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Adaptively Weighted and Robust 
Mathematical Programming for 
the Discovery of Driver Gene Sets in 
Cancers
Xiaolu Xu1, Pan Qin1, Hong Gu1, Jia Wang2 & Yang Wang   3

High coverage and mutual exclusivity (HCME), which are considered two combinatorial properties 
of mutations in a collection of driver genes in cancers, have been used to develop mathematical 
programming models for distinguishing cancer driver gene sets. In this paper, we summarize a weak 
HCME pattern to justify the description of practical mutation datasets. We then present AWRMP, a 
method for identifying driver gene sets through the adaptive assignment of appropriate weights to 
gene candidates to tune the balance between coverage and mutual exclusivity. It embeds the genetic 
algorithm into the subsampling strategy to provide the optimization results robust against the 
uncertainty and noise in the data. Using biological datasets, we show that AWRMP can identify driver 
gene sets that satisfy the weak HCME pattern and outperform the state-of-arts methods in terms of 
robustness.

Driver mutations, which are the mutations responsible for cancer, are different from randomly occurring pas-
senger mutations. Because driver mutations typically target genes involved in cellular signalling and regulatory 
pathways1,2. The examination of these mutations in the context of pathways and gene sets is an essential issue in 
cancer genome research. However, an exhaustive search for driver pathways is impossible due to the enormous 
number of gene set candidates. Thus, prior knowledge, such as mutation patterns, is often used as a constraint to 
limit the scale of the gene set candidates. In particular, high coverage and mutual exclusivity (HCME), two com-
binatorial properties of driver mutations in a cellular signalling pathway or regulatory pathway2,3, are being used 
as important prior knowledge in de novo discovery methods for driver gene sets (i.e., groups of mutated driver 
genes)4–19. High coverage means that the members in the driver gene set recurrently occur in patient cohorts, and 
mutual exclusivity means that almost all the patients exhibit no more than one single driver mutation event in the 
driver gene set. For the developments of state-of-art discovery methods for cancer driver pathways, readers are 
referred to the latest survey by Zhang and Zhang20.

The mathematical programming models for the de novo discovery of driver gene sets can be deduced from the 
HCME pattern. Vandin et al. developed the Dendrix algorithm, which investigates the optimal gene set by maxi-
mizing a HCME-derived score function4. The scoring function in Dendrix was formulated by the cardinalities of 
sets of patients and genes, and thus, the function was not sufficiently explicit for the optimization design. To this 
end, Zhao et al. further developed an explicit binary linear programming model and optimization framework, 
called MDPfinder, for the scoring system5. Zhao et al. initially introduced the genetic algorithm (GA)21 for this 
problem5. Leiserson et al. generalized Dendrix for the batch discovery of multiple driver gene sets6. Zhang et al. 
developed CoMDP to identify co-occurring driver gene sets7. Zhang et al. proposed ComMDP and SpeMDP to 
investigate common and specific driver gene sets among multiple cancer types, respectively8. In addition to the 
mathematical programming based de novo discovery methods, several probabilistic and statistical approaches 
have also been proposed. For example, Constantinescu et al. proposed TiMEx, a probabilistic generative model 
for the identification of mutually exclusive patterns17. Leiserson et al. proposed CoMEt for the identification of 
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genes exhibiting mutual exclusivity18. Kim et al. proposed WeSME, a computational cost saving method for the 
permutation test in the discovery of mutual exclusivity19.

The assumption of mutual exclusivity implies that a patient exhibits no more than one crucial mutation event. 
Thus, this assumption is strong for the discovery of the driver gene sets from the mutation data of a cohort of 
patients. As indicated by16, the application of such a strong assumption can lead to a highly unbalanced pat-
tern, in which a single frequently mutated gene is coupled to several other infrequently mutated genes to sat-
isfy the assumption of mutual exclusivity. By observing the mutation patterns in critical cancer driver pathways 
(Supplementary Fig. 1), we found that a gene that is mutated in many patients always overlaps with other genes. 
The coverage of an individual gene is positively correlated with its overlap with other genes in a pathway. On the 
basis of this fact, we proposed the following weak HCME pattern for discovering a driver gene set from a cohort 
of patients: (a) the members in the driver gene set recurrently occur in a patient cohort; (b) the members in the 
driver gene set approximately satisfy mutual exclusivity and (c) the overlaps should be adequately permitted and 
the members that cover many patients can have relatively more overlaps than the rarely mutated members. On 
the other hand, the mutation datasets used in the de novo discovery methods are commonly sparse, i.e., the total 
number of patients (samples) is smaller than that of genes (variables). Similar to other data-driven inference 
methods, the sparseness of datasets presents another challenge for ensuring the robustness of de novo discovery 
methods.

Here, we introduce adaptively weighted and robust mathematical programming (AWRMP) for identifying 
driver gene sets that satisfy the weak HCME pattern. We constructed mathematical programming models using 
the cardinalities of sets of patients associated with the mutated genes as adaptive weights, for tuning the bal-
ance of importance between coverage and mutual exclusivity, to construct mathematical programming models. 
Motivated by5, GA21 was used as the basic optimization solver to efficiently solve the optimization problem. GA 
was embedded in a systematic subsampling strategy to obtain robust solutions against uncertainty and noise in 
the mutation data. Additionally, the subsampling approach can identify a parsimonious gene set, whose dimen-
sion can be considered a low bound for the dimension of the driver gene set in the sense of robustness. We applied 
our method to several biological datasets, and the results showed that our method identified rational driver gene 
sets. We then tested the significance of mutual exclusivity on our results using CoMEt18 and TiMEx17, and proved 
the robustness of AWRMP through a disturbance test.

Results
AWRMP workflow.  The AWRMP procedure can be divided into three modules as follows (Fig. 1). We first 
converted the mutation data into a binary-valued matrix A with m rows (samples) and n columns (genes). Each 
element Aij ∈ {0, 1} of A was defined as

=




.A j i1 gene is mutated in sample
0 otherwise (1)ij

Figure 1.  Overview of AWRMP. (a) We constructed binary-valued mutation matrices from mutation data files. 
(b) We used subsampling to make our method robust against the uncertainty and noise in the data.  
(c) The optimal gene set was evaluated based on coverage and exclusivity scores and annotated to analyse the 
gene interactions using DAVID. (d) We proposed a new mathematical programming model that uses adaptive 
weights to tune the balance between the coverage and mutual exclusivity.
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We constructed a binary integer programming model on the basis of weak HCME, which is used to investigate 
optimal submatrix of A. Compared with Dendrix and its extensions, we embedded the adaptive weights to tune 
the balance between coverage and mutual exclusivity. GA was used as the optimization solver. We further inte-
grated GA with a systematic subsampling strategy22 to eliminate the uncertainty and noise in the mutation data, 
and then annotated and evaluated the identified gene sets using DAVID23.

Correlations between coverage score and overlap contribution.  By observing the critical cancer 
driver pathways, we found that the coverage score of a mutated gene defined by formula (19) and its overlap con-
tribution defined by formula (22) are highly positively correlated. For example, Supplementary Fig. 1 illustrates 
coMut plots of the somatic mutations in the apoptosis pathway obtained from the breast cancer (BC) mutation 
data24 and in the ErbB pathway obtained from glioblastoma (GBM) mutation data25. The two plots showed that 
the mutated genes approximately satisfied HCME. However, the genes with high coverage scores showed many 
overlaps with other genes, such as TP53, PIK3CA, EGFR, and PTEN in the two pathways. Figure 2 illustrates 
two scatter plots of the coverage score against the overlap contribution for all the genes in the two pathways. The 
correlation coefficient corresponding to the apoptosis pathway for BC was 0.9936; and that corresponding to the 
ErbB pathway for GBM was 0.9975. Therefore, the proper overlaps should be considered to identify the driver 
gene sets from mutation data from a cohort of patients.

Identified driver gene set for lung adenocarcinoma.  Lung adenocarcinoma (LUAD) is the most com-
mon histological type of lung cancer. To illustrate the performance of AWRMP, we applied AWRMP to LUAD 
mutation data26, which was also previoustly used to test Dendrix4. The variable k denotes the gene set dimension 
that is pre-defined to be identified by AWRMP. The gene sets obtained from the LUAD data with k = 2, 3, …, 10 
were investigated (Fig. 3). TP53, KRAS, EGFR, and STK11, which have relatively high mutation frequencies, were 
always included in the identified gene sets obtained with k values larger than 4 (Fig. 3(a)). The identified gene sets 
became nested with increasing values of k (Fig. 3(b)).

For k = 2, the gene set (KRAS, TP53) was identified by AWRMP with a subsampling rate of 1 obtained using 
Eq. (13). In contrast, the set (KRAS, EGFR) was identified by Dendrix4. For k = 3, the triplet (EGFR, KRAS, 
TP53) was the unique optimal gene set selected by AWRMP with a subsampling rate 1 calculated using Eq. (13) 
in Methods. This gene set was mutated in 119 patients with an overlap score of 0.7059, which was obtained using 

Figure 2.  Scatter plots of the coverage score against the overlap contribution for (a) the apoptosis pathway of 
BC and (b) the ERBB pathway of GBM.
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Eq. (20) in Methods. Mutations in EGFR, KRAS, and TP53 are vital in lung cancer biology, and the molecular 
alterations associated with these mutation profiles have been widely investigated27. Note that the triplet (EGFR, 
KRAS, STK11) was obtained with Dendrix. This difference was obtained because TP53 overlapped with the other 
two genes, and Dendrix ignored TP53 to ensure mutual exclusivity in its programming model.

For k = 10, we found that the gene set (ABL1, EGFR, KRAS, MKNK2, NF1, PAK6, PTEN, STK11, TERT, 
TP53) was mutated in 145 patients (Fig. 4(a)). Through annotation using DAVID23, these genes were found to be 
involved in the ErbB, MAPK, and PI3K-Akt signalling pathways, which are known to be critical in LUAD. Based 
on the knowledge of these pathways, we observed that most genes in this set involve interactions (Fig. 4(b)). The 
subset (KRAS, EGFR, STK11, PTEN, TP53) covering 133 patients is a subset of the PI3K-Akt signalling pathway, 
and PI3K-Akt pathway mutations involved in tumourigenesis have been reported for LUAD28. Various treatments 
aiming to inhibit lung cancer cell proliferation, migration and invasion through the PI3K-Akt pathway have been 
developed29. The subset (KRAS, MKNK2, EGFR, NF1, TP53), which constitutes a subset of the MAPK pathway, 
plays a pivotal role in cell proliferation, differentiation and survival30. MAPK signal amplification contributes to 
the rapid progression of established adenomas to LUAD and takes effect during both malignant progression and 
tumour initiation31,32. The subset (KRAS, MKNK2, EGFR, NF1) overlapped in five patients, whereas the subset 
(KRAS, MKNK2, EGFR, NF1, TP53) overlapped in 44 patients. This finding indicated that TP53 showed little 
mutual exclusivity with the other four genes. Whereas the remaining genes KRAS, MKNK2, EGFR, and NF1 

Figure 3.  Nested gene sets identified by AWRMP for the gene set dimensions k = 2, 3, 4, …, 10. (a) Subsampling 
rates and coverage scores of genes obtained using Eqs (13) and (19) in Methods, respectively. (b) Elements of 
gene sets obtained with k = 2, 3, …, 10.

Figure 4.  Optimal gene set identified by AWRMP for the LUAD dataset (k = 10). (a) Coverage plot of the 
optimal gene set. (b) Interaction of the genes in the optimal set annotated by knowledge of known pathways.
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exhibited highly mutual exclusivity. The subset (ABL1, EGFR, KRAS, PAK6) which was mutated in 94 patients, 
forms part of the ErbB signalling pathway, which involves a family of tyrosine kinases and has been confirmed 
to be vital for the development of LUAD33,34. All the genes in this subset exhibit highly mutual exclusivity scores. 
Although TERT was not annotated in the aforementioned pathways, it has been found to be the most frequent 
genetic event in the early stages of non-small cell lung cancer35.

To date, no explicit method has been developed to determine the dimension of the driver gene set identified 
by de novo discovery method. However, based on the subsampling strategy in AWRMP, we calculated the sub-
sampling rate of each gene using Eq. (16) in Methods. Consequently, according to the subsampling rates, the 
subset (EGFR, KRAS, TP53, STK11, NF1) can be considered a parsimonious set that shows robustness against the 
uncertainty and noise in the data. The dimension of the parsimonious set can be considered a lower bound for the 
dimension of the driver gene set.

Performance of AWRMP.  Figure 5 shows a scatter plot of the coverage score against the overlap contribu-
tion for the optimal gene set. As shown, the optimal gene set identified by AWRMP shows a similar pattern with 
the mutation pattern of the well-known cancer driver pathways illustrated in Fig. 2. This fact confirmed that our 
adaptive weights in Eq. (8) worked well, and this adaptiveness allowed us to identify useful overlaps. For example, 
the co-mutation (overlaps) of TP53 and NF1 has been known to be the feature of the PI subtype of LUAD28.

To illustrate the robustness of AWRMP, we artificially disturbed some elements Aijs of the mutation matrix A, 
by randomly turning the value 0 to 1 or randomly turning the value 1 to 0, to generate 100 new mutation matrices, 
and AWRMP was then performed for each disturbed mutation matrix. Consequently, the numbers of times that 
the candidate genes were selected by AWRMP with all 100 disturbed mutation matrices were used to evaluate the 
robustness of the proposed method (Fig. 6).

We conducted the disturbance test for d = 10 and 50, where d denotes the total number of disturbed elements 
in the mutation matrix A. The same optimal gene set (ABL1, EGFR, KRAS, MKNK2, NF1, PAK6, STK11, TERT, 
PTEN, TP53) was always identified for d = 10 in the both disturbance schemes (Fig. 6(a)). Increasing the value 
of d to 50, decreased the percentage of the 100 disturbed mutation matrices obtained by tuning values of 1 to 0 
that yielded the optimal gene set to 27% and the percentage of the 100 disturbance schemes obtained by tuning 
values of 0 to 1 that yielded the optimal gene set to 30%. As expected, the robustness of AWRMP degenerated 
with increases in d. By observing the number of the times that ten genes of the optimal gene set were identified in 
the 100 runs of the disturbance test, we found that the subset (EGFR, KRAS, STK11, TP53, NF1) was always iden-
tified, even for d = 50 (Fig. 6(b)). This subset was thus the parsimonious set identified according to the subsam-
pling rates. The total numbers of samples harboring these five genes were 30, 60, 34, 64, and 13, respectively. Thus 
the genes with relatively high coverage endured the disturbance. Furthermore, TERT showed the most sensitivity 
to the disturbance, even though it did not show the lowest observed mutation frequency. Moreover, TERT was not 
involved in any pathway detected by AWRMP (Fig. 4). This finding implies that TERT is slightly different from 
the other nine genes due to its weak HCME pattern. The results of the disturbance tests for other related methods 
are shown in Supplementary Fig. 2.

In addition to the robustness analysis, we also performed statistical significance tests using CoMEt18 and 
TiMEx17, and the results are depicted in Table 1. The optimal gene set identified by AWRMP can be considered to 
be significant for mutual exclusivity.

Parsimonious sets identified from breast cancer and glioblastoma datasets.  In addition to the 
LUAD data, we also applied AWRMP to mutation datasets, including BC mutation data24 and GBM mutation 
data25.

For the BC mutation data, AWRMP identified the parsimonious set (AKT1, BRCA2, GATA3, MAP3K1, 
PIK3CA TP53, RGS1(A), where “(A)” refers to amplification) with a high coverage score of 0.86 and a low overlap 
score of 0.45 (Supplementary Fig. 3). Among these genes, BRCA2 truncating mutations have been associated 
with an increased risk of BC36. GATA3 has been identified as a prognostic marker for BC37. The genes (AKT1, 
MAP3K1, PIK3CA) are associated with the abrogation of JUN kinase signalling, which occurs in approximately 
half of BC patients38. The biological consequences of a reduction in JUN kinase activity in response to stress might 

Figure 5.  Scatter plot of coverage score against overlap contribution for the optimal gene set.
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include destabilization and consequent inactivation of TP53 and thereby disruption of pro-apoptotic cellular sig-
nalling39. Thus, the co-mutations in the parsimonious set obtained by the adaptiveness of AWRMP are reasonable. 
The relation between RGS1 mutation and BC has been discovered in40.

From the GBM mutation data, AWRMP identified the parsimonious set (EGFR, NF1, PIK3CA, PIK3R1, 
PTEN, GABRA6, TP53) with a coverage score of 0.70 and an overlap score of 0.30 (Supplementary Fig. 4). Among 
these genes, NF1 is a human glioblastoma suppressor gene41, and patients harbouring NF1 mutation or deletion 
tended to show decreased PKC pathway activity and elevated MAP kinase activity25. GABRA6, an inhibitory 
neurotransmitter in the mammalian brain, contributes to coding for a transmembrane polymorphic antigen 
glycoprotein25. The subset (EGFR, PIK3CA, PIK3R1, PTEN, TP53) is part of the PI3K signalling pathway, and 
62% of the glioblastoma samples harboured at least one genetic event associated with this subset. The PI3K-Akt 

Figure 6.  Number of times that the optimal gene set (ABL1, EGFR, KRAS, MKNK2, NF1, PAK6, PTEN, STK11, 
TERT, TP53) and its elements were identified by AWRMP with the 100 disturbed mutation matrices. (a) 
Percentages of the 100 disturbed mutation matrices obtained by tuning values of 1 into 0 (blue) and by tuning 
values of 0 into 1 (green). (b) Number of times that the 10 genes in the optimal gene set were identified with all 
100 disturbed mutation matrices.
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signalling pathway plays an important role in the regulation of signal transduction, which mediates various bio-
logical processes, including cell proliferation, apoptosis, metabolism, motility and angiogenesis in GBM42.

Discussion
By observing the mutation patterns in cancer driver pathways from practical mutation datasets, we found the 
following: (a) the HCME pattern was approximately satisfied by the genes in the driver pathways and (b) overlaps 
were always observed, particularly among the genes with high coverage scores. For this reason, we proposed 
that the HCME pattern should be weakened by allowing proper overlaps in the discovery of driver gene sets. 
We developed AWRMP to identify the driver gene sets in cancer from mutation data. Ultimately, the goal of this 
approach is to investigate the gene sets that adaptively satisfy the weak HCME pattern. Moreover, by considering 
the sparsity of the mutation data, AWRMP can endure the potential uncertainty and noise in the data using the 
subsampling method. Here, we tested the performance of AWRMP using several biological datasets.

Driver mutations have often been investigated by observing the recurrence of individual genes43,44. However, 
mutational heterogeneity complicates the identification of functional mutations due to the recurrence of indi-
vidual genes across many samples. As an alternative, an investigation of the putative driver gene set found across 
patients, has been proven to be another feasible approach. It is obvious that increases in the dimension of gene 
sets increases the monotonic coverage. For this reason, it becomes necessary to utilise constraints derived from 
biological knowledge. Notably, the mutual exclusivity of the pathways was used in combination with coverage to 
investigate driver gene sets. As noted by6, the driver pathways exhibiting the HCME patterns are generally smaller 
and more focused than most pathways annotated in the databases.

Figure 2 shows two examples of mutation patterns in cancer driver pathways, and these show that the coverage 
scores of the gene members are positively correlated with the overlap contributions. The information provided in 
Supplementary Fig. 6 suggests that this positive correlation can be generally observed in all mutated gene sets, not 
just in cancer driver pathways. Thus, when investigating cancer driver gene sets, the genes covering many patients 
should be allowed to exhibit more overlaps with other genes. For this reason, we claimed that the weak HCME 
pattern is more feasible for describing the mutation patterns in cancer driver pathways. According to the weak 
HCME pattern, we proposed the use of adaptive weights in AWRMP. Because of the adaptive weights included in 
our programming model, our results were different from those obtained with Dendrix4 (Supplementary Table 1), 
MDPfinder5 (Supplementary Table 2), Mutex13 (Supplementary Table 3), and CoMDP7 (Supplementary Table 4), 
all of which assign identical weights to all gene candidates. The analysis of LUAD mutation data using our method 
included TP53 with a high coverage score in the final result. Because CoMEt and TiMEx were proposed based on 
the rigorously mutual exclusivity, these four related methods showed better scores than AWRMP (Supplementary 
Tables 7–10). However, the optimal gene set obtained by AWRMP still passed the permutation test of mutual 
exclusivity performed using CoMEt and TiMEx. In other words, the gene set identified by our method satisfied 
the mutual exclusivity, although our method permits more overlaps than other related methods. Furthermore, 
the overlaps identified by our AWRMP can be useful, like the overlaps between TP53 and NF1 identified for the 
LUAD data set. We do not claim that our method is better than other related approaches for the identification of 
TP53. After all, frequently mutated genes individuals can be identified using MutsigCV43. Our proposal is that the 
results obtained by AWRMP are more concordant to the objective mutation pattern, i.e., weak HCME, as demon-
strated in Figs 2 and 5. Supplementary Fig. 5 shows the correlation between the coverage score and the overlap 
contribution of the optimal gene sets obtained by the other four methods, and these findings showed that these 
four methods did not satisfy the weak HCME pattern as well as our method. Note that ComMDP can also identify 
genes with high mutation frequencies, such as TP53 and PIK3CA8. However, ComMDP was proposed for the 
identification of the common driver gene set across several types of cancer by combining their mutation matrices. 
Based on the mathematical programming model8, ComMDP is identical to MDPfinder for a single type of cancer.

In AWRMP, the optimization solver GA was embedded into the subsampling strategy to ensure the robust-
ness of the algorithm. Prior to this study, the robustness of de novo discovery methods has seldom been con-
sidered. Nevertheless, the mutation matrices used as the inputs in these methods were always derived from 
high-throughput sequencing data, which are well known to be noisy. Furthermore, the total number of samples 
is notably much smaller than the number of genes. The use of sparse data always leads to statistical inference 
that is not robust to noise and uncertainty. The disturbance tests of Dendrix, MDPfinder, CoMDP, and, Mutex 
(Supplementary Tables 5 and 6, and Supplementary Fig. 2) revealed that a single run of the MCMC method and 
integer linear programming method were not robust to the disturbance. Because the subsampling strategy is 
always applied to estimate the precision of sample statistics, we adopted the subsampling method to compute the 
probabilities of gene sets obtained by the optimization solver. Consequently, the gene sets with high probabilities 
can be considered robust results. Because the adaptive weight defined by Eq. (8) is a nonlinear function of IM(j) 

Genes Pathway (q-value) CoMEt TiMEx

KRAS, EGFR, TP53 
MKNK2, NF1

MAPK signalling pathway 
(2.00e-3) 0.02 6.45e-7

KRAS, EGFR, ABL1 
PAK6

ErbB signalling pathway 
(2.10e-3) 4.27e-8 1.57e-7

KRAS, EGFR, 
STK11PTEN, TP53

PI3K-Akt signalling pathway 
(4.70e-3) 0.05 3.34e-6

Table 1.  Pathway enrichment analysis and assessment of the statistical significance of the optimal gene set for 
LUAD identified by AWRMP from LUAD mutation data.

https://doi.org/10.1038/s41598-019-42500-7


8Scientific Reports |          (2019) 9:5959  | https://doi.org/10.1038/s41598-019-42500-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

defined by the Eq. (3), the programming model (6) is no longer a linear programming model. Motivated by5, the 
heuristic GA was used in AWRMP. As a type of combinatorial optimization model, the mathematical program-
ming model defined by formula (8) often consists of multiple solutions. AWRMP can offer the robustness level for 
each solution based on the subsampling strategy.

Through AWRMP, we propose that the gene candidates should be assigned different levels of importance 
based on the weak HCME pattern. In addition to the weights derived from the coverage scores obtained by 
AWRMP, the covariates associated with mutations, such as the expression level of genes and the DNA replication 
time of genes used in MutsigCV43, can also be considered weights. The application of subsampling can assuredly 
increase the computational cost. However, we insist that the robust results obtained from sparse data need to be 
cautiously investigated.

Methods
Cancer genetic data and mutation matrix.  We directly used the mutation matrix derived from LUAD 
mutation data by Dendrix4, which included 163 patients with at least one mutated gene and 356 genes mutated 
in at least one patient.

The BC and GBM mutation datasets (maf files) were downloaded from The Cancer Genome Atlas Data Portal 
(http://tcga-data.nci.nih.gov), and these datasets consider point mutations and copy number alterations (CNAs). 
Somatic point mutations were identified with MutsigCV43. The corresponding entry in the mutation matrix was 
assigned a value of 1 to indicate significant point mutation. Using the approach described in16, if a CNA event is 
concordant with the expression data, the corresponding entry in the mutation matrix is 1. After pre-processing, 
487 samples and 274 genes were included in the BC mutation matrix and 282 samples and 308 genes were 
included in the GBM mutation matrix.

Previous methods.  For the mutation matrix A defined by Eq. (1), which has m rows (samples) and n col-
umns (gene candidates), Dendrix initially proposed the following programming model for the identification of 
an m × k optimal submatrix M that satisfies the HCME pattern

∑ω≡ Γ − = Γ − Γ
∈

W G G G G g( ) ( ) ( ) 2 ( ) ( ) ,
(2)

M M M M
g GM

where GM denotes the set of genes corresponding to the mutation matrix M, Γ(g) ≡ {i: Aig = 1} denotes the set of 
patients who presented mutations in gene g. g, g′ ∈ GM are mutually exclusive, if Γ(g) ∩ Γ(g′) = ∅. The sum of the 
cardinalities ∑ Γ∈ g( )g GM

 denotes the total number of mutation events in M. ∪Γ ≡ Γ∈G g( ) ( )M g GM
 is the set of 

patients with mutations in the genes in M, and its cardinality |Γ(GM)| can be further used to measure the coverage 
of the submatrix M. Thus, the coverage overlap ω ≡ ∑ Γ − Γ∈G g G( ) ( ) ( )M g G MM

 can be used to measure 
exclusivity.

By noticing that the formula (2) is not easy for developing the optimization strategy, Zhang et al.5 initially 
defined two indicator functions

≡




∈I j j G( ) 1
0 otherwise (3)M
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for j = 1, 2, …, n and
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
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I G G i( ) 1 genes in are mutated in patient
0 otherwise (4)i M

M

for i = 1, 2, …, m, and reformulated the maximization of W(GM) as MDPfinder, which is a binary linear program-
ming (BLP) problem:
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Mathematical programming model of AWRMP.  In the mathematical programming model (5), W(GM) 
is divided into two parts: ∑ = I G( )i

m
i M1  measures the coverage using the sum with respect to patient i and the sec-

ond term ∑ ⋅ ∑= =( )I j A( )j
n

M i
m

ij1 1  is the total number of mutation events (i.e., entries with a value of “1”) in the 
mutation matrix. The latter term indicates that MDPfinder assigns identical weights to all the genes. As we men-
tioned before, coverage is more important than exclusivity for the genes involved in multiple pathways. 
Consequently, we improve the mathematical programming model by assigning different weights to the genes 
contained in GM, i.e.,

https://doi.org/10.1038/s41598-019-42500-7
http://tcga-data.nci.nih.gov


9Scientific Reports |          (2019) 9:5959  | https://doi.org/10.1038/s41598-019-42500-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ ∑ ∑ ∑

∑ ∑ ∑

ω

λ

λ

≡ Γ −

= −











⋅ ⋅





−






= −











⋅ ⋅











λ λ

= = = =

= = =

W G G M

I G I j A I G

I G I j A

( ) ( ) ( )

( ) ( ) ( )

2 ( ) ( )
(6)

M M

i

m

i M
j

n

j M
i

m

ij
i

m

i M

i

m

i M
j

n

j M
i

m

ij

1 1 1 1

1 1 1

where

λ ≡







− Γ

∑ − Γ
∈

∈

j
r

j G
exp( ( ) )

exp( ( ) )

0 otherwise (7)
j r G

M
M

is the weight assigned to gene j for j = 1, 2, …, n. For all j ∈ GM, λ j∈ (0, 1) and λ∑ =∈ 1j G jM
. For gene j, λ j∈ (0, 1) 

makes coverage slightly more important than mutual exclusivity, and introduces overlaps with other genes. 
λ∑ =∈ 1j G jM

 allows the frequently mutated genes to have more overlaps than the rarely mutated genes in a gene 
set. In the case of λj → 1 for |Γ(j)|, mutual exclusivity is tuned to be as important as coverage. Using this approach, 
the balance between coverage and exclusivity can be adaptively adjusted for various genes with respect to the 
cardinality |Γ(j)|. For this reason, λj is called as adaptive weight. Consequently, the AWRMP programming model 
can be summarized as the following
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Setting up of GA.  According to Eq. (7), λj is a nonlinear function of IM(j), which indicates that the AWRMP 
optimization model (8) is a nonlinear programming (NLP) model. According to the MDPfinder solver5, we used 
the metaheuristic GA method as the NLP solver. The settings of the GA are as follows:

GA search space.  The genes in A were labeled as 1, 2, …, n. According to Eqs (3) and (8), a binary-valued vector 
x ≡ [x1, x2, …, xn]Τ is used as an individual of a population, in which xi ∈ {0, 1} characterizes the i-th gene in sub-
matrix M. Thus, the GA search space is as follows:

∑=





∈ = = | |






.

=
S x x i n x G{0, 1} for 1, 2, , ,

(9)
i

i

n

i M
1

GA fitness function.  In a GA, the fitness function is used to evaluate the quality of individual sj ∈ S. In AWRMP, 
we ranked each individual solution sj with respect to λW G( )Mj

 obtained by the programming model (8), in which 
Mj is the submatrix corresponding to sj. The ranked result, denoted by rj, is used to evaluate the fitness of sj.

GA operations.  Selection, crossover, and mutation are three basic operators of GA. To distinguish from the 
above-mentioned mutation, we denoted the ‘mutation’ operator as ‘GA_mutation’. For individual sj and rank rj of 
each individual sj based on the fitness value, the selection probability was defined as

=
+

p
r

n n
2

( 1) (10)j
j

where n is the population size.
The detailed GA procedure is provided in the supplementary information.

Integrating GA with subsampling.  Robustness means that the algorithm can give identical results for 
various datasets with high probability. Through the use of subsampling, AWRMP investigates probabilities of the 
gene sets selected by the GA. We used a leave-one-out subsampling strategy to obtain n subsamples Ai− for i = 1, 
2, …, m, in which Ai− was obtained by removing the ith row of A. For all subsamples {Ai−} and a given k, m runs 
of the GA were conducted to select the optimal gene sets. = G k m{ 1, 2, , }k

SS SS  denotes the selected gene sets 
obtained by m runs of the GA. Note that the possible multiple solutions of the optimization model (8) can lead to 
mSS > m. For Gk

SS, we defined

https://doi.org/10.1038/s41598-019-42500-7


1 0Scientific Reports |          (2019) 9:5959  | https://doi.org/10.1038/s41598-019-42500-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑≡
=

m I G( )
(11)k

i

m

i k
SS

1

SS

with

≡



 .−I G G i A( ) 1 is selected with th subsample
0 otherwise (12)

k k iSS SS

mj
SS is the total number of times that Gk

SS was selected in all m runs of the GA. Consequently, the probability of 
Gk

SS being selected as the optimal gene set can be obtained by

≡ =SSR Pr G m
m

( is selected) (13)G k
kSS
SS

k
SS

which is called the subsampling rate (SSR) in this study. Moreover, the subsampling rate of a gene can also be 
calculated by Eq. (13), which denotes the probability of a gene being included in the optimal gene set. To test the 
significant robustness of Gk

SS, the null hypothesis was set up as follows: the distribution of mj
SS was assumed to be 

a binomial distribution Bin(p, m). By taking the uncertainty of data into consideration, p is further assumed to 
obey a Beta distribution Beta(p0m, m) where p0 ∈ (0, 1) is a user-defined hyper-parameter. In this study, p0 = 0.1. 
Note that the Beta distribution is a conjugate distribution of the binomial distribution and the Beta-binomial 
distribution is the corresponding posterior distribution. Consequently, the following statistics

∑≡ −
=

Q H r m p m m1 ( , , , )
(14)k

r

m

0
0

k
SS

is calculated. H is the Beta-binomial probability mass function

=








+ − +H m M m M M
m

B m a M m b
B a b

( , , , ) ( , )
( , ) (15)1 1 2 2

1

1

1 1 1

where B(⋅) is the Beta function, a = m2 + 1, and b = M2−m2 + 1. The Gk
SS that satisfies Qj ≤ 0.05 was considered 

to form the driver gene set. We further defined the subsampling rate for gene g as follows:

≡ = ∑ =SSR g
I g

m
Pr( is selected in the driver gene set)

( )
(16)g

i
m

i1

with

≡




.I g g( ) 1 is selected in the ith subsampling run
0 otherwise (17)i

Based on SSRg, we define a parsimonious set as follows:

≡ | ={ }g SSRParsimonious set 1 , (18)g

which indicates the most robust result obtained by AWRMP.

Evaluation of the gene set G.  The coverage, mutual exclusivity, and optimal performance of the gene set G 
were evaluated by the coverage score, overlap score, and total score, respectively as follows:

≡ Γ
m

GCoverage score 1 ( ) (19)

ω≡
m

GOverlap score 1 ( ) (20)

≡ .λm
W GTotals core 1 ( ) (21)

We further define the overlap contribution for gene g ∈ G as follows:

ω ω≡ − −( )( )g
m

G GOverlap contribution of gene 1 ( ) (22)g

where Gg− is the gene set obtained by subtracting gene g from gene set G, and this analysis is used to measure how 
gene g affects the overlap score of G.
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