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Abstract: The misuse and mismanagement of antibiotics have made the treatment of bacterial in-
fections a challenge. This challenge is magnified when bacteria form biofilms, which can increase
bacterial resistance up to 1000 times. It is desirable to develop anti-infective materials with antibacte-
rial activity and no resistance to drugs. With the rapid development of nanotechnology, anti-infective
strategies based on metal and metal oxide nanomaterials have been widely used in antibacterial and
antibiofilm treatments. Here, this review expounds on the state-of-the-art applications of metal and
metal oxide nanomaterials in bacterial infective diseases. A specific attention is given to the antibac-
terial mechanisms of metal and metal oxide nanomaterials, including disrupting cell membranes,
damaging proteins, and nucleic acid. Moreover, a practical antibiofilm mechanism employing these
metal and metal oxide nanomaterials is also introduced based on the composition of biofilm, includ-
ing extracellular polymeric substance, quorum sensing, and bacteria. Finally, current challenges and
future perspectives of metal and metal oxide nanomaterials in the anti-infective field are presented to
facilitate their development and use.

Keywords: bacterial infection; metal and metal oxide nanomaterials; antibacterial; antibiofilm

1. Introduction

Bacterial infection with high morbidity and mortality rate have posed an increasingly
serious threat to human health. The development of antibiotics has successfully resisted bac-
terial invasion. However, microorganisms have acquired drug resistance through genetic
mutation or by receiving exogenous mutant genes because of the abuse of antibiotics [1,2].
They resist antibiotics by blocking drug–cell contact, rendering the drug inactive, altering
their metabolic pathways, inhibiting the entry of drugs into the bacteria, or activating the
efflux of drugs [2]. The era of antibiotics is progressively coming to an end due to the
emergency of multidrug-resistant bacteria. It has been reported that multidrug-resistant
bacteria cause at least 700,000 deaths worldwide each year, including 23,000 deaths in the
United States and 25,000 deaths in the European Union [3]. The World Health Organization
predicts that 10 million people worldwide will die from bacterial infections by 2050 if no
efforts are made to reduce bacterial resistance or develop new antibiotics [4].
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Infectious diseases caused by planktonic bacteria are common, such as sepsis and
keratitis. When bacteria acquire drug resistance, removing the bacteria from the site of
infection becomes a challenge. This challenge is amplified when bacteria form biofilm,
which are one of the reasons bacteria develop drug resistance [5]. Bacterial biofilms are
three-dimensional structure groups formed by bacteria embedded in their own secreted
extracellular polymeric substance (EPS) [6–8]. Depending on the presence or absence
of substrate during biofilm formation, they are classified into classical attached biofilms
and type II nonattached biofilms. Biofilm formation is a cascading process, which can be
divided into adhesion, reproduction, maturation, and shedding [9–11]. First, planktonic
bacteria attach to the surface of the vector through outer membrane proteins and flagella,
etc. Next, adhesion is enhanced by EPS secreted by the bacteria and which begins to
develop into an irreversible adherent state by differentiation. They then develop into a
mature three-dimensional structure through the aggregation of colonies. Finally, biofilms
are hydrolyzed to release planktonic bacteria, which lead to the development of new
infections. The formation of biofilm is beneficial to the survival of bacteria. The resistance
capacity of biofilm reaches 1000 times that of planktonic bacteria. On the one hand, bacteria
will undergo immune escape due to the protective effect of biofilm. On the other hand, the
relevant components of the biofilm will interact with antibiotics to reduce their effective
concentration. Furthermore, bacteria in biofilm can also resist the action of drugs through
quorum sensing (QS) systems and dormant states [12–14]. Biofilms are commonly present
on the surface of chronic wounds or implants, which can lead to delayed wound healing
or implant removal [15]. The slow wound healing is attributed to decreased immune
function, reduced cell proliferation, or reduced cellular reconstitution [16,17]. additionally,
there are limited treatments available for implant infections, such as systemic antibiotic
therapy or surgical treatment [12]. These will seriously affect the quality of life of the
patient. Therefore, effective antibacterial and antibiofilm methods with no resistance are
in urgent demand.

With the rapid development of nanotechnology, metal and metal oxide nanomaterials
have emerged as promising therapeutics in anti-infective fields due to their excellent
characteristics, including low cost and strong heat resistance. Importantly, they do not
cause the development of drug resistance [18]. The anti-infective mechanisms of metal and
metal oxide nanomaterials are mainly divided into three types, including the destruction
of bacterial cytoskeleton, the generation of metal ions, and reactive oxygen species (ROS).
They can not only kill planktonic bacteria, but also inhibit the formation of biofilm or
destroy the formed biofilm by destroying EPS, inhibiting QS, and killing bacteria inside the
biofilm. For example, He et al. constructed Au-Ag nanoshells to kill multidrug-resistant
bacteria by high heat and silver ions (Ag+) [19]. Ali et al. pointed out that Au nanoparticles
(NPs) can be used as nanoantibiotics to eliminate the biofilms of Pseudomonas aeruginosa [20].
From the aforementioned points, and taken together, metal and metal oxide nanomaterials
provide a new weapon for the treatment of infective diseases.

It is essential to have a clear understanding of the antibacterial mechanism for de-
veloping new antibacterial materials. Compared to previous reports, this progress report
concentrates on metal and metal oxide nanomaterials to summarize their anti-infective
mechanism based on the components of bacteria and biofilms (Figure 1) [21–24]. We focus
on the components of bacteria (cell membrane, protein, and nucleic acid) and conclude
common antibacterial mechanisms of metal and metal oxide nanomaterials. In addition,
we summarize relevant works based on metal and metal oxide nanomaterials for biofilm
removal in terms of biofilm composition (EPS, QS, and bacteria). Ultimately, we also
provide a detailed discussion of current challenges and future directions in metal and metal
oxide nanomaterials for anti-infective applications. We believe that this progress report
will provide new insights into the mechanisms of action of metal and metal oxide nanoma-
terials in antibacterial and antibiofilm applications and further facilitate their development
and use.
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Figure 1. The antibacterial and antibiofilm application of metal and metal oxide nanomaterials. EPS:
extracellular polymeric substance; QS: quorum sensing; ROS: reactive oxygen species.

2. Metal and Metal Oxide Nanomaterials

Metal and metal oxide nanomaterials refer to metals and alloys that form nanograins
with small size effect, quantum effect, surface effect, and interface effect. They have unique
physical and chemical properties compared to traditional metal and metal oxide materials,
which have been widely investigated in recent years in different fields. Notably, they have
been widely used in the anti-infective field due to their excellent anti-infective properties.

2.1. Metal Nanomaterials

Metal nanomaterials have been widely used in the field of anti-infection due to their
excellent anti-infective efficacy. Among them, Ag, Au, and Cu are the most common
anti-infective nanomaterial (Table 1). For thousands of years, the antibacterial properties
of Ag have been discovered and used in everyday life, such as the use of silverware. The
antibacterial properties of Ag nanomaterials mainly derive from Ag+ and depend largely
on their size and shape. For example, Yang et al. used the displacement reaction between
Zn and Ag+ to introduce Ag nanomaterials into the metal–organic framework. The antibac-
terial mechanism showed that massive release of Ag+ destroyed the bacterial contents and
enhanced the effectiveness of the nanocomposite against S. aureus and E. coli [25]. Different
from Ag nanomaterials, the antibacterial properties of Au nanomaterials are largely affected
by their morphology and the antibacterial mechanisms are diverse. For example, Au NPs
lack antibacterial activity on their own, but they showed favorable antibacterial activity
by surface modification [26,27]. Based on this, Li et al. used 4,6-diamino-2-pyrimidinethiol
modified Au NPs for the treatment of infections caused by E. coli [28]. In contrast, Au nan-
oclusters (NCs) with same surface ligand exhibit broad-spectrum antibacterial property by
inducing the overaccumulation of ROS, not only against Gram-negative and Gram-positive
bacteria, but also against their multidrug-resistant bacteria [29]. As another common
anti-infective nanomaterial, Cu nanomaterials perform antibacterial properties mainly
through generating ROS. On the one hand, Cu destroy the bacterial antioxidant system
by causing the inactivation of glutathione reductase (GR), resulting in a surge of ROS [30].
On the other hand, cuprous ions originate from copper-based nanomaterials generated
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ROS due to Fenton-like activity. For example, Lin et al. constructed copper ion-loaded
melanin and copper ion-loaded polydopamine to treat infective diseases induced by S.
aureus and E. coli with the help of copper ion release and copper ion-induced ROS produc-
tion [31]. Additionally, Pd and Pt nanomaterials can also act as nanozymes to produce
ROS, resulting in broad-spectrum antibacterial activity against both Gram-negative and
Gram-positive bacteria [32].

Table 1. The antibacterial mechanism and synthetic method of metal nanomaterials.

Nanomaterials Synthetic Method Mode of Action Bacterial Species Ref.

Ag NPs Chemical reduction Ag+ E. coli and S. aureus [33]
Nano-Ag Photoreduction Ag+ and ROS E. coli [34]
Ag NPs Chemical reduction ROS Carbapenem-resistant K. pneumoniae [35]
Ag NPs Hydrothermal reaction Ag+ E. coli, S. aureus, and C. albicans [36]
Au NPs Seed-mediated growth ROS B. subtilis and E. coli [37]
Au NPs Chemical reduction No information E. coli [28]
Au NCs Chemical reduction ROS E. coli, S. aureus, MDR E. coli, and MDR S. aureus [29]
Au NRs Chemical reduction ROS E. coli and S. aureus [38]
Cu NPs Solution casting method Free radicals E. coli and S. aureus [39]
Cu NPs Atmosphere arc discharge method ROS S. sanguinis, P. gingivalis, and S. mutans [40]
Cu NPs Biosynthetic method ROS E. coli and S. aureus [41]

NPs, nanoparticles; NCs, nanoclusters ROS, reactive oxygen species.

2.2. Metal Oxide Nanomaterials

Compared to metal nanomaterials, metal oxide nanomaterials have attracted the high-
est interest in the anti-infective community due to the better biological properties, such as
TiO2 and ZnO (Table 2) [42]. As semiconductor nanomaterials, TiO2 and ZnO can generate
highly toxic ROS by photocatalytic property, which are viewed as the promising tool for
anti-infection therapy. However, their photocatalytic-based antibacterial properties were
limited to the narrow response range of visible light and the easy recombination properties
of photoinduced electron–hole pairs [43]. In order to improve their photocatalytic perfor-
mance, combining with a semiconductor featuring narrow band gap has been reported.
For example, Khan et al. reduced the band gap using Ag2S and decreased the rate of
recombination for photoinduced charge carriers using graphene oxide (GO) [44]. The
obtained Ag2S-ZnO/GO nanocomposite showed an outstanding photocatalytic property
and remarkable antibacterial activity compared to pure ZnO nanomaterials. In addition,
ZnO nanomaterials can also exert antibacterial properties through contact adsorption mech-
anism and metal ion dissolution mechanism. They all act by zinc ions derived from the
degraded of ZnO nanomaterials in an acidic environment [45]. Zinc ions cause membrane
potential disruption by adhering to the cell membrane. Moreover, they also act on the thiol
group of the bacterial respiratory enzymes to increase the production of ROS, ultimately
leading to bacterial death [46].

Table 2. The antibacterial mechanism and synthetic method of metal oxide nanomaterials.

Nanomaterials Synthetic Method Mode of Action Bacterial Species Ref.

ZnO NPs Atmosphere arc discharge method ROS S. sanguinis, P. gingivalis, and S.
mutans [40]

ZnO NPs Biosynthetic method ROS and Zn+ E. coli and S. aureus
P. aeruginosa and C. albicans [47]

Flower-shaped ZnO Wet chemical method ROS E. coli [48]
Nano-TiO2 No information ROS E. coli and A. hydrophila [49]

TiO2 nanowire Hydrothermal reaction ROS Gram-positive bacteria and
Gram-negative bacteria [50]

TiO2 NPs
Purchased from Nanostructured and
Amorphous Materials Inc. and MK

Impex Corp., Division MK Nano
ROS E. coli [51]
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2.3. Synthetic Method

Different nanomaterials exhibit different degrees of anti-infective effect, which di-
rectly depend on their composition, morphology, and size. These characteristics are
closely related to the synthetic method. There are various methods for the synthesis
of metal and metal oxide nanomaterials, including chemical reduction, chemical precipita-
tion, the Brust–Schiffrin method, seed-mediated growth, the hydrothermal reaction, and
biosynthetic methods [52,53].

Chemical and biosynthetic methods have been reported for the preparation of metal-
based nanomaterials. Among them, chemical reduction is the most common chemical
method. However, the use of reducing agents raises the toxicity and cost of the method,
as well as introduces impurities. As a simple and fast method, the chemical precipitation
method has attracted a lot of attention, which allows for controlling the size and shape
of the nanomaterials. The reaction rate and nucleation process are largely affected by
reaction parameters such as pH, temperature, and reactant concentration. In addition,
the size, shape, and properties of the nanomaterials will depend on the crystallization
process. Based on this, Sondi et al. prepared well-dispersed Ag NPs with the size of
12.3 nm, using the reduction of AgNO3 by ascorbic acid [54]. Wang et al. synthesized
morphologically controllable ZnO NPs nanoparticles with a particle size of about 20 nm
using ZnCl2 as precursor and ammonium carbamate as precipitating agent [55]. As a
nontoxic and environmentally friendly method, the biosynthetic method can be used to
synthesize various nanomaterials with a wide range of size, physicochemical properties,
shapes, and compositions, which has been widely reported. The sources of nanomaterials
include plants, bacteria, and algae. For example, Mori et al. reported a simple and
environmentally friendly route for the biosynthesis of Ag NPs [56]. The size of the Ag NPs
was controlled by varying the glucose concentration. The final Ag NPs were produced
with a controlled particle size range of 3.48 ± 1.83~20.0 ± 2.76 nm. Nasrollahzadeh et al.
synthesized Cu NPs using the Euphorbia grandis leaf extract as a reducing and stabilizing
agent without surfactants [52].

The Brust–Schiffrin method and the seed-mediated growth synthesis method can be
employed to produce Au nanomaterials [57]. Brust–Schiffrin is the first special method
that can generate thiolate-stabilized Au NPs. The Au NPs synthesized by this method
have the following advantages: (1) high thermal and air stability, (2) no aggregation
or decomposition occurring during repeated separation and redecomposition, (3) easy
adjustment of the particle size of the synthesized gold nanoparticles with narrow dispersion
range, (4) and relatively easy functionalization and ligand substitution modifications. For
example, Selina Beatrice et al. prepared molecular tweezer-functionalized ultrafine Au NPs
that selectively adsorb to lysine and arginine residues on protein surfaces using the Brust–
Schiffrin method [58]. The process of the seed-mediated growth synthesis method of Au
nanomaterials can be divided into two stages. First, small-sized Au NPs are synthesized as
seeds. Second, the seeds are added to a “growth” solution consisting of HAuCl4, stabilizer,
and a reducing agent. Then, Au0 produced by the reduction usually appears on the seed
surface, and eventually a large amount of Au NPs is formed. Based on this method,
MSc et al. obtained gold nanorods, gold nanostars, and gold nanospheres with a small size
and a good dispersion [59].

The hydrothermal reaction is a method of synthesis using chemical reactions of sub-
stances in aqueous solutions at temperatures from 100 to 1000 ◦C and pressures from 1 MPa
to 1 GPa. It can create new nanocompounds and nanomaterials that cannot be prepared
by other methods because the homogeneous nucleation and nonhomogeneous nucleation
mechanisms of the hydrothermal reaction are different from the diffusion mechanisms of
the solid-phase reactions. Importantly, the products obtained by hydrothermal reaction
have a high purity, good dispersion, and easy particle size control. For example, Wang et al.
obtained well-dispersed copper nanowires using CuCl2·2H2O as the copper source and
polyvinyl pyrrolidone as the dispersant. Ozga et al. used a modified hydrothermal reaction
to obtain copper oxide films at less than 101 ◦C. Li et al. made ZnO nanoflowers by adjusting
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the ratio of zinc nitrate hexahydrate and cyclic hexamethylenetetramine [60]. Huang et al.
prepared TiO2 nanotubes with high catalytic efficiency by the hydrothermal reaction.

To sum up, nanomaterials of the same component prepared by different methods may
have different properties. It is important to choose an appropriate method by combining
various factors.

3. Planktonic Bacteria

The main components of bacterial cells include cell walls, cell membranes, proteins,
and nucleic acids. Among them, the cell membrane performs many functions in bacterial
life, including energy metabolism, material transport, and the biosynthesis of bacterial
structures. In addition, it is closely related to bacterial pathogenicity [61]. Protein is an
important component of bacterial cells. All bacterial structures contain proteins, such as cell
walls, cell membranes, ribosomes, etc. In short, protein is the main undertaker of bacterial
life activities [62]. Nucleic acid is the genetic material of bacteria, which is used to store
and express genetic information, including DNA and RNA [63]. Therefore, bacterial death
can be achieved by the destruction of any of the above-mentioned components.

3.1. Cell Membrane

The bacterial cell membrane, which plays a selective barrier role, is a semipermeable
membrane consisting of a phospholipid bilayer and proteins. The fundamental constituents
of membrane proteins are amino acids, which can separate into positively charged amino
groups and negatively charged carboxyl groups in solution. Thus, bacteria present negative
charge under physiological conditions [64]. According to previous studies, metal and metal
oxide nanomaterials can release metal ions under acidic conditions to induce bacterial
death [65]. In particular, the electrostatic interaction between metal ions and bacterial cell
membrane alters the membrane potential and causes K+ efflux, which further destroys the
integrity of the cell membrane. The outflow of cytoplasmic contents through the pores
eventually leads to bacterial death [54,66–68]. For instance, Nie et al. prepared Ag (−)/Ag
(+) clusters with a positive zeta potential consisting of cysteine-modified Ag NPs and methyl
maleic-acid-modified Ag NPs (Figure 2a). The results showed that their high bactericidal
ability was attributed to the strong interaction between the positively charged nanoclusters
and the negatively charged bacteria under the acidic environment [69]. Similarly, copper
ions can combine with bacteria through electrostatic interaction to inhibit bacterial growth
(Figure 2b,c) [70]. Moreover, zinc ions can also cause membrane potential disruption by
adhering to the cell membrane. For example, Wu et al. proposed a win-win strategy
based on a zinc sulfonate ligand–black phosphorus@ hydroxylapatite (ZnL2-BPs@HAP) for
bacterial elimination and osteogenesis [71]. ZnL2-BPs showed a positively charged surface
with the modification of ZnL2 (Figure 2d). The positively charged ZnL2-BPs disturbed
bacterial membrane potential (Figure 2e,f).

Most of the time, the production of ROS is directly correlated with the release of
cations. Large amounts of ROS will damage membrane proteins and lead to lipid perox-
idation, ultimately causing collapse of the cell membrane structure [72]. Ma et al. con-
structed a pH-responsive oxygen and H2O2 self-supplying zeolitic imidazolate framework-
67 (CaO2/GQDs@ZIF-67) nanosystem for photothermal therapy/chemodynamic ther-
apy (CDT) combination antibacterial therapy (Figure 3a) [73]. The endogenous cobalt
ion derived from ZIF-67 catalyzed H2O2 to produce hydroxyl radicals for CDT. The re-
sults of scanning electron microscope imaging and DNA and RNA leakage confirmed
that severe cell membrane breakdown occurred (Figure 3b,c). Zhou et al. designed a
metal–organic framework-based nanoplatform named MnFe2O4@MIL/Au&GOx for elim-
inating Gram-positive and Gram-negative bacteria (Figure 4a) [74]. It was found that
MnFe2O4@MIL/Au&GOx could produce large amounts of ROS based on its peroxidase-
like activity. Scanning electron microscope and transmission electron microscope images of
E. coli and S. aureus demonstrated the cell-membrane-disrupting ability of ROS (Figure 4b).
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The damage to cell membranes can be enhanced by combining metallic nanomaterials
with nanomaterials possessing sharp borders [75]. For example, GO nanosheets with
the sharp edges can break the lipid bilayer of the cell membrane and are often used in
conjunction with metallic nanomaterials for synergistic antibacterial therapy [76]. Du et al.
fabricated positively charged GO/nickel colloidal nanocrystal cluster (NCNC) nanocom-
posites by electrostatic self-assembly and exploited its synergistic antibacterial activity
against S. aureus and E. coli [77]. Mechanistic studies have demonstrated that GO/NCNC
nanocomposites could inhibit cellular growth by physically disrupting bacterial membranes.
Notably, the antibacterial results showed that the antibacterial performance of GO/NCNC
nanocomposites was higher than that of pure NCNC or GO suspensions (Figure 4c). More-
over, carbon nanosheets with sharp edge planes have also captured a lot of attention as
potential antibacterial agents [78]. Sun et al. designed carbon nanosheets decorated with
core–shell Cu@Cu2O nanoparticles (Cu@Cu2O/C-24) for antibacterial therapy [79]. The
results showed that the sharp edges of carbon nanosheets and the produce of hydroxyl
radical were responsible for bacterial death (Figure 4d,e).

Figure 2. Disruption of bacterial cell membranes through electrostatic interactions. (a) Schematic
illustration for bacterial killing by acid-responsive Ag (−)/Ag (+) clusters. (b) Trajectory of binding
between cell membrane and reduced graphene oxide (rGO)-copper composite and rGO. (c) An-
tibacterial activity (left axis) of rGO-copper composite and enhancement ratio (right axis) compared
to copper ions. (d) Zeta potentials of zinc sulfonate ligand (ZnL2), black phosphorus nanosheets
(BPs), and ZnL2-BPs. (e) Bacterial membrane potentials. * denotes p < 0.05, ** denotes p < 0.01, and
*** denotes p < 0.001 compared with the hydroxylapatite (HA) group without near infrared (NIR)-
irradiation. (f) The antibacterial mechanism of ZnL2-BPs@HAP. (d–f) Reprinted with permission
from Ref [71]. Copyright 2021 American Chemical Society.
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Figure 3. Cell membrane damage caused by zeolitic imidazolate framework-67 nanosystem
(CaO2/GQDs@ZIF-67). (a) Schematic illustration for bacterial killing by CaO2/GQDs@ZIF-67.
(b) Scanning electron microscope image of E. coli and S. aureus. (c) Nucleic acid leaking detec-
tion of E. coli and S. aureus after CaO2/GQDs@ZIF-67 treatment. ** denotes p < 0.01. Reprinted with
permission from Ref [73]. Copyright 2021 American Chemical Society.

Figure 4. Cell membrane damage caused by reactive oxygen species and sharp edges. (a) The
preparation process and antibacterial mechanism of MnFe2O4@MIL/Au&GOx (MMAG). (b) Trans-
mission electron microscope image of bacterial morphology. White arrows represent serious damage
of bacterial cells. (c) The bacterial morphological changes with different treatments assessed by
scanning electron microscope. Red arrows represent serious damage of bacterial cells. GO, graphene
oxide; NCNC, nickel colloidal nanocrystal cluster. (d) Evaluation of antibacterial properties of carbon
nanosheets decorated with core-shell Cu@Cu2O nanoparticles (Cu@Cu2O/C-24). (e) Schematic
diagram of the antibacterial mechanism of Cu@Cu2O/C-24 under the dark condition. (a,b) Reprinted
with permission from Ref. [74]. Copyright 2022 American Chemical Society. (c) Reprinted with per-
mission from Ref. [77]. Copyright 2022 American Chemical Society. (d,e) Reprinted with permission
from Ref. [79]. Copyright 2021 American Chemical Society.

3.2. Protein

Instead of breaking cell membrane, metal and metal oxide nanomaterials can also
eliminate bacteria by interfering with proteins. Aminoglycoside antibiotics work primarily
by inhibiting the synthesis of bacterial proteins, which are mainly used for systemic infec-



Int. J. Mol. Sci. 2022, 23, 11348 9 of 22

tions caused by sensitive aerobic Gram-negative bacilli in clinical practice [80]. Inspired by
the structural characteristics of aminoglycoside antibiotics, Wang and coworkers designed
aminophenol modify Au nanoparticles (AP_Au NPs) with broad antibacterial spectrum
against multidrug-resistant bacteria [81]. AP_Au NPs with hydroxyl groups bind to the 16S
rRNA molecules of bacteria by forming hydrogen bonds to block bacterial protein synthesis,
ultimately causing bacterial death (Figure 5). In addition to the direct inhibition of protein
synthesis, metal and metal oxide nanomaterials can also break down natural enzymes that
are essential for bacterial life, such as adenosine triphosphatases and GR [82]. The optimum
temperature of natural enzyme is usually 37 ◦C. The enzyme activity will be diminished or
even lost at high temperature due to the disruption of active sites [83]. Metal and metal
oxide nanomaterials with magnetothermal or photothermal properties are capable of gen-
erating hyperthermia when treated with near-infrared light or alternating magnetic fields,
which have drawn growing interest in the antibacterial field [84,85]. Sun et al. constructed a
unique yolk–shell Fe2C@Fe3O4-PEG thermogenic nanozyme with highly magnetothermal
properties for synergistic antibacterial application [86]. This nanozyme could generate
hyperthermia with the treatment of alternating magnetic fields. The results of the enzyme
activity assay revealed a nearly 80% inhibition of the typical natural enzyme activities in
bacteria (Figure 6a,b). Copper is able to bind to GR to induce its inactivation, according to
the previous study [87,88]. GR can catalyze the reduction of glutathione disulfide (GSSG)
to reduced glutathione (GSH) to maintain redox homeostasis in bacteria [43]. If the activity
of GR is inhibited, the cellular antioxidant system will be imbalanced and the bacterial cell
will be apoptotic due to excessive intracellular ROS. Zhang et al. showed novel antibacterial
copper clusters (CuCs) with excellent broad-spectrum antibacterial activity [30]. The results
indicated that CuCs could not only disassemble bacterial membranes, but also provide
to the imbalance of the GSH/GSSG ratio via suppressing the activity of GR, eventually
leading to bacterial death (Figure 6c,d). Apart from Cu and Fe nanomaterials, ultrasmall Au
nanoclusters can promote the upregulation of pro-oxidase and inhibit reductase, causing
bacterial death by inducing metabolic imbalance of bacterial cells [89]. In addition, the
small-sized Ag NPs can penetrate the bacterial cell membrane to cause intracellular enzyme
inactivation through reacting with the -SH of enzyme [90]. Ag NPs can also inhibit signal
transduction pathways of bacteria to eradicate bacteria [91].

Figure 5. Protein destruction by aminophenol (AP)-modified gold nanoparticles (AP_Au NPs).
(a) The antibacterial mechanism of AP_Au NPs. (b) Evaluation of live-dead staining of bacteria.
(c) Isothermal titration calorimetry analysis of the interface between different agents and bacterial
16S rRNA. Reprinted with permission from Ref. [81]. Copyright 2022 American Chemical Society.
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Figure 6. Protein destruction by metal oxide nanomaterials. (a) Schematic illustration of preparation
process and antibacterial mechanism of Fe2C@Fe3O4-PEG thermogenic nanozyme. (b) The activity
of glutathione reductase (GR, left) and adenosine triphosphatases (right) after different treatments.
*** indicate obvious differences at p < 0.001. (c) Scheme of copper clusters (CuCs) healing local MRSA
skin wound infection. (d) Enzymatic activity of GR and reduced glutathione levels in MRSA and E.
coli after treatment with CuCs. GSSG, glutathione disulfide; GSH, reduced glutathione; ROS, reactive
oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate.

3.3. Nucleic Acid

In addition to the interference of proteins by metal and metal oxide nanomaterials, an-
other antibacterial strategy is the nanomaterial-induced inhibition of gene expression. The
two-component signaling system (TCS) enables bacteria to sense, respond, and adapt to a
wide range of environments, stressors, and growth conditions, which is closely linked to bac-
terial metabolism and virulence [92]. The tricarboxylic acid cycle (TCA) is the most efficient
way for bacteria to obtain energy from the oxidation of sugars or other substances [93]. On
this basis, Tu and coworkers prepared a hyperbranched poly-L-lysine (HBPL)-crosslinked
hydrogel containing MnO2 for the therapy of infected diabetic wound (Figure 7a) [94].
The transcriptome analysis showed that most genes encoding pathogenesis-associated
toxins and regulating TCA were downregulated after treating with HBPL (Figure 7b–f).
The HBPL-modified MnO2 nanosheets could convert excess ROS to oxygen. The hydrogel
dressing can consume multiple ROS to produce O2 and promote NO synthesis, ultimately
killing MRSA effectively and achieving scarless wound healing. The upregulation of
TCA-associated genes also contributes to bacterial clearance. According to reports, the up-
regulation of TCA-related genes restored bacterial susceptibility and enhanced the efficacy
of antibiotics [95]. Li and coworkers constructed Ag nanoflowers to tackle the antibiotic
resistance crisis with small doses of antibiotics and Ag nanoflowers [96]. The study found
that Ag+ could disrupt cell membranes by inducing compensatory respiration in bacteria
to produce more ROS, which eventually caused the entry of Ag+ and antibiotics into the
bacterial cells (Figures 8 and 9). Moreover, bacterial susceptibility was restored by the
activation of the TCA cycle. Bacteria were finally cleared by minor doses of antibiotics
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and Ag nanoflowers. In addition, Ag+ can prevent DNA replication through altering the
structure of DNA molecules of bacteria from an unfolded form to a folded state [97]. Ag+

can also trigger DNA mutations because guanine N7 and adenine N7 in DNA are the
appropriate binding sites for Ag+ [98].

Figure 7. Disruption of bacterial nucleic acids by hyperbranched poly-L-lysine (HBPL)-crosslinked
hydrogel containing MnO2. (a) Antibacterial and wound healing promoting mechanism of HBPL-
crosslinked hydrogel containing MnO2. (b) Volcano plot analyses of total Differentially expressed
gene. (c) KEGG analyses of DEGs. Heatmap of genes associated with tricarboxylic acid cycle (TCA)
(d) and virulence (e). (f) Fragments per kilobase million (FPKM) of hlg, luk, saeR, and sucD of MRSA.

Figure 8. Schematic illustration of the antibacterial mechanism of antibiotic-loaded silver nano
flowers (Ag NFs). (A) Synthesis of Ag NFs. (B) Evolutionary process of NOR-resistant strains.
(C) Norfloxacin (NOR) alone does not eradicate NOR-resistant E. coli. (D) Ag NFs alone cannot
eradicate NOR-resistant E. coli. (E) Combination of Ag NFs and NOR eradicates NOR-resistant E.
coli. (F) Metabolomic studies revealed that the combination of Ag NFs and antibiotics combined
improved the antimicrobial effect through the release of silver ions and stimulation of the TCA cycle
(five upregulated metabolites in the TCA cycle are marked in blue).
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Figure 9. The pathway enrichment and Venn plot of pathways of three group pairs (1: NOR + Ag
NFs, 2: Ag NFs, 3: NOR; 4: Control).

4. Biofilm

Bacterial biofilms are organized groups of bacteria wrapped in EPS on the surface
of living or nonliving objects [9]. It has been shown that EPS occupies about 2/3 of the
volume of the biofilm [99]. It connects thousands of bacteria together and provides a
protective barrier against harsh environments, antibiotics, and the host immune system.
The organization of biofilm derives from the QS of bacteria [100]. It is one of the main
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regulatory mechanisms of bacterial life activity and can coordinate the behavior of colonies.
Interference with QS has the potential to prevent the pathogenicity of harmful bacteria. As
another component of biofilm, internal bacteria are responsible for the pathogenicity of
biofilm. Therefore, the removal of biofilm can be started by destroying EPS, QS, and killing
internal bacteria.

4.1. Extracellular Polymeric Substance

As a direct environment for bacterial growth, EPS is one of the most crucial tools
employed by microorganisms to defend cells against harmful external factors [101]. By
preventing the contact of nanomaterials with bacteria, EPS, which is mostly composed
of polysaccharides, proteins, nucleic acids, and lipids, may lessen the antibacterial effec-
tiveness of nanomaterials [102]. It has been proven that destroying EPS is one of the most
effective approaches to remove biofilm. An extensive interest in the field of antibiofilm
has been shown for magnetic-field-controlled swarming of micro/nanorobots with high
cargo loading and strong convection capabilities in swarm movement [103]. They can not
only destroy EPS by physical movement, but also facilitate the penetration of a loaded an-
tibacterial agent into the deeper biofilm. Ferrites, which exhibit persistent paramagnetism,
are frequently employed in the production of various magnetic micro- and nanorobots,
including Fe3O4 and Fe2O3 nanomaterials [104]. The swarm motion of micro/nanorobots
broke EPS by generating strong convection and mechanical force in the presence of an
external magnetic field. At the same time, iron-based nanomaterials were capable of gen-
erating ROS based on intrinsic peroxidase-mimicking properties for scavenging EPS and
killing bacterial cells [104]. The physical destruction of EPS promoted ROS to penetrate
the biofilm deeply, enhancing the antibiofilm effect of nanomaterials (Figure 10a,b) [105].
Moreover, micro/nanorobots can also be equipped with photosensitizers to improve the
effectiveness of photodynamic disinfection. For example, Balhaddad et al. constructed
a photosensitizer nanoplatform by integrating toluidine-blue ortho photosensitizer and
Fe2O3 NPs (Figure 10c). In the action of an external magnetic field, the nanorobot-loaded
photosensitizer entered the deep region of the biofilm. The effect of the photodynamic
therapy was improved by the direct interaction between the photosensitizer and the bac-
teria (Figure 10d) [106]. It has been reported that EPS elimination may result from the
degradation of EPS components. Environmental DNA (eDNA) can be used as a source of
nutrients for bacteria in starvation environments, as well as bacterial intercellular linker
and adhesion element [101]. The EPS structure will be lost if the eDNA is cleared [107,108].
Xia et al. used gallium to disperse the mature biofilms in an eDNA-dependent manner and
transform it to the immature biofilm state [109]. The findings indicated that mature biofilms
treated with gallium have reduced degrees of antibiotic tolerance. Coadministration of
vancomycin would eliminate the biofilm (Figure 10e).

4.2. Quorum Sensing

QS is a way of communication between bacteria that relies on autoinducers. Autoin-
ducers are synthesized by bacteria and released into the surrounding environment for
intra- and interspecies conversation [110]. Gram-negative bacteria generally use acylho-
moserine lactone-type molecules as autoinducers, while Gram-positive bacteria generally
use oligopeptide-type molecules as signaling factors [111]. When the autoinducers reach
a critical concentration, they can initiate the expression of relevant genes and regulate
the biological behavior of bacteria, such as toxin production and biofilm formation [110].
Therefore, the inhibition of intercellular communication by disrupting QS is a promising
method for eradicating biofilm. Both Ag and Au have been reported to be employed to treat
biofilm infections as anti-QS agents, which have attracted great attention as well among
metal nanomaterials [112,113]. Ghaffarlou et al. developed Ag NPs-decorated Pullulan
(Ag NPs@Pull) and Au NPs-decorated Pullulan (Au NPs@Pull) to combat the bacterial
resistance (Figure 11a). Ag NPs@Pull and Au NPs@Pull significantly inhibited bacterial
signal molecules, according to the results [114]. Unfortunately, Ag NPs are widely known to
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be extremely hazardous to mammalian cells. Thus, developing an approach that modulates
the interaction of QS signals with nanomaterials for reducing the dose of nanomaterials
is necessary. Prateeksha et al. established chrysophanol-functionalized biocompatible Ag
NPs (CP-Ag NPs) to increases the interaction of chrysophanol and bacterial QS signal-
ing. Changes in the expression of virulence gene demonstrated that CP-AgNPs inhibit
QS signaling (Figure 11b). Additionally, CP-Ag NPs were able to disrupt QS signaling
to reduce bacterial adhesion and biofilm formation compared to citrate-capped Ag NPs
(Cc-AgNPs) [115].

Figure 10. Metal and metal oxide nanomaterials remove biofilm by disrupting extracellular polymeric
substance. (a) Schematic illustration of biofilm disruption by nanorobots. (b) The antibiofilm effect of
nanorobots in the U-shaped tube. (c) Schematic illustration of biofilm disruption by photosensitizer
nanoplatform (MagTBO). (d) The antibiofilm effect of MagTBO and toluidine-blue ortho (TBO)
alone. Values indicated by different letters are statistically different from each other (p < 0.05).
(e) Environmental DNA (eDNA) alterations in biofilms with different treatment (red represents live
bacteria and blue represents eDNA). (a,b) Reprinted with permission from Ref. [105]. Copyright
2021 American Chemical Society. (c,d) Reprinted with permission from Ref. [106]. Copyright 2021
American Chemical Society. (e) Reprinted with permission from Ref. [109]. Copyright 2021 American
Chemical Society.
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Figure 11. Metal and metal oxide nanomaterials remove biofilm by blocking quorum sensing and
killing bacteria. (a) The preparation scheme of Ag NPs@Pull and Au NPs@Pull and their quo-
rum sensing inhibition. (b) The expression of virulence factor-related genes. * p < 0.001 versus
control. (c) Synthetic scheme and bactericidal effect of mixed FeCo-oxide-based surface-textured
nanostructures. (d) Schematic diagram of the selective catalytic-therapeutic–diagnostic application of
FerIONP. (e) Selective bactericidal effect of FerIONP and detection of intracellular reactive oxygen
species production. (f) Schematic illustration of the antibiofilm mechanism of nitrosothiol-coated
CoFe2O4@MnFe2O4. (a) Reprinted with permission from Ref. [114]. Copyright 2022 American
Chemical Society. (b) Reprinted with permission from Ref. [115]. Copyright 2021 American Chemical
Society. (c) Reprinted with permission from Ref. [116]. Copyright 2021 American Chemical Soci-
ety. (d,e) Reprinted with permission from Ref. [117]. Copyright 2021 American Chemical Society.
(f) Reprinted with permission from Ref [118]. Copyright 2021 American Chemical Society.

4.3. Bacteria

Disruption of the breaking of EPS and QS contribute to biofilm removal. Notably,
planktonic bacteria is a prerequisite for biofilm formation and killing the bacteria within
biofilm is essential for efficient biofilm removal [118]. Otherwise, the surviving bacteria
will form a new biofilm by choosing a suitable substrate to colonize again, causing a more
serious infection [119]. Metal-based nanozymes catalyze the conversion of H2O2 to the
more toxic ROS through typical peroxidase-like reaction, which have attracted tremendous
attention in antibiofilm therapy [120–122]. For example, Kumar et al. eradicated biofilm
using mixed FeCo-oxide-based surface-textured nanostructures with magnetocatalytic
activity [116]. The findings demonstrated that the biofilm and embedded bacteria were
damaged by the defensive ROS (Figure 11c). In addition, the functionalized nanoenzyme
can also selectively identify and kill harmful flora without affecting normal flora. Liu et al.
reported the application of ferumoxytol iron oxide nanoparticles (FerIONP) for the removal
of pathogenic dental biofilms [117]. By catalytically activating H2O2 to promote in situ
free radical generation, FerIONP exhibited remarkable antibacterial effects. At the same
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time, FerIONP showed great pathogen selectivity by interacting with pathogen-specific
dextran-binding proteins, which had no effect on commensal streptococci (Figure 11d,e).
The activation of the immune system prevents the recurrence of biofilm. Wang et al. re-
ported nitrosothiol-coated CoFe2O4@MnFe2O4 nanoparticles as highly efficient antibiofilm
platforms [118]. These systems not only removed the presence of biofilm by generating
heat and releasing nitric oxide, but also triggered macrophage-related immunity to prevent
the recurrence of biofilm infections (Figure 11f).

5. Conclusions and Future Perspectives

The latest applications and mechanisms of metal and metal oxide nanomaterials for
antibacterial and antibiofilm purposes are reviewed in this paper. In terms of antibacterial
application, metal and metal oxides nanomaterials can induce chemical and physical dam-
age to eliminate bacteria, including disrupting the cell membrane potential and generating
ROS. Protein is the bearer of life activities. Metal and metal oxides nanomaterials can
prevent protein synthesis by disrupting ribosomes or cause the inactivation of important
enzymes of bacteria by inducing hyperthermia to disrupt the structure of protein. In addi-
tion, copper-based nanomaterials can disrupt the activity of GR to cause the dysregulation
of the bacterial antioxidant homeostatic system, ultimately inducing apoptosis of bacterial
cells. Nucleic acid is one of the most basic substances of life. Metal and metal oxide nano-
materials can regulate the expression of relative genes to reduce the virulence of bacteria
and interfere with bacterial metabolism such as TCA, ultimately leading to bacterial death.
For biofilms, metal and metal oxide nanomaterials can disrupt EPS by mechanical force
and generating ROS, and they can also assist in disrupting biofilms by suppressing QS. In
addition, they can produce ROS to remove bacteria within biofilm or activate the body’s
immune system to prevent the recurrence of biofilm.

Compared to conventional antibiotics, metal and metal oxide nanomaterials present
unique advantages in the anti-infective field, such as being highly effective and avoiding
the development of drug-resistant bacteria. However, there are still many issues to be
considered when metal and metal oxide nanomaterials are used in the clinic. The following
outlines several important issues that should be considered for future applications from
our perspective.

1. Toxicity issues. The toxicity of metal and metal oxide nanomaterials should not be dis-
regarded, despite the fact that they offer outstanding anti-infection properties, such as
Ag nanomaterials. Hydrogels are crosslinked polymers that have outstanding biocom-
patibility and can hold a lot of water in solution without dissolving. It can be modified
to provide a slow and controlled release of the load, such as temperature-sensitive
hydrogels. Therefore, the encapsulation of metal and metal oxide nanomaterials
in hydrogels to control their release behavior will avoid the toxic side effects of
sudden release.

2. Metabolic issues. A further issue is the metabolism of metal ions produced in vivo
by the breakdown of metal nanomaterials. Fe, Cu, Zn, and Mo are essential trace
elements for the human body. They show excellent antibacterial properties when
formed as nanomaterials. For example, iron-based nanomaterials and copper-based
nanomaterials present enzyme-like activities that can convert H2O2 into more toxic hy-
droxyl radicals for removing bacteria from the wound area. Thus, these nanomaterials
should be given priority in the selection of anti-infective materials.

3. Stability issues. Metal and metal oxide nanomaterials are usually unstable and prone
to aggregation, especially in small sizes. However, it has been demonstrated that
small-sized nanomaterials have a higher likelihood of passing through the membranes
of bacterial cells and biofilms. As a result, the aggregation of metal and metal oxide
nanomaterials will reduce their efficacy and even increase the toxic side effects. The
nanocomposite created by combining metal and metal oxide nanostructures with
other nanomaterials such as graphene would be a good choice. This approach not
only ensures the dispersion of metal and metal oxide nanomaterials, but also enhances
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the anti-infective efficacy. In addition, performing ligand modification or wrapping
organic layers such as PLGA is also a proper solution.

4. Efficacy issues. The efficacy of metal and metal oxide nanomaterials that work with
hyperthermia or ROS is limited by the distance of action. Fortunately, the distance
can be reduced by the surface modification of metal and metal oxide material, such
as ligand modification and increased surface roughness. This improvement will
maximize the anti-infective properties of the nanomaterials while simultaneously
maintaining biosafety.

5. Mechanistic explanation. The currently available anti-infective mechanisms lack
integrity, which are mostly at the cellular and protein levels. There is an urgent need
to construct a complete and systematic anti-infective mechanism of metal and metal
oxide nanomaterials based on the gene level, protein level, and cellular level. For
example, researchers can study the expression of related genes and proteins from the
signaling pathways related to the energy metabolism in the bacterium and explore the
effect of materials on the energy production of the bacterium. In addition, researchers
can study the redox homeostasis system of the bacterium and elaborate the mechanism
of disruption of the antioxidant system of the bacterium by the material to lay the
foundation for the design of the material.

In conclusion, the design of a metal-based nanomaterial with efficient anti-infective
properties and good biosafety is necessary for the clinical translation of an anti-infective
strategy. We believe that this progress report will provide new insights into the mechanisms
of action of metal and metal oxide nanomaterials in anti-infective applications and offer
new ideas for the development of nanomaterials suitable for clinical applications.
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