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Abstract: The soar in COVID-19 cases around the globe has forced many to adapt to social distancing
and self-isolation. In order to reduce contact with healthcare facilities and other patients, the CDC
has advocated the use of telemedicine, i.e., electronic information and telecommunication technology.
While these changes may disrupt normal behaviors and routines and induce anxiety, resulting in
decreased vigilance to healthy diet and physical activity and reluctance to seek medical attention, they
may just as well be circumvented using modern technology. Indeed, as the beginning of the pandemic
a plethora of alternatives to conventional physical interactions were introduced. In this Perspective,
we portray the role of SmartPhone applications (apps) in monitoring healthy nutrition, from their
basic functionality as food diaries required for simple decision-making and nutritional interventions,
through more advanced purposes, such as multi-dimensional data-mining and development of
machine learning algorithms. Finally, we will delineate the emerging field of personalized nutrition
and introduce pioneering technologies and concepts yet to be incorporated in SmartPhone-based
dietary surveillance.
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1. The Pandemic Information Age

SmartPhone ownership is estimated at 45% of the world’s population for 2020, and this
figure is only expected to increase over the next years, especially in developing nations. As
mobile devices are prevalent, carried around by users throughout their daily lives and offer
various sensing modalities, they are compelling targets of data collection, monitoring and
interaction, allowing not only for facilitating user feedback, but also for offering accessible
custom-made interventions.

The COVID-19 pandemic is unique in the sense that it employed SmartPhone-based
technologies for epidemiological purposes. Population surveillance and screening for the
disease were carried out in the United States through an app that collected SmartWatch
and activity tracker data, as well as surveys for self-reported symptoms [1,2]. As such, a
study conducted on large cohorts from the United States and the United Kingdom, based
on self-reporting of symptoms through a SmartPhone app, revealed that loss of sense of
smell and taste could be included as part of routine screening for COVID-19 [3,4]. In China,
mobile phone geolocation data ware used to map the distribution of confirmed cases to
assist in decision-making to slow the rate of transmission [5]. Similarly, contacts of infected
users were tracked using GPS data or Bluetooth (short-range radio) signals [6,7].

Additionally, SmartPhone-based technology and auxiliary plug-in devices can assist
in case identification. Viral RNA can be detected through point-of-care testing using a
portable assay and a SmartPhone-based reader [8]. Voice analysis is an emerging field
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that strives to detect specific vocal ‘biomarkers’, such as shortness of breath and cough,
associated with COVID-19 from recordings obtained by mobile devices [9].

More digital technologies developed to diagnose or curb COVID-19 spread are exten-
sively covered elsewhere [10].

2. The Advent of SmartPhone Apps in Dietary Surveillance

Nutrition apps provide a simple way for the user to log meals and other daily activities,
obtain nutritional information on food items and receive automatic push notifications based
on preset thresholds and conditions. They allow dietitians and other medical personnel
to assess the users’ compliance and diet transgressions, track their behaviors, set goals,
send motivational messages, and analyze the data. These features rendered these apps an
attractive means of providing remote dietary care to users, irrespective of their COVID-19
status. Herein, we will highlight the various usages of nutrition apps, and then focus on
special considerations pertaining to the COVID-19 pandemic.

The last decade has witnessed a surge in nutrition apps, rendering SmartPhones a
validated dietary assessment tool [11,12]. Several studies have suggested that users were
more compliant with dietary tracking using Smartphone apps compared to the traditional
paper-and-pencil food diaries [13], although these findings were inconsistent [14]. Fur-
thermore, a recent international survey completed by healthcare professionals (including
dietitians, doctors and nurses) revealed that 45.5% recommended nutrition apps to their
patients [15].

Nutrition apps have been widely used to promote dietary interventions, such as in-
creasing fruit and vegetable consumption or decreasing saturated fat and sugar-sweetened
beverage intake [16–19]. They have also served as a tool in the armamentarium to prevent
or combat obesity in children [20], adolescents [21], and adults with specific medical condi-
tions, such as pregnancy [22] and type 2 diabetes mellitus (T2DM) [23]. With regards to the
latter, a simple intervention of sending text messages providing information, motivation,
support and reminders related to diabetes management improved glycemic control in
poorly controlled individuals with T2DM [24]. Nutrition apps have been used in research
for other indications, including maintaining a low-salt diet in patients suffering from
cardiovascular disease [25], optimizing food choices for patients suffering from nephrolithi-
asis [26], and monitoring energy intake and nutritional behaviors in elite athletes [27,28].
It should be noted, however, that many of the studies that showed promising results for
SmartPhone-based strategies were limited by short-term intervention periods and were
not sufficiently methodologically rigorous.

The call for social distancing and self-isolation during the COVID-19 pandemic has
promoted a surge in SmartPhone apps as alternatives to social interactions. Various
services, including retail businesses and healthcare have adapted to the changing reality
with telecommunication. Likewise, diet and nutrition advice is facing a burning need to
shift from physical clinical encounters to remote interactions. Patients with COVID-19,
especially the elderly, people of low socioeconomic and educational status or those with
underlying medical conditions require continuous dietary care, presenting more complex
and challenging problems for healthcare professionals, including increased catabolism,
nutritional deficiencies or altered physiology [29–32]. Even individuals without COVID-
19, who suffer from chronic diseases or malnutrition, may require adaptations to reduce
food insecurity during the pandemic [33]. Furthermore, healthy individuals who have
experienced lifestyle changes and become sedentary due to imposed lockdowns may
need dietary modifications, and others may benefit from remote nutritional counseling
to counteract psychological distress due to the health emergency situation [34,35]. In the
following sections we will illustrate the role of nutrition SmartPhone apps as means to
tackle these issues.
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3. Requirements of Nutrition Apps

Generating an effective nutrition SmartPhone app is a task that requires numerous
considerations and encompasses a multi-disciplinary effort and a collaboration of product
managers, software engineers, medical personnel, scientists and data analysts. Apps
should comply with a standardized Nutrition Care Process (NCP), and therefore follow
the framework of nutrition assessment, diagnosis, intervention, monitoring and evaluation
to ensure efficient and reliable remote continuous care [36]. All apps should offer an
expeditious and simplified means to log or report meal intake, and many implement
additional features of planning, reminding, coaching, boosting motivation and providing
information (Figure 1).
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Figure 1. Requirements of nutrition apps. SmartPhone apps consist of several modules: the interface should provide
compelling user experience and utilize advanced technologies to facilitate comprehensive data collection, and users’
confidentiality should be maintained. Data mining should be based both on entries recorded by the app and externally
derived data and should be suitable for population-based studies. Data analysis should be performed using artificial
intelligence and subsequent recommendations should be produced at a personal level (Created with BioRender.com).

User experience is of paramount importance. As users adherence tends to abate over
time [37] and is directly correlated with the app’s efficacy [38], great emphasis should be
placed on its target audience, for instance, while a vivid interface may appeal to children,
elderly users may require enhanced accessibility. The design should be attractive, enjoy-
able and easy-to-use, and navigation should be swift and seamless. The most prevalent
recording methods used on mobile phone platforms are electronic food diaries (assisted
by textual or picture-based databases), 24-h recall, barcode scanners and food photograph
analysis. Employing image analysis technologies in nutrition apps as an alternative to
written records has considerably evolved over the last years. Initially, carbohydrate esti-
mation required lengthy redrawing of food items [39]. Subsequently, artificial intelligence
allowed for calorie, carbohydrate or macronutrient estimation of meal images, which
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outperformed or was non-inferior to evaluation by experienced dietitians [40,41]. Image
analysis technologies can be stand-alone or complimented by a voice recording to explain
the contents of the photograph and then analyzed by a dietitian [42]. Novel technologies
offer food image recognition with increasing accuracy harnessing deep neural network
architectures [43].

Food databases should not only be comprehensive and up-to-date, but also customized
to fit the users’ locale. As such, tables of food composition should be country-specific to
allow for reliable and accurate reporting of meals. Additionally, neonates, inpatients or
individuals suffering from chronic medical conditions should be able to log nutritional
formulas and food supplements. Decision-making should rely on validated methods, for
instance a recent study proposed a remote nutritional screening tool during the COVID-19
pandemic based on the Malnutrition Universal Screening Tool (MUST) and the SARC-F
questionnaire [44]. Finally, user confidentiality and data protection principles must be
ensured in every nutrition app, as stipulated by the General Data Protection Regulation
(GDPR). Namely, data reported by users should be collected and stored in an anonymized
(or pseudonymized) manner, allowing full traceability while ensuring participant protec-
tion. Meticulous security audit, including penetration tests and vulnerability assessments
should be conducted by the app developers to prevent data leaks. Data must not be shared
or transmitted to third-party companies without informed consent, which should disclose
all data sharing practices. Additionally, the Children’s Online Privacy Protection Act
(COPPA) should be enforced in nutrition apps addressed to minors.

4. Scientific Applications of Nutrition Apps and Their Pitfalls

Data collected by nutrition apps are usually processed by individuals and their health-
care providers to track their compliance with a dietary regimen and assess the effect of
nutrition interventions. Nonetheless, this information, when acquired adequately on large
populations, can serve as real-world data, a complementary source to randomized con-
trol trials to reveal statistically significant health trends and yield robust and meaningful
conclusions in nutritional management. These studies are particularly crucial in times
of changing social and economical behaviors, such as the COVID-19 pandemic. Further-
more, nutritional data interlaced with blood tests results deemed potentially valuable and
warrants further research in patients with COVID-19, as circumstantial evidence linked
between deficiencies in some dietary constituents and disease severity [45,46].

As previously implied, albeit effective in increasing “attentive eating” as well as
promoting specific dietary modifications among users affected by medical conditions
(e.g., reducing salt intake [47]), nutrition apps are often not more valid or reliable than
conventional methods [48], and do not always translate into clinical benefit (e.g., car-
diovascular risk reduction [49], weight loss [50] or prevention of gestational diabetes
mellitus [51]), posing marginal added value compared to standard counseling on diet and
physical activity [49]. These discouraging findings merit reevaluation of universal dietary
recommendations and call for a more individualized approach when designing nutrition
interventions.

5. Practicing Personalized Diet with Nutrition Apps

A large body of evidence has demonstrated that there is great variability in responses
to similar food among different individuals [52]. This variability derives from a multitude
of factors, including personal parameters as well as the consumer’s environmental milieu.
Therefore, optimal dietary planning should be made in the context of an individual and their
unique features, rendering the notion of “one-diet-fits-all” obsolete (Figure 2). Host-intrinsic
variability stems from genetic and epigenetic factors. As such, methylation of adipogenic
genes correlated with insulin resistance after a specific nutritional intervention [53].
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and precision-based studies (Created with BioRender.com).

Environmental factors that affect responses to dietary interventions include eating
patterns, timing of meals and their relation to physical activities and to psychological
stress [54]. These factors, termed dietary behavior, can be modeled based on SmartPhone
data and dictate interventions [55], as advanced sensing capabilities embedded in mobile
devices allow for estimation of daily energy expenditure from phone accelometry and
elucidating time-location eating patterns using GPS data [55]. Machine learning techniques
employed on these data may assist in tracing and predicting dietary lapses during di-
etary interventions, and have been shown to result in greater precision when applied on
individually segregated data, rather than data pooled from a group of individuals [55,56].

Of the many factors shaping individualized responses to food the gastrointestinal
microbiome has been gaining increasing attention. The microbiome, constituting trillions
of bacteria and other microorganisms, has a major role in food digestion and exerts a
profound metabolic effect on the host. Studies have found that certain microbiome features
might account for altered responses to a particular dietary intervention, for instance a high
ratio between two bacterial genera, Prevotella and Bacteroides, in stool was associated with
greater weight loss [57] and improved glucose metabolism [58].

Our lab has profiled a large cohort of individuals in terms of anthropometrics, blood
tests and stool microbiome composition and function, and tracked their blood glucose levels
with continuous glucose monitors for a period of one week, while they were instructed to
keep a food and activity diary through a designated SmartPhone app. We found, like others,
a high inter-individual variability in post-meal glucose responses to the same food. We
then associated these differences with individual features and constructed a decision tree-
based machine-learning algorithm to predict post-meal glucose responses. Eventually, we
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conducted a small-scale interventional study to prove that individualized menus devised
based on our algorithm could effectively maintain normoglycemia [59]. Similarly, a recent
study proposed using a SmartPhone application to manage gestational diabetes mellitus in
the time of COVID-19. The app incorporated diet transgressions, blood glucose values and
ketonuria to make adjustment recommendations regarding diet and insulin treatment [60].
In summary, personalized nutrition is a holistic multi-faceted concept, which relies on
various host, microbiome and environmental variables. The widespread use of nutrition
SmartPhone apps complemented by biomarkers and advanced multi-omics analyses set
the groundwork for exploring, practicing and fine-tuning personalization of diet.

6. Future Prospects

We envision that the commodification and rapid developments in mobile technology
and the recent breakthroughs in big data analysis will result in an upcoming burgeon to
the field of personalized nutrition. Incorporating multi-dimensional host and microbiome
data profiling with tracking of food intake and food behavior will yield high-quality tailor-
made dietary recommendations, which can be optimized for specific objectives or medical
conditions.

Studies will further explore determinants of intra-individual differences, such as the
addition or omission of micronutrients [61], the effect of prior meals on the response to
consequent meals [62] or the effect of the circadian phase on responses to food [63]. With
regards to the latter, it has been shown that restriction of daily eating hours was associated
with reduced body weight and long-lasting improvement in various symptoms [64].

Ongoing alterations in individual features will require dietary recommendations to
be periodically adjusted. This and the aforementioned associations between several mi-
cronutrients levels and COVID-19 severity may require frequent blood tests or microbiome
profiling, or the development of plug-in assays for point of care quantification of nutrient
deficiencies, such as serum iron, vitamin A and vitamin B12 [65,66].

Moreover, SmartPhone apps will transcend beyond provision of nutritional recommen-
dations to provide active behavior modifications, so users will implicitly make healthier
choices. An interesting example to this notion was witnessed in users of the mobile app
Pokémon GO, who increased their number of steps after installation of the game [67].

Thinking outside the box may aid in improving compliance and instilling motivation
to pursue nutritional and lifestyle interventions. For instance, one study proposed an
integrative system for adolescents, which consists of garments embedded with monitor-
ing devices, activity trackers, a web portal and a several smartphone apps with reward
and a gamification modules [68]. Likewise, interface between nutrition apps and social
networking websites may boost adherence in some users.

With these ideas in mind, dietary surveillance and decision-making in this time of
global pandemic may pose many challenges; however SmartPhone apps may potentially
overcome them and pave the way towards augmented and more effective personalized
nutrition.
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