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The multiple sources of cancer determine its multiple causes, and the same cancer
can be composed of many different subtypes. Identification of cancer subtypes is a
key part of personalized cancer treatment and provides an important reference for
clinical diagnosis and treatment. Some studies have shown that there are significant
differences in the genetic and epigenetic profiles among different cancer subtypes
during carcinogenesis and development. In this study, we first collect seven cancer
datasets from the Broad Institute GDAC Firehose, including gene expression profile,
isoform expression profile, DNA methylation expression data, and survival information
correspondingly. Furthermore, we employ kernel principal component analysis (PCA)
to extract features for each expression profile, convert them into three similarity kernel
matrices by Gaussian kernel function, and then fuse these matrices as a global kernel
matrix. Finally, we apply it to spectral clustering algorithm to get the clustering results of
different cancer subtypes. In the experimental results, besides using the P-value from
the Cox regression model and survival analysis as the primary evaluation measures,
we also introduce statistical indicators such as Rand index (RI) and adjusted RI
(ARI) to verify the performance of clustering. Then combining with gene expression
profile, we obtain the differential expression of genes among different subtypes by
gene set enrichment analysis. For lung cancer, GMPS, EPHA10, C10orf54, and
MAGEA6 are highly expressed in different subtypes; for liver cancer, CMYA5, DEPDC6,
FAU, VPS24, RCBTB2, LOC100133469, and SLC35B4 are significantly expressed in
different subtypes.

Keywords: cancer subtype, kernel PCA, spectral clustering, survival analysis, GSEA

INTRODUCTION

Cancer is the important leading cause of death in the world and is responsible for an estimated 9.6
million deaths in 2018. Unlike most other diseases, cancer is not a sort of single disease but is a
group of diseases involving abnormal cell growth with the potential to invade or spread to other
parts of the body. In the same type of cancer, patients usually have the same or similar external
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appearances, but in most cases, universal drugs and universal
treatment methods do not produce good prognosis in all cases.
The multiple sources of cancer determine its multiple causes,
and the same cancer can be composed of many different
subtypes. The discovery and identification of cancer subtypes
are a key part of personalized cancer treatment and provide
an important reference for clinical diagnosis and treatment
(de Kruijf et al., 2013).

The Cancer Genome Atlas (TCGA) is the largest open cancer
genome database to date initiated by the US government, which
aims to catalog and discover major cancer-causing genome
alterations in large cohorts of over 30 human tumors through
large-scale genome sequencing and integrated multidimensional
analyses. It covers a variety of omics expression data including
genomics, transcriptomics, copy number variation, DNA
methylation, proteomics, and clinical information of follow-
up cases (Tomczak et al., 2015; Jiang et al., 2019a), which
provide great support for the detection of cancer subtypes by
computational methods.

Recently, many methods for cancer subtypes recognition
and marker extraction have been proposed (Yeoh et al., 2002;
Lapointe et al., 2004; Figueroa et al., 2010; Yang et al., 2017a;
Pan et al., 2019). Some models are based on single expression
data, including gene expression (Yeoh et al., 2002; Lapointe et al.,
2004), microRNA (miRNA) expression (Yang et al., 2017a,b;
Liu and Yang, 2018), copy number variation (Pan et al., 2019),
and DNA methylation (Figueroa et al., 2010). Lapointe et al.
(2004) identified three subclasses of prostate tumors based
on distinct patterns of gene expression. Yang et al. (2017a)
clustered miRNAs based on Fisher linear discriminant analysis
(FDA), using representative cluster member combinations as
potential biomarkers. Pan et al. (2019) used copy number
variation, a biomarker more likely to be used for cancer diagnosis
than mRNA biomarkers, to further reveal differences between
various breast cancer subtypes. Figueroa et al. (2010) examined
the methylation profiles of 344 patients with acute myeloid
leukemia (AML). Clustering of these patients by methylation
data segregated patients into 16 groups. Five of these groups
defined new AML subtypes. Also, there are methods to analyze
and predict cancer subtypes by considering multiple expression
data (Shen et al., 2009; Wang et al., 2014; Ge et al., 2016;
Jiang et al., 2019b). The iCluster is a latent variable model-
based clustering algorithm proposed by Shen et al. (2009).
It uses multiple sources of data for integrated analysis to
identify tumor subtypes. Similarity network fusion (SNF) is a
network fusion method integrating multicomponent data, which
was proposed by Wang et al. (2014). SNF builds a similar
network of sample pairs on different histological data (gene,
methylation, and miRNA) and then integrates the network to
predict cancer subtypes.

Furthermore, due to the high dimensionality of research
data, we need to find effective and suitable dimensionality
reduction methods. Some methods, such as principal component
analysis (PCA) and non-negative matrix factorization (NMF),
have been used to combine clustering algorithms (Alter
et al., 2000; Holter et al., 2000; Brunet et al., 2004).
However, for the high-dimensional and non-linear gene data,

the performance is not always good. In order to better
handle these, we consider a non-linear version of PCA,
kernel PCA (Schölkopf et al., 1998), which introduces a
non-linear mapping function that can map data in the
raw space to high-dimensional space. It can make the
distribution of all mapped data linearized and simplified
in high-dimensional space, and then PCA can be used to
construct features.

In this study, inspired by SNF, we combine gene expression
profile with isoform expression profile and DNA methylation
expression data. We propose a novel method: first, take kernel
PCA to extract features for each profile, then convert them into
three similarity kernel matrices, and fuse them into one. Finally,
we apply it to spectral clustering algorithm to get the clustering
results of different cancer subtypes.

MATERIALS AND METHODS

We propose a novel method for analyzing various cancer
subtypes. First, we rescale the raw expression data by min–
max normalization and reduce the dimensionality of data via
kernel PCA, with a minimal loss of information. Then, in each
cancer dataset, based on the expression of gene profile, isoform
profile, and methylation data, we construct three similarity kernel
matrices through the Gaussian kernel function and fuse them
into a global similarity expression matrix. Finally, the integrated
similarity kernel matrix is fed to spectral clustering, and the
predictive clusters are identified. The flowchart of our proposed
method is shown in Figure 1.

Data Sources
In our study, all research data are collected from the Broad
Institute GDAC Firehose1 (Center BITGDA, 2016). Firehose is
an analytical infrastructure created at the Broad Institute based
on the data of TCGA project (Tomczak et al., 2015), which
provides genome-scale transcriptome data for various cancers
and different levels of processed data for cancer analysis. Firehose
gives a corresponding visual web platform, Firebrowse2, which
can easily access TCGA open access layer data. This greatly
lowers the threshold for experimenters to operate the TCGA
database and also makes the data for analyzing as consistent
as possible. Here, we extract seven common cancer datasets:
BLCA, BRCA, COAD, KIDNEY (KICH&KIRC&KIRP),
LIHC, LUNG (LUAD&LUSC), and STAD. For each
cancer dataset, it consists of gene expression information
(gdac_rnaseqv2_genes_RSEM_normalized_Level_3, 2016-02-
18), isoform expression information (gdac_rnaseqv2_isoforms_
RSEM_normalized_Level_3, 2016-02-18), DNA methyla-
tion expression information (gdac_Methylation_Preprocess_
mean_Level_3, 2016-02-18), and corresponding clinical
information (gdac_Clinical_Pick_Tier1_Level_4, 2016-02-18).
The clinical data are used in subsequent survival analyses, while
the other three expression profiles are used to construct a suitable

1https://gdac.broadinstitute.org
2http://firebrowse.org/
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FIGURE 1 | The flowchart of our novel method. (A) We first collect and check seven cancer datasets from The Cancer Genome Atlas (TCGA) dataset of the Broad
Institute GDAC Firehose. (B) For each dataset, after representing, constructing, fusing, and clustering for gene, isoform, and DNA methylation data, we carry out
survival analysis, gene set enrichment analysis, and others.

global similarity kernel matrix. We check redundant cases
(reserve cases with number 01–09) in the four profiles at each
cancer datasets and extract all valid cases that contain the above
expression information. And then, we obtain the experimental
input data for cluster analysis. A summary of our datasets is
shown in Table 1.

TABLE 1 | Description of seven datasets.

Datasets No. samples Gene Isoform Methylation

BRCA 780 20,531 73,599 20,106

COAD 275 20,531 73,599 20,116

KIDNEY 658 20,531 73,599 20,119

LUNG 824 20,531 73,599 20,116

STAD 372 20,531 73,599 20,101

BLCA 408 20,531 73,599 20,109

LIHC 371 20,531 73,599 20,105

Data Representation
Min–Max Normalization
Since we collect high-quality, standardized datasets directly from
Firehose, the size of the data values can intuitively reflect
the expression abundance of gene, isoform, or methylation.
However, to eliminate the influence of digital distribution in three
expression profiles and make them fused reasonable, we use min–
max normalization to rescale the values. The general formula for
a min–max of [0, 1] is defined as Eq. 1:

x′ =
x−min(x)

max (x)−min(x)
(1)

where x is an original expression value and x′ is the rescaled value.

Kernel Principal Component Analysis
The kernel PCA is a method for performing a non-linear form of
PCA proposed in Schölkopf et al. (1998). Through using kernel
PCA, the dimensionality of complex, non-linear features can be
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reduced effectively. Kernel PCA transforms the raw linear input
space R into a high-dimensional feature space F by using some
non-linear mapping, like a dot product matrix defined as Eq. 2:

K
(
xi, xj

)
=

〈
8 (xi) , 8(xj)

〉
(2)

and calculates the principal components in F. Then compute
projections onto the eigenvectors obtained by diagonalizing K
to extract the principal components corresponding to the k of K
(Schölkopf et al., 1998; Devi et al., 2014). In this study, we use the
kernel PCA method and take polynomial kernel defined as Eq. 3:

Kpoly
(
xi, xj

)
= (xTi xj + 1)

3
(3)

as the non-linear mapping. We adopt the default parameter, xi
and xj are the expression vector of i-th case and j-th, and all the
non-zero components are preserved. After performing the above
rescale and reduction on the gene, isoform, and methylation
expression profiles in the dataset, we gain the necessary input to
construct a similarity kernel matrix.

Similarity Kernel Matrix
Kernel Construction
The kernel methods map data points into possibly high-
dimensional feature space, where the distribution of all mapped
data is linearized and simplified (Vert et al., 2004; Mei and
Fei, 2010). Assume mapping function 8 (x), the computation
of the inner product

〈
8 (xi) , 8(xj)

〉
in the high-dimensional

feature space F can be implemented in the original space R using
kernel trick, K

(
xi, xj

)
=

〈
8 (xi) , 8(xj)

〉
, such that no explicit

mapping function or even explicit feature representation is
required. The size of the matrix used to represent the profile of N
cancer cases is always N by N. This allows us to comprehensively
consider the expression of three profiles for one specific cancer,
which perform a more accurate cluster analysis (Vert et al., 2004).
Here, we use the Gaussian kernel and the adjusted parameter γ,
as Eq. 4:

Kgaussian
(
xi, xj

)
= exp(−γ

∣∣∣∣xi−xj∣∣∣∣2
) (4)

Kernel Fusion
Data fusion from multidimensional expression profiles has been
shown to produce better results than considering a single
expression information. Jiang et al. (2019b) and Li et al. (2020)
have researched multi-omics data fusion and achieved good
results. We fuse three different expression profiles (gene, isoform,
and methylation) to construct a global similarity kernel matrix
for each cancer. Therefore, we integrate three Gaussian kernel
matrices. In our example, we adopt an average fusion strategy as
Eq. 5:

Kfuse =
1
3
(Kgene,Kisoform,Kmethyl) (5)

where Kgene,Kisoform, and Kmethyl represent the similarity kernel
matrix constructed by gene, isoform, and methylation expression
profiles, respectively.

TABLE 2 | Results with or without kernel principal component analysis (KPCA).

Datasets P-value without KPCA P-value with KPCA

BRCA(4) 0.137 9.71e–06

COAD(10) 0.465 2.39e–03

KIDNEY(9) 0.381 7.15e–04

LUNG(4) 0.386 9.06e–03

STAD(6) 0.977 2.35e–03

BLCA(9) 0.290 1.88e–05

LIHC(7) 0.038 1.23e–07

TABLE 3 | P-values of taking single kernel and fused kernel.

Datasets Gene Isoform Methyl Fusion

BRCA(4) 0.011 0.342 0.755 9.71e–06

COAD(10) 0.024 0.693 0.254 2.39e–03

KIDNEY(9) 0.057 0.475 0.116 7.15e–04

LUNG(4) 0.667 0.565 0.142 9.06e–03

STAD(6) 0.063 0.552 0.252 2.35e–03

BLCA(9) 0.090 0.116 0.192 1.88e–05

LIHC(7) 0.001 0.004 0.071 1.23e–07

TABLE 4 | Performance between Li’s and our method.

Datasets Li’s method Our method

BRCA(4) 1.12e–05 9.71e–06

COAD(10) 1.12e–07 2.39e–03

KIDNEY(9) 1.80e–02 7.15e–04

LUNG(4) 1.59e–06 9.06e–03

STAD(6) 2.00e–03 2.35e–03

BLCA(9) – 1.88e–05

LIHC(7) – 1.23e–07

TABLE 5 | Rand index (RI) and adjusted Rand index (ARI) on two datasets
between Li’s and our method.

Datasets RI of Li Our RI ARI of Li Our ARI

KIDNEY(9) 0.59 0.66 0.07 0.21

LUNG(4) 0.5 0.64 0 0.28

Spectral Clustering
Spectral clustering is a clustering method based on graph
theory algorithm; the basic idea is to use the similarity matrix
of the samples to obtain the feature vector of the feature
decomposition for cluster analysis (Von Luxburg, 2007). Because
of its excellent algebraic graph foundation, it can get a global
loose solution for complex cluster structure (Jia et al., 2014).
We use it as the core algorithm for cluster analysis. The
process of spectral clustering algorithm is taken as follows.
First, based on Kfuse, calculate the Laplacian matrix L. Then,
construct the normalized Laplacian matrix D−1/2LD−1/2. D
is a diagonal matrix whose diagonal element is the sum of
the row elements of Kfuse. And compute the eigen vectors
y corresponding to the eigen values of D−1/2LD−1/2. The
matrices composed of corresponding eigen vectors y are
standardized on a row basis to form the Ncase × Nfeature
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FIGURE 2 | Survival curves of various subtypes for seven cancer datasets.

feature matrix Y. Finally, each row in Y is taken as a
sample, which is clustered by discrete method to obtain
cluster partition C(C1,C2, ...,Cj). Each partition will represent
a cancer subtype. The whole process of spectral clustering
can be transformed into solving the optimization problem
as Eq. 6:

min tr
(
YTD−

1
2 LD−

1
2 Y

)
s.t. YTY = I

(6)

where Y is the eigen matrix for the eigen
values of D−1/2LD−1/2, D is the degree
matrix of Kfuse, and L is the Laplacian
matrix of Kfuse.

RESULTS

In this section, we evaluate and compare the performance
of our proposed method in multiple dimensions, using
P-values and survival curves as the primary criteria and
taking indexes such as RI and ARI into consideration. Finally,
through gene set enrichment analysis (GSEA), some key genes
supporting each subtype are obtained and displayed using heat
maps and boxplots.

Evaluation Novel Method
We use the P-value of Cox regression model to evaluate
the performance of several key steps of the proposed

Frontiers in Genetics | www.frontiersin.org 5 March 2021 | Volume 12 | Article 647141

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-647141 February 26, 2021 Time: 20:15 # 6

Feng et al. KPCA-CSD

FIGURE 3 | Differential expression of some essential genes in different subtypes on LUNG and LIHC.

FIGURE 4 | The boxplots for essential genes supporting each subtype on LUNG.

method (Pölsterl et al., 2015, 2016a,b). It includes applying
kernel PCA to reduce the original data dimension, using
similarity kernel fusion strategy to obtain feature input, and
employing spectral clustering as the core clustering method to

obtain the final clustering result. We calculate the P-values
for the clusters on the seven datasets. A lower P-value
indicates a more significant result. Here, we use 0.05 as the
threshold for evaluation.
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FIGURE 5 | The boxplots for essential genes supporting each subtype on LIHC.

Performance of Kernel Principal Component Analysis
The kernel PCA is a non-linear version of PCA widely used in
linear dimensionality reduction methods. Using kernel PCA, the
dimensionality of complex, non-linear features can be reduced
effectively. For the features with tens of thousands of dimensions
in the original data, it can be reduced to only a few hundred.
We compare all datasets, with and without kernel PCA, and the
resulting P-values are shown in Table 2. According to the data
in Table 2 (the number of clusters in the table is the optimal
results with the lowest P-values), kernel PCA greatly improves
the performance of the method and makes the results more
reliable and stable.

Performance of Fusion Strategy
Here, we compare the performance of using a single kernel
directly with the use of a kernel fusion strategy on seven datasets,
and the results are shown in Table 3. After using similarity kernel

fusion, the P-values on seven datasets have been significantly
improved. And for the dataset LIHC, although the performance
on single kernel has already performed well, kernel fusion will
further enhance the clustering results. We therefore conclude that
the strategy for similarity kernel fusion is necessary.

Comparing With Other Methods
We compare the results with those of the method of Li et al.
(2020). As shown in Table 4, we find that using kernel PCA
for feature reduction, taking weighted fusion strategies instead
of complex SKF, and finally generating clustering results from
spectral clustering have comparable reliability and stability.

Clustering Analysis
The Rand index (RI) (Rand, 1971) is an indicator for evaluating
clustering performance in statistics, by measuring the similarity
between two data clusters. However, a problem with the index
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is that the expected value of the RI of two random partitions
cannot take a constant value (Steinley, 2004). The adjusted RI
proposed by Yeung and Ruzzo (2001), which is the corrected-
for-chance version of the RI, can effectively avoid RI’s insufficient.
We measure both the LUNG and KIDNEY datasets and compare
the results obtained by Li et al. (2020). The results are shown in
Table 5. From the indicators such as RI and ARI, our clustering is
more stable, and the effect is much better than Li’s in KIDNEY
and LUNG. Especially on LUNG, although we get a higher
P-value, we have a 28% advantage on the ARI.

Survival Analysis
Survival analysis is a branch of statistics that analyzes the
expected duration until an event occurs, such as the death of a
cancer patient. We find that patients with subtype 2 of liver cancer
(LIHC), subtype 6 of colon cancer (COAD), and subtype 3 of
stomach cancer (STAD) have higher mortality. More attention
should be paid to these patients. We also see that the average
survival time of breast cancer patients (BRCA) and lung cancer
patients (LUNG) is longer than that of others. It indicates that
these cluster results can be used to guide clinical treatment. The
survival curves of all datasets are shown in Figure 2.

Gene Set Enrichment Analysis
GSEA (Mootha et al., 2003; Subramanian et al., 2005; Huang
et al., 2020) is an analysis method for genome-wide expression
profile chip data, which compares genes with a predefined set of
genes. Synthesize the existing information base of gene location,
nature, function, biological significance, etc., to build a molecular
tag database (MSigDB), in which known genes are identified by
chromosomal location, established gene set, and model sequence.
Tumor-related gene set and GO gene set and other functional
gene sets are grouped and classified. By analyzing the gene
expression profile data, we can understand their expression status
in a specific functional gene set and whether this expression
status has some statistical significance. In this paper, we use
Broad Institute’s offline analysis software GSEA_4.0.2, and C4
collection (cancer gene neighborhoods and cancer modules),
provided by Broad Institute in the Molecular Signatures Database
(MSigDB), which is a computational gene set defined by mining
large collections of cancer-oriented microarray data. We analyze
the LUNG and LIHC datasets, and we collect the expression data
of genes with higher scores on different subtypes. The heat maps
drawn are shown in Figure 3.

Essential Gene Analysis
For each subtype on the datasets LUNG and LIHC, we select
the essential gene that can highly distinguish the subtypes.
According to the expression of each gene on its dataset, we
obtain the box diagrams as shown in Figures 4, 5. We find that
GMPS, EPHA10, C10orf54, and MAGEA6 are highly expressed
in different subtypes on the dataset LUNG; and CMYA5,
DEPDC6, FAU, VPS24, RCBTB2, LOC100133469, and SLC35B4
are significantly expressed in different subtypes on the dataset
LIHC, respectively.

CONCLUSION

In this paper, we propose a model for accurately predicting cancer
subtypes. First, we collect seven cancer datasets from Firehose
website, which contained three kinds of expression data (gene
expression, isoform expression, and methylation expression).
Then we construct three similar kernels for three kinds of
expression data, respectively, and we fuse the three kernels into
the global one. Finally, the cancer subtypes are discovered by
spectral clustering. We take P-value as the overall evaluation
criterion, combining with survival curve analysis and GSEA.

In the future, we will also try other machine learning methods
or deep learning methods (Kong and Yu, 2018; Ding et al.,
2019a,b; Shen et al., 2019; Gao et al., 2020; Lee et al., 2020;
Wang et al., 2020), to deal with the problem of small samples
and large features of cancer data and predict cancer subtypes
more accurately.
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