
J. Cell. Mol. Med. Vol 10, No 3, 2006 pp. 613-634

What  is  hidden  in  the  pannexin  treasure  trove:  
the  sneak  peek  and  the  guesswork

Oxana  Litvin a,   Anya  Tiunova b,   Yvette  Connell-Alberts c, f,   Yuri  Panchin d,   
Ancha  Baranova c, e, *

a  Stowers  Institute  for  Medical  Research,  Kansas City,  MO,  USA
b  P. K. Anokhin  Institute  of  Normal  Physiology,  Russian  Academy  of  Medical  Sciences,  Moscow,  Russia

c  Molecular  and  Microbiology  Department,  George  Mason  University,  Fairfax,  VA,  USA
d  Institute  for  Information  Transmission  Problems,  RAS,  Moscow,  Russia  and  A. N.  Belozersky  Institute,

Moscow  State  University,  Moscow,  Russia
e  Russian  Center  of  Medical  Genetics,  Russian  Academy  of  Medical  Sciences,  Moscow,  Russia

f  NCI/MCGP,  Frederick,  MD,  USA

Received:  April 12, 2006;  Accepted:  June 6, 2006

Abstract

Connexins had been considered to be the only class of the vertebrate proteins capable of gap junction formation; how-
ever, new candidates for this function with no homology to connexins, termed pannexins were discovered. So far three
pannexins were described in rodent and human genomes: Panx1, Panx2 and Panx3. Expressions of pannexins can be
detected in numerous brain structures, and now found both in neuronal and glial cells. Hypothetical roles of pannex-
ins in the nervous system include participating in sensory processing, hippocampal plasticity, synchronization between
hippocampus and cortex, and propagation of the calcium waves supported by glial cells, which help maintain and mod-
ulate neuronal metabolism. Pannexin also may participate in pathological reactions of the neural cells, including their
damage after ischemia and subsequent cell death. Recent study revealed non-gap junction function of Panx1
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In the majority of the organized tissues cells are
connected by various types of intercellular junc-
tions, among which gap junctions are prominent
players. Gap junctions (GJs) are essential for func-
tional coordination and homeostasis within tissues,
as they permit the direct cell-to-cell exchange of
small molecules (up to 1 kDa in molecular mass). In
fact, every GJ is the channel formed by pairs of
hemichannels opposing the narrow intercellular
gap. Under certain conditions non-junctional
hemichannels may be also formed; these channels
are open to the extracellular space [1, 2]. The gat-
ing, conductivity, and selectivity of GJ depends on
the protein composition of the channel, the number
of the channels in the membrane, transjunctional
gradients, and other factors [3, 4].

Connexins (Cx) had been considered to be the
only class of the vertebrate proteins capable of GJ
formation, however, new candidates for this func-
tion with no homology to connexins were discov-
ered. The term pannexins was coined, underscoring
the presence of these family homologues in all
groups of multicellular animals [5, 6]. The identifi-
cation of mammalian pannexins and the prediction
of their function were based on initial invertebrate
model studies [7–11]. Subsequently, the ability to
form intercellular channels in paired oocytes has
been proven for rodent pannexins [12, 13]. 

Gap junction forming proteins:
evolutionary considerations

Despite vast literature describing various properties
of GJs in multicellular organisms, the general pic-
ture is far from clear. One hope for improve in the
understanding of GJ function may come from an
evolutionary approach. The evolutionary aspects of
GJ proteins were recently reviewed [14] and can be
briefly summarized as follows. GJs appear to be

universal feature of Metazoans. Connexins were the
first identified family of GJ proteins. It now appears
that connexins are specific only to Chordates (ver-
tebrates and tunicates). Numerous attempts to find
connexins in invertebrates have failed, so alterna-
tives to connexin GJ protein candidates were inves-
tigated. Finally, it was suggested that invertebrate
GJs are assembled from proteins unrelated to the
connexin gene family, innexins [7–11]. Although
connexins and innexins have very different primary
sequences they nonetheless have some similar fea-
tures. Proteins of both unrelated families have sim-
ilar topology with four transmembrane domains. 

Recently, genes encoding innexin homologues
were discovered in different taxonomic groups,
including Chordates [5, 6, 12; 15, 16, 111]. We pro-
posed re-classification of innexins and their verte-
brate homologues into a larger family termed pan-
nexins (from the Greek “pan” – “all, throughout” and
Latin “nexus” - “connection, bond”). Some authors
call innexins and their vertebrate homologues a
“superfamily” [112]; others authors question the
homology between pannexins in vertebrate and
invertebrate innexins [17] or discuss the degree of
such homology [111]. As pannexin profile easily
identifies both chordate and non chordate pannexins
(e.g. with query by PROSITE: PS51013,
www.expasy.org/prosite/profile), in our view, there is
obvious sequence similarity between vertebrate pan-
nexins and their invertebrate counterparts. Pannexins
seem to be ubiquitous metazoan proteins, whereas
connexins appear to be chordate specific. The grow-
ing body of recent sequence data from different
organisms largely supports these conclusions.
Indeed, no connexins were found among animals
outside Chordata and more innexins were discovered
in various Metazoans [16, 18]. However, some com-
plications to this simple description started to
emerge. In several metazoans genomes sufficiently
covered by raw sequencing runs neither connexins
nor pannexins could be identified. For instance, the
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hemichannels in erythrocytes, where they serve as the conduits for the ATP release in response to the osmotic stress.
High-throughput studies produced some evidences of the pannexin involvement in the process of tumorigenesis.
According to brain cancer gene expression database REMBRANDT, PANX2 expression levels can predict post diag-
nosis survival for patients with glial tumors. Further investigations are needed to verify or reject hypotheses listed. 

Keywords: gap junction • hemichannel • pannexin • synchronous activity • calcium waves •
hippocampus • glioma • ATP release
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search by TBLASTN or TFASTX programs for puta-
tive pannexins and connexins in Nematostella
vectensis (starlet sea anemone, Cnidaria, Anthozoa)
and Strongylocentrotus purpuratus (purple sea
urchin, Echinodermata) genomes revealed no reli-
able hits. In sequence trace files of sponge Reniera,
only a single entry corresponding to an apparent pan-
nexin could be found. Unfortunately, this entry
seems questionable, as it matches closely to mollus-
can pannexins and did not match any other Reniera
sequences. It, therefore, most likely represents a con-
tamination artifact. This opens intriguing possibility
that genomes of some multicellular organisms do not
contain any genes encoding members of known GJ
protein families. At the same time physiological data
supporting the existence of GJs are convincing for
sea urchin [19] and Anthozoa [20]; such that the pos-
tulate regarding ubiquity of the GJs in Metazoa
should hold true. Although, we ourselves named pan-
nexins, considering them as universal metazoan GJ
protein as opposed to Chordate-specific connexins,
now it is necessary to admit the fact that we are fac-
ing a possibility of the discovery of additional pro-
tein families utilized for GJ function. If such hypo-
thetical N-nexins would be found in sea urchins,
sponges, or other animals, the possibility that they
also exist in humans and other mammals is thrilling.

Functional properties of pannexin
channels and hemichannels

Formation of the channels and the gating
characteristics

So far three pannexin encoding genes were
described in rodent and human genomes: Panx1,
Panx2 and Panx3 [12, 6]. Panx1 is expressed in
numerous organs in mouse, rat and human, includ-
ing both developing and mature nervous systems.
The expression of the Panx2 gene is found in many
organs in rodents, but restricted to nervous system
in human, while expression of Panx3 confirmed so
far only in rat’s skin (see Table 1). In silico search
revealed presence of Panx3 in few more structures
and tissues, particularly in the cartilage (Table1). 

The gating properties of pannexin channels were
studied by Bruzzone et al. (2003) using a heterolo-
gous expression system in Xenopus oocytes [12].

Substantial voltage-activated currents were consis-
tently induced when single oocytes expressing
Panx1 were stimulated by voltage steps >-20 mV. In
contrast, neither Panx2 nor Panx3 induced mem-
brane currents under the same voltage step condi-
tions while expressed alone [12]. These findings
suggest that Panx2 and Panx3 are not able to form
functional homomeric hemichannels, at least in
oocytes. Expanding upon results of the experiments
performed in the single oocytes, Panx1 was found
to function as a channel both alone and in combina-
tion with Panx2, whereas Panx2 alone was not able
to form a channel [12].

Homomeric and heteromeric hemichannels
formed by pannexins can differ in their gating prop-
erties [12]. Panx1 and Panx2 are able to form het-
eromeric hemichannels; however, currents recorded
from oocytes coexpressing Panx1 with Panx2 are
smaller than currents measured from cells injected
with the same amount of Panx1 mRNA. Imposition
of a voltage step leads to a significant delay in
achieving a peak current by Panx1/Panx2 coex-
pressing cells compared to Panx1-expressing cells
[12]. This phenomenon might be explained by
slower opening or closing of certain pannexin
hemichannels (or both).

Recently, the same team of researchers pub-
lished additional data on pharmacological proper-
ties of pannexin hemichannels [13], in particular,
their remarkable sensitivity to blockade by car-
benoxolone (CBX), a reversible inhibitor reducing
connexin channel conductance. Threshold concen-
tration of CBX needed for inhibition of pannexins
hemichannels is lower then for connexin46 (Cx46)
hemichannels (Cx46 has been extensively studied
as the prototype of the hemichannel forming con-
nexins). At the same time, the magnitude of the
CBX effect is even higher for pannexins than for
Cx46. In addition, connexin inhibiting flufenamic
acid suppresses pannexin hemichannels only mod-
estly, thus indicating that this GJ blocker affects
connexins and pannexins in the different ways [13]. 

Possible functions of the pannexins

So far, hypotheses describing pannexin functions in
the mammalian brain center around two scenarios.
One focuses on the suggestion that intercellular pan-
nexin channels might represent a novel class of elec-
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trical synapses that, in particular, may play a role in
the generation of oscillatory and synchronous activ-
ity in number of brain structures (see chapter III for
details). Another hypothesis suggests that pannexin
hemichannels may be involved in extracellular

release of small molecules and, particularly, may
promote the propagation of the calcium waves. 

The second hypothesis implying pannexins
mediating propulsion of the long-range calcium sig-
nals recently received several considerable corrobo-

616

Table 1   Expression of pannexins in rodents and human.

Pannexin Mouse Rat Human

Panx1

CNS (embryonic stages 
E13.5, E15–E18). b

Lung++, spleen++, heart+,
testis+, kidney+, spinal

cord++, brain++ (cortex++,
cerebellum++, brain stem+/-,
olfactory bulb++, retina++) c

Adrenal gland+, bladder+,
eye+, spinal cord+, 
thyroid+, prostate+, 

stomach+, large intestine+,
liver+, kidney+/-, brain+

(cortex+, striatum+, 
olfactory bulb++, 

hippocampus+, thalamus+, 
cerebellum++) a

CNS (spinal cord+, 
cerebellum++, cortex+, 

hippocampus+, 
olfactory bulb++) d

Heart++, skeletal muscle++,
testis++, ovary++, brain+,

placenta+, kidney+, spleen+,
thymus+, prostate+, small

intestine+, lung+/-, liver+/-,
pancreas+/-, spleen+/-,

colon+/-, peripheral blood
leukocytes+/- b

Erythrocytes+, endothelial
cells+ e

Platelets+ f

Panx2

CNS (cerebellum+, 
hippocampus+, mamillary
nuclei+, substance nigra+,

cortex+, amygdala+) b, 
CNS (olfactory bulb++, 

hippocampus+, neocortex+,
basal telencephalon+, 

thalamus+, hypothalamus+,
midbrain+, hindbrain+, 
cerebellum+) this paper

spinal cord++, thyroid+,
prostate+, liver+, kidney+,
eye++, brain++ (olfactory
bulb++, hippocampus++,
cortex++, cerebellum++,
thalamus+, striatum+) a

CNS (spinal cord+, 
cerebellum++, cortex+, 

hippocampus+, 
olfactory bulb++) d

CNS (cerebellum++, cerebral
cortex++, medulla++, 

occipital lobe++, frontal
lobe++, temporal lobe++,

putamen+), 
but not spinal cord. 
Not found in any 

non-neuronal tissue tested
(represented by Clontech

MTN blots) b

Panx3
(experimental

evidences)
Skin a

Not found in any tissues from
adult human organs tested
(represented by Clontech

MTN blots) b

Panx3 
(in silico
search,

according to
UniGene)

Embryo, osteoblasts++, 
synovial fibroblasts++,
whole joints, inner ear, 

skin, vagina 

Cartilage,
cartilage tumors,

osteoblasts
Embryo

++ abundant expression; + intermediate expression; +/- low to undetectable expression

References:
a - Bruzzone et al., 2003
b - Baranova et al., 2004
c - Ray et al., 2005

d - Vogt et al., 2005
e - Locovei et al., 2006
f - Moebius et al., 2005



rations. In the nervous system, calcium waves can
spread through glial cells to neurons thus represent-
ing a system of widespread non-synaptic communi-
cation [23]. Neurons can signal back to glial cells
through multiple pathways. Once initiated, synaptic
and non-synaptic activities of neurons trigger an
increase in astrocytic intracellular calcium concen-
tration. Localized signaling responses in individual
astrocytes can then be widely propagated in the form
of intercellular calcium waves, which can be visual-
ized with fluorescent Ca2+ indicators. There are two
main mechanisms of calcium wave propagation sug-
gested: one is dependent on GJs between cells, and
is well established [24], and another is based on the
release of extracellular signaling molecules, particu-
larly adenosine triphosphate (ATP), that triggers
subsequent ATP-induced activation of purinergic
membrane receptors on the neighboring cells. In
turn, activation of purinergic receptors may lead to
release of ATP from adjacent cells, thus endorsing
calcium wave propagation. In that way, long-range
intercellular calcium signaling in astrocytes allows
spatial coordination of their function as the support-
ers of the neuronal metabolism [23]. 

Potential mechanism suggested for the ATP
release is implying an existence of large-pore
hemichannels. Panx1 is an attractive candidate for
this role, as it is able to form functional and effi-
cient hemichannels at physiologic calcium concen-
trations [12] and is expressed in many organs and
tissues capable of calcium wave propagations. As
opposed to connexins, pannexin channels are able
to open when external concentration of calcium
ions is at a physiological level, thus their perme-
ability in normal tissues is ensured [13]. Patch
clamp experiments reveal that pannexin hemichan-
nels are voltage-dependent and are activated in the
response to the mechanical stress [21]. Under con-
ditions favoring channel opening, pannexin
hemichannels elevate ATP efflux [21]. Recently,
another study from the same lab [22] demonstrated
that pannexin channels are also involved in ATP-
induced ATP release, the process typical for calci-
um wave propagation. According to the current
model, such release may be triggered by extracellu-
lar ATP through purinergic receptors [25]. Locovei
et al. (2006) co-expressed pannexin1 in Xenopus
oocytes with the purinergic receptors P2Y1 or
P2Y2 [22]. Application of ATP to oocytes co-
expressing Panx1 together with either of two P2Y

receptors was sufficient to activate pannexin
hemichannels, and led to large currents. It is inter-
esting to note that P2Y2-dependent activation was
fast and transient while P2Y1 activated the chan-
nels slowly and produced sustained opening of the
channel [22]. These findings remarkably parallel
the observation that P2Y2 receptors promote prop-
agation of the calcium waves at higher velocity than
P2Y1 receptors [26]. 

If pannexins are playing role in calcium wave
propagation, corresponding hemichannels should be
activated by an increase in the concentration of intra-
cellular calcium. This statement has been supported
by the data collected after patch clamp experiments
performed with excised inside-out membrane patches
[22]. In these experiments application of micromolar
concentrations of calcium to the cytoplasmic face of
the channels resulted in channel activity that ceased
upon washout of the calcium containing solution,
suggesting active pannexin involvement in calcium
permeability changes. Locovei et al., 2006 proposed
ATP-dependent model of calcium wave propagation
which implies that P2Y receptors activate phospholi-
pase C. This event, in turn, produces IP3 capable of
calcium release from its stores and an increase in its
intracellular concentration, with subsequent release of
new portion of ATP, and thus further propagates the
wave. Taken together, these data suggest that proper-
ties of the Panx1 hemichannels revealed by described
above experiments are very similar to properties of
the hypothetical hemichannels responsible for calci-
um wave propagation. Nevertheless, further experi-
ments utilizing pannexin inhibitors or siRNA sup-
pression of Panx1 hemichannel are necessary.

The results of the recently published study of the
Panx1 function in human erythrocytes are even more
intriguing [113]. Erythrocytes do not express Cx43
that has been implicated in ATP release by some other
authors [113, 114]. Moreover, there is no evidence
that erythrocytes form intercellular GJ channels.
Locovei and co-authors found that not only these cells
express Panx1 and form hemichannels, but that the
ATP efflux from erythrocytes is affected by CBX
[113]. As we already mentioned, pannexins exhibit a
remarkable sensitivity to blockade by CBX, exceed-
ing that of the connexin [13]. Also, the gating proper-
ties of the ATP channels in erythrocytic membranes
are consistent with these of pannexin hemichannels
[113]. Taking together, these findings indicate that the
formation of the transient hemichannels connecting
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the cytoplasm with extracellular space may be an
indispensable function of the pannexins.

In addition to the cytoplasm to extracellular
space connections and to the role in the electrical
synapses, pannexins may participate in a neuronal
death after ischemia. Both pre- and post-treatments
with CBX prevent stroke injury after the ischemic
insult in the rat hippocampus, resulting in decreased
numbers of TUNEL-positive neurons [27]. On the
other hand, treatment with quinine, an inhibitor of
Cx36-mediated gap junctional coupling, was
unable to limit the spread of ischemia [27].
Therefore, it was hypothesized that GJ molecules
other than connexins are central for the ischemia,
and pannexins might be among them. This hypoth-
esizes was further supported by recently found sim-
ilarity of the biophysical properties of the
hemichannels opened in acutely isolated hippocam-
pal neurons under ischemic conditions and homo-
meric Panx1 hemichannels expressed in oocytes
[115]. It was suggested that the opening of Panx1
hemichannels could mediate dysregulated ionic
fluxes, anoxic depolarization as well as energy
depleting efflux of glucose and ATP characteristic
for ischemic neurons [115]. It is tempting to specu-
late that pannexin may represent a new class of
pharmacological targets in the stroke neurology.

Beside that, in mouse heart Panx1 expression sig-
nificantly increases as result of the selective ERK, p38
and JNK activations [116]. These findings were
obtained in the high-throughput study of adult mice
expressing activated mutants of Ras, MKK3 and
MKK7 in the cardiac specific and temporally regulat-
ed fashion. Panx1 was one of 36 genes which expres-
sion was significantly altered in all three transgenic
models. It is of interest that all three branches of MAP
kinase signaling contribute to various cardiomy-
opathies. Molecular events accompanying cardiac fail-
ures are intimately interwoven with events involved in
the cardiac ischemia and the cardiac cell death [117].
Since pannexins were shown to be involved in the
ischemic death of the neurons [115], it is important to
study pannexin connection to ischemia in the heart. 

Possible ways to regulate pannexin channels

Multiple regulatory partners have been described
for the connexins, major family of GJ proteins in
mammals. As pannexins are suggested to partici-

pate in various GJ and non-GJ processes, one may
inquire about their possible regulators. Indeed, if
these channels are to be kept open, cell constituents
would rapidly leak out of the cell, causing cell
death. Therefore, deactivation mechanisms should
exist to provide gating control for potentially harm-
ful pannexin hemichannel. Although mechanism
for negative feedback has not been yet proposed, at
least two possible explanations exist for pannexin
regulation. First possibility concerns pannexin
channel activation by regulatory kinases. A number
of conservative serine and threonine phosphoryla-
tion sites were predicted both in the middle cyto-
plasmic loops and carboxyl-terminal tails of pan-
nexins [17]. These sites are especially abundant in
Panx2 that have more restricted expression pattern
in comparison to the ubiquitously expressed Panx1.
The regulatory kinases predicted to modify pannex-
ins include such important enzymes as PKC, PKA,
PKG and CKII [17]. In addition, a homology search
in the Swissprot sequence database reveal that
Panx2 contains IKK phosphorylation motif, indi-
cating probable intersection of pannexin signaling
with NF-kB pro-inflammatory cascade [28]. The
most elusive member of pannexin family, Panx3,
contains a tyrosine phosphorylation consensus site
for the EGFR (Epidermal Growth Factor Receptor)
[17]. Therefore, it may not be coincidental that
EGFR is expressed in chondrocytes, one of the few
cell types that, according to UniGene, synthesize
Panx3 (see Table 1). Since EGFR is able to promote
chondrocyte proliferation and stimulate proton
efflux [29], one might speculate that Panx3 might
participate in these processes. Another source of
information pertinent to the regulation of pannexins
is the experiments performed in yeast two-hybrid
systems. Thus far, such experiments yielded a reg-
ulatory β-subunit of voltage-dependent potassium
channel (Kvβ3 protein) as a confirmed partner of
Panx1 [30]. Association of β-subunits with α-sub-
units of the voltage gated potassium channel con-
fers its rapid inactivation by a ball domain in the
Kv-β amino terminus [31]. As the velocity of the
inactivation is dependent on the intracellular redox
potential [32], and as the calcium wave amplitude,
velocity and interwave periods are strengthened by
oxidizable substrates that energize mitochondria
[33], it is tempting to speculate that Kvβ3 interac-
tion with Panx1 is an integral part of the wave
propagation process. 
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Pannexin gene expression in the
brain of the rodents

Pannexin gene expression in the eyes of the
rodents

Both Panx1 and Panx2 are synthesized in the eye of
the rat, the signal for Panx2 was found to be especial-
ly abundant [12]. Detailed studies of Panx1 mRNA
distribution in the adult mouse retina revealed a
prominent staining for Panx1 mRNA in the ganglion
cell layer (GCL), the inner nuclear layer (INL) and in
the outermost cells of the outer nuclear layer (ONL).
In addition, few scattered positive cells were
observed in the inner plexiform layer (IPL) [34].
These findings were confirmed by a laser capture
microdissection combined with RT-PCR [34, 35].

Another recent study described robust expression
of both Panx1 and Panx2 in mouse and rat retina, with
predominant accumulation in the GCL and at some
extent in the INL of adult rodents. Fine grains of
punctuate labeling were present throughout all other
layers [36]. Staining with anti-Panx1 antibodies high-
lighted retinal ganglion cells, their processes and also
amacrine and horizontal cells in newborn and young
mice (P20). Morphology of the stained cells indicat-
ed that in GCL expression of pannexins is attributed
to the ganglion cells, but not to the satellite glial cells.
Retrograde co-labeling of the ganglion cells by the
lipophilic dye 4DI-10ASP (DiA) indicated that Panx1
stains cytoplasmic organelles, plasma membranes
and processes in all ganglion cells. Punctate partially
co-localized labeling for both DiA and Panx1 was
seen in the cell of the IPL level [36]. Therefore, in
addition to the processes of the ganglion cells, some
other cells might express Panx1 as well.

The presence of neuronal coupling in several
cell types of mammalian retina is well established
[37, 38]. In some cases, a number of connexin fam-
ily members were suggested to be responsible for
corresponding GJ connectivity. For example, Cx36-
containing GJs between AII amacrine cells and ON-
cone bipolar cells are essential for normal synaptic
transmission in the primary rod pathway [39, 40].
GJs mediated by Cx36 are also essential for the
transmission of the signal from the rod photorecep-
tors to the ganglion [41], which is probably provid-
ed by the electrical synapse. Cx57 is critically
important for the functioning of the coupled hori-
zontal cells, which presumably corresponds to

mediation or contribution to center-surround effects
and contour enhancement [42]. The putative role of
the pannexins in this sophisticated neuronal ensem-
ble governing visual perception remains to be stud-
ied, but the abundant expression of both Panx1 and
Panx2 in the retinal neurons suggests its involve-
ment in visual signal processing and/or the devel-
opment of the retinal system. 

No experiments involving double-labeling with
specific glial cell marker and the pannexin in the eye
have been performed so far. However, a punctate
pattern of expression of Panx1 which is observed in
IPL layer did not particularly coincide with neuron-
specific staining [36], and may suggest that this pro-
tein is present in the glia. Rodent retina possesses
two types of glial cells - retinal astrocytes and
Müller cells. It was suggested previously that glia
may modulate neural activity in the retina [43]. The
glial-neuronal communication could be mediated by
intercellular glial Ca2+ waves that have demonstrat-
ed influence on electrical activity of neighboring
neurons. These waves propagate GJ-mediated
release of ATP, and can be initiated by mechanical
stimulus and be attenuated by the application of the
purinergic receptor antagonists in both astrocytes
and Müller cells [44]. These features of the glial-
neuronal interactions are reminiscent of the proper-
ties of Panx1 protein described above. Therefore,
pannexins are possible candidates for regulation of
glia-neuron activity modulation in retina.

It is intriguing that significant expression of
Panx1 in murine eye presents initially at E14,
increases at E18 and steeply declines at birth and
the subsequent postnatal period remaining low
through the adulthood [34]. It is peculiar that
expression of the major neuronal connexin Cx36
could not be registered in embryonic and perinatal
stages, as its expression in the retina starts about P5
[45, 46]. These findings underscore the differential
temporal patterns of expression for the pannexin
and connexin encoding genes, and suggest a possi-
ble role of pannexins in retinal development. 

In addition to retina, the expression of the Panx1
has been found in the primary non-immortalized
human lens epithelial cells. Expression profiling
experiments revealed that in these cells PANX1
mRNA levels significantly increase four hours after
dexametasone treatment [47]. Posterior subcapsular
cataract due to the perturbation of lens epithelial
cell proliferation and differentiation is a well
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known side effect of prolonged corticosteroid ther-
apy. Precise mechanism of cataractogenesis is
unknown, but it does involve GJ formations [48,
49]. It is of interest that exposure to dexametasone
does not lead to significant changes in the levels of
mRNA synthesized by any connexin encoding gene
[47], thus leaving an interesting possibility for the
involvement of the pannexins in cataract formation. 

Expression of Panx1 and Panx2 in olfactory
bulb

Investigation of the expression of pannexins in the
olfactory bulb (OB) revealed abundant expression
of Panx1 and Panx2 in a number of layers. Ray et
al. (2005) found that in the OB of adult mice
Panx1-specific labeling is prominent both in exter-
nal tufted neurons and the mitral cell layer, while in
the granule cell layer expression of this gene was
faint to absent [34]. Expression of both pannexins
was reported in rat OB in pups (P1, P7, P15), young
animals (P30) and adults [12, 50]. In adult rats, the
strongest signal for both pannexins was registered
in mitral cell layer and also in accessory OB. In the
granule cell layer of rat OB, Panx1- and Panx2-spe-
cific probes stained almost all cells, however, a
higher extent of the staining could be seen in some
unidentified scattered cells [50]. Our own experi-
ments of in situ hybridization of Panx2 mRNA to
adult mouse brain slices revealed significant label-
ing in the mitral cell layer as well as scattered
labeled cells in external plexiform, glomerular and
granule cell layers [Fig.1 A, E].  

Presence of GJs in the OB is described in litera-
ture [60] and may be important functionally. Odors
elicit both β-frequency (15–40 Hz) and γ-frequency
(40–75 Hz) oscillations in the mammalian olfactory
bulb [51–53]. These oscillations may reflect odor
quality coding [54], but also have been linked to
memory [55] and experience-dependent phenome-
na such as expectancy [56]. The presence of den-
drodendritic GJs in the external plexiform layer of
the olfactory bulb has long been known [57]. GJ-
mediated coupling was also shown in granule layer,
where GJs provide significant, low-resistance elec-
trical transmission between aggregated granule
cells [58]. Mitral cells with dendrites in the same
glomerulus are probably coupled, whereas mitral
cells projecting to different glomeruli are never

coupled [59]. Recent electron microscopic data
revealed that GJs in mitral/tufted cells are connect-
ing their dendrites to the dendrites of similar cells,
periglomerular cell dendrites and some interneu-
rons different from periglomerular cells [60]. These
findings are in marked contrast with observations of
neuronal GJs in the hippocampus and the cerebral
cortex where specific types of inhibitory interneu-
rons are electrically coupled almost exclusively to
interneurons of the same type [61]. 

It is of interest that the labeling for the main neu-
ronal connexin Cx36 is most intense and
widespread in the mitral cell layer and recognizable
in the glomerular layer [46]. It also could be
observed in scattered cells in the external plexiform
layer (periglomerular cells and tufted cells) and in
the granular cell layer [46]. In Cx36 knock-out mice
electrical coupling as well as correlated spiking
between mitral cells projecting to the same
glomerulus is entirely absent [62]. However, the
authors directly verified that Cx36 is responsible
for GJs only between distal dendrites of mitral cells
in olfactory bulb glomeruli. GJs in other cells in the
olfactory bulb were not investigated in detail [62].
In addition, the staining for the connexins Cx32
[63], Cx43 [64] and Cx45 [65] is also found in the
olfactory bulb, but their functional significance in
electrical coupling in OB is thus far unknown.
Given the demonstrated presence of pannexins in
different cell types in OB, we expect that future
investigations could shed light on their role in the
processing of olfactory information. 

Expression of pannexins in cerebellum

Early studies of the pannexin expression in the cere-
bellum of young rats revealed abundant Panx1 posi-
tive cells in its white matter of the cerebellum [12].
Staining of Panx2 was absent in the white matter, but
was highly visible in Purkinje cell layer [12].
Experiments with mouse brain confirmed Panx2-spe-
cific labeling in Purkinje cells [6]. Detailed in situ
hybridizations performed by Ray et al. on murine
brain demonstrated intense staining for Panx1 mRNA
in the Purkinje cells, deep cerebellar nuclei and scat-
tered large cells in the granule layer that probably cor-
respond to Golgi or Lugaro neurons [34]. The double
labeling in principal neurons of cerebellum revealed
that all Panx1-positive Purkinje cells were calbindin-
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(which serves as marker for Purkinje cells in the cere-
bellum) and parvalbumin- (a marker for GABAergic
cells) immunoreactive. At the same time, the Panx1
mRNA expressing neurons in the granule cell layer
were entirely devoid of parvalbumin and calbindin
immunoreactivity [34]. The cells in the molecular
layer were found to be Panx1-negative [34].
Observations of pannexin expression in the rat cere-
bellum [50] mainly coincided with findings in mouse
specimens (Table 2). Some cells in granular cell layer,
possibly Golgi cells were found to contain large
amounts of mRNAs for both genes. Since Panx1
expression was found both in internal and external
granule cell layers of the cerebellum at P7, it was
assumed that Panx1 might be expressed in proliferat-
ing neurons. Double-labeling experiments with
Panx1 and proliferation marker Ki67 indeed revealed
that Panx1 could be expressed both in proliferating
and non-proliferating neurons [50]. Vogt et al. (2005)
proposed non-gap-junction function of Panx1 in cells,
found in the external granule cell layer, since these
cells are migrating and unlikely to be coupled [50].

Our own data describing the Panx2 distribution
in mouse brain coincide for the most part with
Panx1 expression patterns described above (Fig.1.
B, F) and feature significant expression in Purkinje
cells and in scattered cells in the granular layer, and
faint expression in the molecular layer. In addition,
we observe faint but distinct labeling for Panx2
probe in the white matter of the cerebellum
(Fig.1.F, black arrows). Interestingly, some Panx1-
specific staining could be seen in the white matter
of the rat cerebellum on the slides prepared by other
researchers [12, 50]. It is worthwhile to note that
the thorough examination of in situ hybridization
slides representing other sites of white matter local-
ization, e.g. corpus callosum (Fig.3 G) and fornix
(Fig.3, B) did not demonstrate any Panx2-specific
labeling. This indicates that if pannexins are indeed
expressed in glial cells, their expression could be
location-specific. Recently, study of Zappala et al.,
2006 revealed expression of Panx1 in Bergmann
glial cells of the cerebellum, where it was co-local-
ized with GFAP antibody [120]. As Panx1 expres-
sion is already proven for Purkinje cells, these find-
ings make Panx1 an attractive candidate for recent-
ly found GJs between Bergmann glia and Purkinje
cells [121]. Bergmann-Purkinje GJs are possibly
involved in the development and the maintenance
of cerebellar cortical network [122]. At the same

time, no other glial cells investigated in this study
were shown to be Panx1-positive [120].

In the rat cerebellum the expression of Panx1 is
clearly detectable at P1, P7, P15 and P30, then its lev-
els become somewhat decreased with age [50]. In
mice cerebella, Ray et al. (2005) also showed devel-
opmental regulation of Panx1 [34]. RT-PCR experi-
ments indicated that Panx1 is found in the cerebellum
already at E16, peaked at E18, and decreased at P0
towards P14 [34]. Panx2 is characterized by inverse
temporal expression pattern: in rats its mRNA levels
increase from younger ages to P30, and then drop to
a moderate but steady level in adult [50].

GJ-type coupling between cells in the cerebellum
was shown in several studies. Already more then 30
years ago, an existence of the electrotonic coupling
was revealed in the molecular layer of the cerebellar
cortex [123]. Later, by paired recordings inhibitory
interneurons in the molecular layer of the cerebellar
cortex were shown to be electrically coupled and
capable of the generating of synchronous activity. In
another study, a high incidence of dye-coupling was
demonstrated using intracellular staining with bio-
cytin [124]. Also, both electrical and dye coupling
were described between Bergmann glial cells [125].
Cx36 is expressed in cerebellar molecular and gran-
ular layer, as well as in cells of deep cerebellar
nuclei [46, 67], however principal cells of cerebel-
lum, Purkinje cells, are devoid of Cx36 expression
(Table 2). Pannexins are expressed in majority of
cell types of the cerebellum, and are plausible can-
didates for the basic coordinators of the cell-cell
communication in this brain area.

Expression of Panx1 and Panx2 in a
hippocampus

Both pannexin-encoding genes are expressed in the
stratum pyramidalis (SP) of the hippocampus and in
individual neurons in the stratum oriens (SO) and
stratum radiatum (SR) of 15 days old rats [12].
Specific staining for Panx2 was revealed in pyrami-
dal cell layer in CA1, CA2 and CA3 of the adult
mouse hippocampus and also in the dentate gyrus
(DG), in rare cells of strati oriens and radiatum, and
in both granular and polymorph layers of dentate
gyrus [6, 34 and Fig. 1C, 1G]. All hippocampal
Panx1-positive cells were confirmed as neurons
after double-labeling with NeuN, marker of neu-
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Panx1 Panx2 Cx36

Olfactory bulb

Mitral cells ++[34], ++[50] ++[this paper], ++[50] ++[67]
Periglomerular and external 
plexiform layer ++[34], +[this paper] ++[67]

Glomerular layer -[34] -[this paper] +[67], -[46]
Granule cell layer +/-[34], ++[50] ++[this paper], ++[50] +[67]
Accessory olfactory bulb +[50] +[50] n/a

Retina

Ganglion cell layer ++[34], ++[36] ++[36] ++[67], ++[46]
Inner nuclear layer (amacrine cells) ++[34], ++[36] ++[36] ++[67], ++[46]
Outer nuclear level ++[34] -[46]
Inner plexiform layer +[34] -[46]
Outer plexiform layer (horizontal cells) ++[36] ++[36] -[46]

Hippocampus

Pyramidal cells (PC) of the entire CA
region ++[34],++[50] ++[2, this paper ], ++[50]

+[67] PC of CA3 region,
but not CA1; +[46] PC of
CA3 region, but not CA1

Granule cells of dentate gyrus ++[34], ++[50] ++[2, this paper ], ++[50] -[67], -[46]

Scattered cells within stratum radiatum
and oriens, at the border of granular cell
layer and in the hilus of the dentate gyrus 

++[34], ++[50] ++[2, this paper], ++[50] ++[67], ++[46]

Entorhinal cortex ++[50]
++[50], +[A.T., O.L.,
unpublished 
observation ]

+[67]

Neocortex
Different layers of neocortex 
(scattered cells). +[34], +[50] ++[2,this paper], +[50] +[67], +[46]

Basal telencephalon

Piriform cortex ++[34] ++[this paper] +[67]
Lateral globus pallidus ++[34] +[this paper] +[67]
Nucleus caudate putamen 
(scattered cells) ++[34] ++[this paper] +[67], +[46]

Nucleus accumbens +[34] ++[this paper] +[67]
Medial septum +[34] +[this paper] +[67]
Lateral septum +[34] +[this paper] n/a
Diagonal band of Broca +[34] + [this paper] +[67]
Ventral pallidum +[34] + [this paper] n/a
Bed nucleus of stria terminalis +[34] + [this paper] +[67]

Olfactory tubercle +[34] +[ A.T., O.L., 
unpublished observations] n/a

Table 2   Expression of Panx1, Panx2 and Cx36 mRNA in the CNS of adult rodents
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Panx1 Panx2 Cx36

Amygdala, dorsolateral nucleus +[34] + [this paper] -[67], -[46]
Amygdala, basolateral nucleus +[34] + [this paper] -[67], -[46]
Amygdala, basomedial nucleus -/+[34] n/a -[67], -[46]

Thalamus

Geniculate nuclei of thalamus +[34] n/a -[67]
Medial and lateral habenular nuclei +[34] +[this paper] +[67], +[46]
Zona incerta +[34] +[this paper] +[67]
Thalamic reticular formation ++[34] +[this paper] ++[67]
Posterior thalamus +[34] +[this paper] -[67], -[46]
Lateral posterior and posterior nucleus +[34] +[this paper] -[67]

Hypothalamus
Magnocellular neurons of the paraventricular
hypothalamic and supraoptic nucleus +[34] +[this paper] +[67]

Arcuate nucleus +[34] ++[this paper] +[67]
Ventromedial hypothalamic nucleus +[34] ++[this paper] +[67]
Lateral division of mamillary region +[34] +[this paper] +[67]
Medial subnuclei of mamillary region -[34] +[this paper] +[67]
Ventral tegmental/supramamillary area +[34] +[this paper] n/a

Midbrain
Midbrain superior colliculus 
(large cells in deep layers) +[34] n/a +[67]

Midbrain inferior colliculus 
(outer and inner nuclei) +[34] n/a +[67]

Periaqueductal grey matter +/-[34] 
(weak to absent)

+/- (rare scattered cells)
[A.T., O.L., unpublished
observation] 

+[67]

Substantia nigra pars compacta and reticulata ++[34] ++[2] +[67]

Hindbrain
Medial vestibular, cohlear and cuneate
nucleus ++[34] +[this paper] +[67]

Nucleus facialis n/a +[this paper] +[67]
Pontine nuclei n/a +[this paper] +[67]
Mesencephalic trigemical nucleus -[34] +[this paper] n/a
Inferior olive +[34] n/a ++[67], ++[46]

Cerebellum

Purkinje cells ++[34], ++[50] ++[6, this paper], ++[4] -[67], -[46]
Molecular layer -[34], +[this paper] +[67], +[46]
Granule cell layer -[34] -[this paper] +[67], +[46]
Scattered large somata suggestive Golgi
or Lugano neurons ++[34], ++[50] +[this paper] +[67] (suggested)

Table 2   Expression of Panx1, Panx2 and Cx36 mRNA in the CNS of adult rodents



ronal somata. Some Panx1-positive neurons were
SMI-immunoreactive (served as a marker for sub-
sets of hippocampal pyramidal neurons) and some –
parvalbumin-immunoreactive (marker for GABA-
ergic cells of hippocampus). However, there was no
co-localization of Panx1 with GFAP in the hip-
pocampus, which suggests absence of Panx1
expression in glial cells in this brain region [34]. 

Vogt et al. (2005) found that expression of
Panx1 in rat brain gradually increases postnatally
resulting in a peak expression around P7 that is later
decreases with age [50]. Levels of Panx2 in prena-
tal brain were low, its peak expression was achieved
on postnatal day 15, and also was characterized by
some decrease in adults. In rat hippocampus expres-
sion of both pannexins was present in DG and all
CA regions. This expression was not restricted to
the pyramidal cell layer but was also observed in
cells located in the stratum oriens, radiatum and
lacunosum-moleculare [50]. Both excitatory and
inhibitory cells of the hippocampus express the two
pannexin genes [50]. Weickert and co-authors
recently showed that Panx1 level of expression is
superior to that of Cx36, Cx47 and Cx45 in the hip-
pocampus of adult mice [66]. 

All aforementioned rodent data on expression
of pannexins in hippocampus are in good agree-
ment with each other. It is of interest that the pat-
terns of Panx1 expression in adult rodents are in
marked contrast with patterns of Cx36, which is
neither expressed in stratum granulosum of DG
nor in pyramidal cells in CA1, but only in some
principal cells of CA3 region and in GABA

interneurons located in the various layers of CA1,
CA3 and DG [67]. This difference between pan-
nexin and Cx36 expression might have important
functional implication. Cx36 knockout mice are
able to produce ultra-fast, GJs dependent oscilla-
tions in pyramidal cell layer of CA1 and CA3 hip-
pocampal regions [68, 69]. On the other hand, cel-
lular synchronization during sharp wave-ripple
complexes, especially its high-frequency compo-
nent requires electrical coupling [70]. This finding
suggests that some other GJ forming molecules
are contributing to these oscillations. Whether
these molecules are the pannexins is a matter of
future investigations. Their localization in princi-
pal neurons of hippocampus is an encouraging
factor, since high frequency oscillations are
thought to be dependent on axo-axonal coupling
of principal cells [71, 72]. High frequency net-
work oscillations (“ripples”) are suggested as car-
rier of coordination during specific information
transfer between neocortical and hippocampal cell
ensembles during memory consolidation [73, 74].
If pannexins are confirmed as the structural corre-
late for generation of ripple activity in hippocam-
pal network new avenues for studies of memory
consolidation may be opened.

Furthermore, there are direct indications that
Panx1 and Panx2 could participate in hippocampal
plasticity under some types of stimulation. It has
been shown recently that the expression of Panx1
and Panx2 is regulated in an activity dependent
manner in slices of the rat hippocampus after
tetanic stimulation, which modulates the electrical
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Panx1 Panx2 Cx36

Deep cerebellar nuclei +[34] +[this paper] +[67]
White matter of cerebellum ++[12], +[50] +[this paper], -[12] n/a
Bergmann glial cells of the cerebellar cortex +[120] n/a n/a

Fiber systems (white matter)

Corpus callosum +[50], +/-[66], -[34] -[this paper] -[67], -[46]
Fornix +[50] -[this paper] -[67], -[46]

Spinal cord +[12], +[34] ++[12] +[67]

Table 2   Expression of Panx1, Panx2 and Cx36 mRNA in the CNS of adult rodents

++ abundant staining; + some staining; +/- faint to absent staining; - no staining; n/a - not assessed



coupling strength [35]. Five-fold decrease of
Panx1 expression in CA1, and 3-fold increase of
Panx2 mRNA levels in CA3 were observed [35]. It
is of interest that while six different hippocampal
connexins were tested in the same experimental
conditions (Cx26, Cx32, Cx36, Cx43, Cx45,
Cx47), only the expression of Cx32 was changed,
increasing 2-fold in the DG, and decreasing 2-fold
in CA1. It is peculiar that Cx32 is not expressed in
neurons, but in oligodendrocytes [75–77]. The
connexins that are likely to be expressed in neu-
rons (i.e. Cx36, Cx45) were not regulated in this
stimulation paradigm [35]. 

After 2.5 hrs induction of epileptiform activity
using 4-aminopyridine (an agent inducing GJ-
dependent seizures) Panx2 levels were increased
1.5 fold selectively in DG. After 6 hrs of stimula-
tion, Panx1 expression was changed significantly,
increasing 1.6 fold in the DG and decreasing 5-
fold in CA1 [35]. These findings are consistent

with the hypothesis that pannexins are involved in
electrical coupling of principal neurons since the
changes in the levels of corresponding mRNAs
may lead to a variation of the composition of
Panx1/Panx2 channels and may modulate their
coupling strength [35]. However, another recent
study which exploited 4-aminopyridine-induced
seizures in mice as a model of stimulation of GJ
expression in hippocampus, revealed about 1.4-
fold decrease in Cx36 expression 4 hours after
seizures, and 3 to 5-fold decrease 8 hours after
seizures by both RT-PCR and Western blot, while
no change in Panx1 expression was found at any
time point tested [120]. The difference in the
results of these two studies could be explained by
using the different animal model also differing in
age: 3–4 weeks old rat vs. adult mice, and differ-
ent stimulation paradigm: application of 4-
aminopyridine to hippocampal slices to induce
epileptiform activity vs. induction of seizures in
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Fig. 1 Expression of Panx2 in the brain of adult mice. A, E - olfactory bulb (Gr - granular layer, Mi - mitral cell
layer, Gl - glomerular layer, EPl - external plexiform layer); B, F - cerebellum (PC - Purkinje cells layer, Gr - gran-
ular cells layer, Mol -molecular cell layer, DCN - deep cerebellar nuclei, wmc - white matter of cerebellum, white
arrows point at expression in PC, white arrowhead - on expression in Gr, black arrows - on expression in wmc, black
arrowheads - on expression in Mol); C - Hippocampus, G - area CA1 of hippocampus (Py - pyramidal cells layer,
Or - stratum oriens, Rad - stratum radiatum, PoDG - polymorph layer of the dentate gyrus, Thal - thalamus); D, H
- Locus coeruleus (LC) (MPB - medial parabrachial nucleus, Me5 - mesencephalic trigeminal nucleus, Bar -
Barrington's nucleus). Scale bars: A, B, D - 300 μm; E, F, G, H - 200 μm; C - 500 μm. 



live animals via intraperitoneal injection. Thus,
further investigations are needed to define crucial
factors affecting epileptiform-dependent regula-
tion of pannexins in the hippocampus. 

Expression of the pannexins in a cerebral
cortex

Both Panx1 and Panx2 are prominently expressed
in the cortex of young rats (P15) [12]. In cerebral
cortex of adult rats the highest levels of Panx1 and
Panx2 expression were observed in the prefrontal
and entorhinal regions. Cells in layers II/III and V
exhibit a stronger signal for pannexin mRNAs com-
pared to cells in layers I, IV and VI [50]. Co-
immunostaining with NeuN and GFAP confirmed
that expression of pannexins is exclusive to neu-
ronal cells [50]. While approximately 95% of the
parvalbumin-containing GABAergic cells in the
cerebral cortex also expressed Panx1 and Panx2,
the percentage for calretinin-positive neurons
expressing Panx1 or Panx2 was much lower [50]. In

the neocortex of adult mice expression of Panx1
was observed in cells scattered throughout different
layers, with the highest staining intensity in infra-
granular layers (V and VI) [34]. In situ hybridiza-
tion of Panx1 mRNA was combined with immuno-
histochemistry to different neuronal markers to
characterize the neuronal phenotypes. All Panx1-
expressing cells in murine cortex were confirmed as
neurons by NeuN immunoreactivity, the same as for
the rat cortex. Double staining with pyramidal cells
marker SMI indicated that some Panx1 expressing
cells were pyramidal cells; other Panx1-expressing
cells were non-pyramidal as they co-express par-
valbumin, calbindin or calretinin, markers of
interneurons [34]. Our own data of expression of
Panx2 in adult mouse cerebral cortex indicated that
its expression varies depending on the type of cor-
tex and layer. Highest expression was found in the
piriform cortex (Fig. 2A), with most intensive
labeling in layer II, and in prefrontal cortex (Fig.
2C), where all layers were evenly and intensively
labeled by Panx2. In the primary motor cortex the
expression was most abundant in layer III, with
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Fig. 2 Expression of Panx2 in cerebral cortex of adult mice. A - Piriform cortex, B - Primary motor cortex, M1, C
- Prefronttal cortex (M2 - secondary motor cortex; Cg1 - cingulate cortex, area 1; Prl - prelimbic cortex, IL - infral-
imbic cortex; VO - ventral orbital cortex); D - Primary somatosensory cortex, S1. (Roman numbers denote cortical
layers). Scale bars: A, B, D - 100 μm, C - 500 μm.



some significant expression in layers V and VI (Fig.
2B). In the primary somatosensory cortex expres-
sion was most noticeable in layer V (Fig. 2D). In
addition, neurons in the superficial and deep layers
of the primary auditory cortex were found to
express large quantities of mRNA for Panx1 and
Panx2 [78]. Like in other brain areas, Panx1 expres-
sion in cerebral cortex peaks at E18 and is main-
tained at low level in adulthood [34]. Therefore,

developmental patterns of pannexin expression dif-
fer from those of Cx36 that peak for embryonic
stage at E15 for brain lysates [79] and peak at P12
for postnatal period in neocortex of rats [46].

In the cerebral cortex, neuronal synchronization is
essential for various processes including sensory per-
ception, motor control, attention and plasticity
[80–82]. The mechanisms governing cortical syn-
chrony are unknown. Most likely, synchrony is main-
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Fig. 3 Expression of Panx2 in the brain of adult mice. A, D - thalamus (Rt - reticular thalamic nucleus, fi - fimbria
of the hippocampus, st - stria terminalis, ic -internal capsule, fr - fasciculus retroflexus, LHb - lateral habenular
nucleus, MHb - medial habenular nucleus, LP - lateral posterior thalamic nucleus, MDL - mediodorsal thalamic
nucleus, lateral part, Po - posterior thalamic nuclear group, PV - paraventricular thalamic nucleus, VP - ventral pos-
terior thalamic nucleus); B, C - hypothalamus (ZI - zona inserta, PaDC - paraventricular hypothalamic nucleus, dor-
sal cap, PaLM - paraventricular hypothalamic nucleus, lateral magnocellular part, PaMM - paraventricular hypotha-
lamic nucleus, medial magnocellular part, 3V - 3rd ventricle, SO - supraoptic nucleus, opt - optic tract, f - fornix, mt
- mammillothalamic tract, Arc - arcuate hypothalamic nucleus, DM - dorsomedial hypothalamic nucleus, PH - pos-
terior hypothalamic area, PeF - perifornical nucleus, MTu - medial tuberal nucleus, VMH - ventromedial hypotha-
lamic nucleus); E - Nucleus accumbens and major island of Calleja (aca - anterior commissure, anterior part, LV -
lateral ventricle, LSV - lateral septal nucleus, ventral part, AcbC - accumbens nucleus, core, AcbSh - accumbens
nucleus, shell, ICjM - islands of Calleja, major island, MS - medial septal nucleus); F - Amygdala (ic - internal cap-
sule, CPu - caudate putamen, GP - globus pallidus, Pir - piriform cortex, DEn - dorsal endopiriform nucleus, LA -
lateral amygdaloid nucleus, BLA - basolateral amygdaloid nucleus, anterior part, BLV - basolateral amygdaloid
nucleus, ventral part), G - Caudate putamen (M1 - primary motor cortex, cc - corpus callosum, CPu - caudate puta-
men). Scale bars: A, G - 200 μm, B, C, D, E - 300 μm, F - 500 μm.



tained by electric and chemical synapses between
GABAergic interneurons [83]. Given the localization
of both pannexins in GABAergic neurons of cerebral
cortex, it seems plausible that they may participate in
the processes of neuronal synchrony.

Expression of pannexins in other brain
structures

Expression of pannexins is detected across numerous
brain structures. Some of these structures are known
to have electrical coupling, while in other brain areas
it has not yet been investigated. Among the structures
having known by both electrical synapses and
demonstrated pannexin expression are the inferior
olivary nucleus [34, 66] and the reticular thalamus
[34]. In the former Panx1 mRNA co-localizes with
calbindin, a marker of olivary neurons, and in the lat-
ter with parvalbumin [34]. Our own experiments also
revealed significant expression of Panx2 in scattered
cells in thalamic reticular nucleus of adult mice (Fig.
3A). A number of other thalamic nuclei also express
Panx1 and Panx2 [34; Fig. 3D; Table 2). 

The locus coeruleus is a small cluster of widely
projecting noradrenergic brain-stem neurons pos-
sessing electrical synapses that participate in syn-
chronization of subthreshold rhythms [84, 85] and
is implicated in the modulation of arousal and atten-
tion [86]. Fig.1 (D, H) shows that scattered cells in
the locus coeruleus are positive for Panx2 mRNA.

In hypothalamus, GJs may function in the secretion
of oxytocin and vasopressin [87, 88]. Intensity of dye-
coupling and the number of dendrodendritic membrane
contacts between neuroendocrine cells in supraoptic
nucleus increases in response to dehydration, gestation
and lactation. Both Panx1 [34] and Panx2 (Fig. 3B) are
expressed in the supraoptic and paraventricular nuclei
of adult mouse hypothalamus. One of the high-through-
put gene expression studies indicated that pannexins
may be involved in the process of neurosecretion, as
Panx1 gene was downregulated in all three indepen-
dently obtained stable neurosecretion incompetent
clones of PC12 cells [89]. In addition, both pannexins
are expressed in number of other murine hypothalamic
nuclei (34; Fig. 3C; Table 2).

Some evidence points toward the presence of the
GJs between medium spiny neurons of striatum [90,
91] and at electrical coupling between its local
inhibitory neurons [92]. Panx1 mRNA was found in

scattered neurons of the striatum, intensely labeled,
while spiny stellates cells were negative [34]. Our
experiments indicated expression of Panx2 mRNA in
some unidentified cells of caudate putamen, perhaps
of striatal interneurons (Fig. 3G). Panx2 expression
is also noticeable in the nucleus accumbens (Fig.
3E), but the major island of Calleja was devoid of
labeling (Fig. 3E), which is in agreement with data of
other researchers [34]. Interestingly, in spite of the
absence of pannexins in cells of islands of Calleja,
these cells are known to be electrically coupled
[126]. Finally, noticeable expression of Panx1 [34]
and Panx2 (Fig. 3F; Table 2) was found in amygdala. 

Conclusions that could be made from
observation of pannexins expression in
rodent brain 

Panx1 and Panx2 mRNAs are widely present in the
brain structures of adult rodents, though their expres-
sion profiles are far from ubiquitous. By multiple
research groups, Panx1 and Panx2 expression regis-
tered both in areas of brain where neurons known as
electrically coupled and in the areas where electrical
coupling was not yet described. Some known electri-
cally coupled neurons are devoid of pannexins stain-
ing. Speaking generally, patterns of the pannexin
expression resemble those of the main neuronal con-
nexin, Cx36. Hovewer, differences are striking in the
principal cells of hippocampus and cerebellum,
where Panx1 and Panx2 are abundantly expressed,
while Cx36 is absent. Investigation of the cellular
localization of Panx1 protein in the principal cells of
hippocampus and cerebellum revealed puncta on the
cellular membrane, obviously suggestive of putative
GJs [120]. Among suggested roles of pannexins in
nervous systems are sensory processing, hippocam-
pal plasticity, synchronization between hippocampus
and cortex, neurosecretion and the coordination of
the calcium waves supported by glial cells.

Pannexins and cancer

It is well known that GJs are involved in tissue home-
ostasis and that they regulate and control cell prolifera-
tion, differentiation, and apoptosis, although the mech-
anistic aspects of these actions remain largely unknown
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[93]. Disruption or alteration of such communications
may lead to aberrant cell growth and tumor develop-
ment [94]. Connexin-encoding genes could serve as
tumor suppressors [95, 96]. For example, transformed
cells transduced with connexin genes have been shown
to regain proliferation control, thereby suggesting that
connexins do in fact have tumor-suppressor activity
[97]. The most conclusive evidence of connexin deple-
tion in tumorigenesis was recently collected for
gliomas and glioblastomas [95, 98]. However, GJs
have also been shown to stimulate the invasion of
malignant gliomas [99, 100]. This picture became even

more complex after the discovery of pannexins. As it
was already mentioned in chapter about pannexin’s
properties, they exhibit a remarkable sensitivity to
blockade by CBX, a classical inhibitor of GJ commu-
nication [13]. It is quite possible that CBX-inhibited
cell migration of glioma cells described before [101] is
due to a suppression of pannexin channels. 

Evidence of pannexin involvement in the process of
tumorigenesis is provided by high-throughput studies
revealing differential expression of pannexin encoding
genes in tumor samples and in model systems. A search
for pannexin encoding genes in the brain cancer gene
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Fig. 4 Expression of the PANX2 mRNA in a human brain tumor samples. A. Gene expression plot that displays
average expression intensities for the for PANX2 gene based on Affymetrix GeneChip arrays (U133 Plus 2.0 arrays)
expression in human brain tumor samples. B. Kaplan-Meier Survival Plot for Samples with Differential PANX2
Gene Expression measured by unified probeset reporter 56666. Down-Regulated vs. Intermediate: P < 0.023; Down-
Regulated vs. all other samples, P < 0.0194; Intermediate vs. all other samples, P < 0.0325. The log rank p-values
are calculated using Mantel-Haenszel procedure. 



expression database REMBRANDT (Repository of
Molecular Brain Neoplasia Data, http://rembrandt.
nci.nih.gov/rembrandt) yields statistically significant
PANX2-based predictions of post diagnosis survival for
patients with glial tumors (Fig. 4). These findings are
further strengthened by the observation that the human
PANX2 gene is located within chromosomal region
22q13.3 which is often deleted in human astrocytomas
and ependymomas [102–105]. Thus, PANX2 could be
viewed as a candidate tumor suppressor gene involved
in gliomagenesis. On the top of that, in one recent study
a Panx2 proteolitic fragment present into the blood-
stream was identified as a potential biomarker represent-
ing a part of the serum signature of ovarian carcinoma
[106]. Despite the obvious suggestion that the release of
Panx2 fragments into the bloodstream of ovarian cancer
patients may simply accompany the paraneoplastic pro-
cess in some non-malignant tissues, it is tempting to
speculate that an underlying loss of GJs is relevant to at
least some manifestations of this malignancy. 

Evidences of PANX1 and PANX2 involvement in
tumorigenesis are even less convincing. Nevertheless,
we will review them here, as they still might point us
to an interesting facet of pannexin polyfunctionality.
High-throughput microarray analysis of the mouse
hepatocarcinoma cell line Hca-F with a metastasis rate
over 70% and its syngeneic cell line Hca-P with a
metastasis rate less than 30% in order, revealed that
Panx1 over-expression is characteristic for metastatic
cancer spread [107]. PANX1 gene amplification lead-
ing to its overexpression has been found in 2 out of 5
multiple myeloma cell lines studied, corroborating the
hypothesis that this gene can serve as an oncogene
[119]. However, some other studies contradict to this
point of view. The amount of PANX1 mRNA greatly
increases after the inhibition of the low-grade serous
carcinoma MPSC1 cell proliferation as measured by
LongSAGE procedure [108]. The MPSC1 cell line
possesses a BRAF mutation that leads to constitutive
activation (phosphorylation) of its downstream target,
mitogen-activated protein kinase (MAPK), also known
as extracellular signal regulated protein kinase (ERK).
This activation could be prevented by treatment with a
highly potent and selective inhibitor of MEK1/2, CI-
1040 (PD184352) leading to the profound suppression
of the proliferation. Pronounced over-expression of
Panx1 after CI-1040 treatment was confirmed by Real-
Time PCR both in MPSC1 cell line and in two other
ovarian carcinoma cell lines that contain activating
KRAS mutations [108]. The only observation linking

Panx3 to the tumorigenesis is an identification of this
protein as a molecular partner of BCL6, a transcription
factor involved in lymphomagenesis [110]. This find-
ing came from co-immunoprecipitation experiments
with an anti-BCL6 antibody and subsequent tandem
MS/MS spectroscopy [109]. 

At this point, it is difficult to say whether pan-
nexins can be viewed as tumor suppressors or onco-
genes unequivocally. Most likely, pannexins repre-
sent yet another group of the genes whose expres-
sion is disturbed in tumors. Similarly to connexins,
particular pannexins may restrain initial growth of
the tumor in situ, but hasten the metastatic spread of
the existing malignancy. Future studies of the pan-
nexin connection to cancer are warranted.  

Conclusion

The ability to form the intercellular channels in paired
oocytes and hemichannels in single oocytes has been
demonstrated for rodent pannexins. Hypothetical role
of pannexins in nervous systems exploiting both chan-
nel and hemichannel forms involved participating in
sensory processing, hippocampal plasticity, synchro-
nization between hippocampus and cortex, and propa-
gation of the calcium waves supported by glial cells,
which help maintain and modulate neuronal
metabolism. Pannexin also may participate in patho-
logical reactions of the neural cells: there is evidence,
that ischemia opens neuronal GJ hemichannels, which
properties resembles those of pannexins, and that
leads to neuronal death. Recent study revealed non-GJ
function of Panx1 hemichannels in erythrocytes,
where it functions as conduit for release of ATP in
response to osmotic stress. Beside that, there are indi-
cations that pannexins may also be involved in tumori-
genesis particularly of gliomagenesis.
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