 Nitisinone −0.95 BMS−707035 −0.84 Naratriptan

hydrochloride −0.95

AS−602801 −0.99 Mometasone furoate −0.91 Eflornithine
Hydrochloride −0.74 Nimesulide −0.95 AZD−1480 −0.83 Trazodone

hydrochloride −0.94

Crenolanib −0.99 Leflunomide −0.89 Moroxydine −0.71 Enoxolone −0.95 Zidovudine −0.81 Sulindac −0.94

Sirolimus −0.99 Argatroban −0.88 Linezolid −0.70 Aniracetam −0.94 Cinacalcet
hydrochloride −0.80 Rilmenidine −0.94

Dronedarone
hydrochloride −0.98 Bortezomib −0.85 Crotamiton −0.70 Fluocinonide −0.93 Doxercalciferol −0.79 Torasemide −0.90

Clopidogrel
bisulfate −0.98 MLN−2238 −0.85 Diclofenamide −0.70 Ethosuximide −0.92 Methyldopa −0.78 Calcitriol −0.90

Ixazomib citrate −0.98 Ritodrine
hydrochloride −0.80 Thiamphenicol −0.69 Betamethasone −0.92 Primidone −0.78 Tolvaptan −0.88

Viracept −0.97 Budesonide −0.80 Varespladib −0.69 Diindolylmethane −0.91 Atazanavir
sulfate −0.78 Fluvoxamine

maleate −0.87

Temsirolimus −0.97 Ispinesib −0.80 Tariquidar −0.69 Clobetasol
propionate −0.91 Tipifarnib −0.77 Veliparib −0.86

Everolimus −0.96 Canertinib −0.79 Monatepil −0.67 Telotristat
etiprate −0.91 Ethisterone −0.77 Indomethacin −0.83

Teriflunomide −0.96 ARRY−520 −0.78 Indiplon −0.67 Aliskiren
hemifumarate −0.90 Formestane −0.74 CAL−101 −0.83

Mycophenolic
acid −0.96 Cyclobenzaprine

hydrochloride −0.77 Nepicastat
hydrochloride −0.66 Betamethasone

valerate −0.90 Ritonavir −0.73 Sinomenine −0.83

Daunorubicin −0.95 Mithramycin −0.76 Lubiprostone −0.65 Selumetinib −0.90 AT−13387AU −0.72 Flurbiprofen −0.82

3.4. Drug-Fingerprint-Guided Combination Strategies

The traditional evaluation of drug combinations is labor-intensive, time-consuming,
and expensive, considering the numerous possibilities [41]. With the accessibility of drug
screening data, applying computational prediction models to identify drug combinations
offers an attractive alternative. Multiple methods have been utilized in predication, such as
machine learning, drug similarity, and/or drug interactome [42]. With the drug fingerprints
developed in this study, we were able to cluster the drugs, reflecting the corresponding bio-
logical relevance. A similar fingerprint pattern may suggest the common signaling cascade
on the molecular level. Identification of Selumetinib-like drugs or combining Selumetinib
with other candidates may provide more options to increase treatment efficacy, minimize
toxicity and prevent drug resistance. The vertical combination strategy combines drugs
targeting the same biological process or pathway, which has been adapted to minimize
drug resistance mechanisms [43]. With biological relevance indicated by drug fingerprints,
we propose to seek the drug candidates in the screening with a Selumetinib-like fingerprint
and evaluate the vertical combination efficacy among the candidates. Selumetinib was
localized in DrugCluster 4 and demonstrated negative correlations to all conserved network
modules except for magenta (Figure 4A). Drug candidates that have advanced clinical
status and demonstrate similar fingerprints as Selumetinib are enriched in DrugCluster1,
DrugCluster2, and DrugCluster4 (Figure 4A).

To survey the combination potentials among the Selumetinib-like candidates, we
adapted the two-drug combination algorithm from IDAcombo package, which predict the
efficacy based on the single drug dosage–response data. The important features of this
methodology are that (1) the predictions are concentration-dependent and represent an
average response across populations of cell lines, which mimic the efficacy evaluation in
clinics and serve as guidance for experimental verification; (2) it scores the combinations
to prioritize the predicted combinations [23]. The predicted IDAcomboscores are shown
in the heatmap (Figure 4B). The detailed drug responses among the PN cell lines, known
mechanisms, and targeted genes are summarized in Supplementary Table S5.
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Figure 4. Fingerprint-guided drug selection and combination strategies. (A) Selumetinib-like drug
candidates with the similar fingerprint pattern. The color bar at the top of the figure indicates the
corresponding drug clusters and clinical status of each drug. Selumetinib was indicated by the yellow
arrow. (B) The heatmap of IDAcomboscore of any two-drug combination among the Selumetinib-like
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drug candidates. (C) Complementary pattern between Selumetinib and selected drugs from Drug-
Cluster5. Each column is comprised of a single drug from DrugCluster 5. The color bar at the top of
the figure indicates the IDAcombo score. Each cell is colored according to the Pearson correlation
between the drug responses and the eigengene of each preserved network module. The best predicted
drug combinations with Selumetinib include JAK1/2 inhibitor AZD-1480, antibiotic Amphotericin B,
nicotinamide salvage pathway inhibitor Daporinad, circadian hormone melatonin, antiviral indinavir,
and anti-parasitic thiabendazole.

Analogous to the horizontal combination strategy, combining drugs with com-
plementary fingerprint patterns may provide a therapeutic advantage by targeting
different biological processes, such as DrugCluster 1 and 3, DrugCluster 2 and 6,
and DrugCluster 4 and 5, demonstrated in the drug cluster fingerprints (Figure 3B).
Selumetinib was located in DrugCluster 4, which has a drug fingerprint pattern that is
complementary to DrugCluster 5. Therefore, we predicted the combination efficacy of
Selumetinib and partner drugs from DrugCluster 5, which may direct salient treatment
combinations for subsequent clinical trials. For those combinations with an IDAcombo
score >1, their drug fingerprints and combination scores were demonstrated as color
bar in the drug fingerprint heatmap (Figure 4C). Combinations between Selumetinib
and DrugCluster 5 and all the predicted combinations from the above complementary
drug clusters were summarized in Supplementary Table S5.

4. Discussion

The current study employs a systems-down approach to drugs and drug combinations
to treat NF1-associated PNs. Starting with the transcriptomic results and a high-throughput
PN cell culture drug assay, we detected co-regulated network modules and identified drug
clusters with similar fingerprints according to the conserved network modules. There are
several advantages to employing this computational methodology to select drugs and drug
combinations for further preclinical and clinical testing. The first is that a rational and
quantifiable line is drawn between the preclinical model and the human tumor. By their
nature, cell culture methodologies isolate cancer cells from wildtype tumor support tissues,
train them to grow upon a non-biologic 2-dimensional matrix, and submit them to frequent
traumatic dissociation and centrifugation, which can favor genetic drift and lead to de
novo physiologies and behaviors that distinguish them physiologically from the original
tumor. This can explain why so many promising cell-culture assay results are not borne
out in clinical trials. The methodology highlighted in this study uniquely focuses only on
transcriptionally conserved gene networks across both cultured cells and primary PNs,
thereby filtering out drugs with effects that are less likely to be replicated in vivo.

The current study investigates an integrated computational method to vet salient
drugs that merit evaluation in clinical trials based upon the transcriptional effects and cyto-
toxic profile of a high-throughput cell culture assay. Safety and toxicity are of paramount
importance in this patient population that has the propensity for requiring lifelong or recur-
rent treatment. Understandably, clinical judgment must also be employed in determining
which drugs and drug combinations would be worthwhile to investigate further in vivo
and in human trials. For example, while Melatonin together with Selumetinib had a high
IDAcombo score, Melatonin together with chemotherapy has been tested in lung, breast,
and ovarian cancers with minimal added benefit [44]. Drugs such as Thiabendazole and
Amphotericin B, which are indicated for parasitic and bacterial infections, respectively,
likely have too high a side effect profile for chronic or recurrent use in NF1. Daporinad
has a very interesting mechanism of action (inhibition of nicotinamide salvage pathway);
however, its intravenous route of administration and prolonged infusion time may prove
an impediment to patient care. The oral small molecule ATP-competitive JAK2/3 inhibitor
AZD-1480 would be a logical drug to investigate further with Selumetinib due to the
parallel and synonymous activity of JAK/STAT and the RAS/MEK signaling in promoting
cell mitosis [45,46].
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JAK activates STAT signaling, which transcriptionally represses the epigenetic reg-
ulator ARID1B. In Schwann cell progenitors, the JAK/STAT pathway is important in
autoimmune, and β-catenin regulates the maintenance of stem-like pluripotency, whereas
the concurrent loss of NF1 in genetically engineered mouse models leads ultimately to
neurofibroma generation and maintenance myeloproliferative disorders, and drugs target-
ing this pathway are currently used to treat rheumatoid arthritis, ulcerative colitis, and
myelodysplastic syndrome.

JAK2 signaling is implicated in neurofibromagenesis [47]. JAK/STAT signaling within
myelocytes present in the tumor microenvironment may also contribute to tumor formation
by activating pro-mitotic paracrine signaling [48]. Molecularly, JAK activates STAT signal-
ing, which transcriptionally represses the epigenetic regulator ARID1B, leading ultimately
to neurofibroma initiation and maintenance. Of note, neither of the JAK/STAT pathway
inhibitors employed in the above studies were included in the MIPE 4.0 drug list, including
inhibitor XAV-939, a stabilizer of the beta-catenin decretory molecule, and pan-JAK/Tyk2
inhibitor FLLL32.

Clinically, AZD-1480 failed to achieve safety endpoints or clinical benefit in advanced
solid tumors [49]. While AZD-1480 alone is unlikely to provide a clinical benefit in humans
due to adverse side effects, a focused in vitro and in vivo assessment of AZD-1480 together
with Selumetinib would be valuable to determine whether dual targeting of these two path-
ways could be achieved with lower drug doses and could provide proof of principle for the
methodology proposed in this study. Also included in the MIPE 4.0 library are JAK/STAT
inhibitors Cucurbitacin I (not FDA approved), TG-46 (not FDA approved), Degrasyn (cur-
rently being tested in a Phase III clinical trial), and Tofacitinib (FDA approved), each of
which achieved an IDACombo score of >1 alongside Selumetinib (Supplementary Table S5).
Other drugs targeting the Jak/Stat pathway that have been developed more recently than
the MIPE 4.0 drug library could also be investigated, such as Ruxolitenib—a JAK1/2 in-
hibitor that is FDA approved for the indication of myelofibrosis and topically for atopic
dermatitis. Additionally, oral investigational agent Pelabresib (CPI-0610) is a bromodomain
and extra-terminal domain (BET) protein inhibitor undergoing concurrent testing with
Ruxolitenib in phase 3 clinical trial for myelofibrosis therapy. Other FDA-approved JAK
inhibitors for rheumatoid arthritis include Baricitinib and Fedratinib. Testing these drugs
alone and in combination with Selumetinib would provide a proof of principle justification
for utilizing this high throughput assay and analysis to identify clinically salient conjugate
drug combinations to treat plexiform neurofibromas. A focused preclinical analysis of
co-administration of these JAK/STAT targeted agents with Selumetinib +/− other MEK
inhibitors is warranted. Future investigations can include preselecting gene modules of
interest and investigating drug combinations with recommended dosing regimens using
the IDAcombo score. Among the conserved network modules in this study, the blue
module recapitulates abnormal RAS signaling among the PN cells and primary tumors,
demonstrating the robustness of our methodology. Our recent publication on NF1 tumor
cell-of-origin revealed a stem-like tumor cell population in both mouse models and the
primary human atypical neurofibromas [38]. Interestingly, the magenta module highly
enriched the signature genes for stem-like tumor cells, which is consistent with cancer stem
cell theory that argues stem-like tumor cells originate from neural crest stem cells and serve
as a constitutive force to drive NF1 PN tumorigenesis [4,38,50]. Further analysis of this
module may help to identify PN cancer stem cell-specific drug targets for treatment.

Phenotype-based drug screening significantly extends the drug candidate pool, espe-
cially for diseases with limited treatment options. Computational models have previously
been developed to identify promising drug candidates and combinations in the drug screen-
ing for anti-tumoral treatment [40,51–53]. However, the limitations of cell culture models
and predictive drug selection algorithms remain an impediment to the generation of biolog-
ically valid predictive results. To adjust for these limitations, our approach of integrating
network-based biologic models and combining heterogeneous data sources could represent
a breakthrough in identifying promising drug candidates or combinations [54]. In the
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current study, post hoc supervised data trimming was employed to select Phase II or Phase
III clinical trials or FDA-approved medications. While the current study was intentionally
limited to clinically vetted compounds to accelerate bench-to-bedside translation to an
underserved disease population, this method could alternately be used in the future to
test experimental drugs and drug combinations to explore novel treatment avenues in
preclinical and Phase I trials for NF1 patients with PNs.

5. Conclusions

Our study discovered the gene regulation network modules conserved in PN tumor
cell lines and primary PNs, and the stem cell-like gene network module was identified,
which is consistent with the mouse model study. The conserved network modules priori-
tize drug candidates in the PN cell line-based drug screening. Drug combinations were
proposed according to the computational analysis for further preclinical and clinical testing
in NF1-associated PNs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12060720/s1, Figure S1: Scale-free network building to
identify the conserved gene regulation network modules; Figure S2: The heatmap shows the correla-
tion coefficient between the conserved gene network modules (row) and drug responses (column).
Supplementary Table S1: Z-summary scores for gene network modules. Supplementary Table S2: GO
analysis of genes in conserved network modules. Supplementary Table S3: Gene symbols in each
conserved network modules. Supplementary Table S4: Candidate List-1. Supplementary Table S5:
Candidate List-2.
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