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Abstract: Nephropathia Epidemica (NE), endemic to several Volga regions of Russia, including the
Republic of Tatarstan (RT) and the Republic of Mordovia (RM), is a mild form of hemorrhagic fever
with renal syndrome caused by infection with rodent-borne orthohantaviruses. Although NE cases
have been reported for decades, little is known about the hantavirus strains associated with human
infection in these regions. There is also limited understanding of the pathogenesis of NE in the RT and
the RM. To address these knowledge gaps, we conducted comparative analyses of patients with NE in
the RT and the RM. Clinical symptoms were more severe in patients with NE from the RM with longer
observed duration of fever symptoms and hospitalization. Analysis of patient sera showed changes in
the levels of numerous cytokines, chemokines, and matrix metalloproteases (MMPs) in patients with
NE from both the RT and the RM, suggesting leukocyte activation, extracellular matrix degradation,
and leukocyte chemotaxis. Interestingly, levels of several cytokines were distinctly different between
patients NE from the RT when compared with those from the RM. These differences were not related
to the genetic variation of orthohantaviruses circulating in those regions, as sequence analysis showed
that Puumala virus (PUUV) was the causative agent of NE in these regions. Additionally, only the
“Russia” (RUS) genetic lineage of PUUV was detected in the serum samples of patients with NE from
both the RT and the RM. We therefore conclude that differences in serum cytokine, chemokine, and
MMP levels between the RT and the RM are related to environmental factors and lifestyle differences
that influence individual immune responses to orthohantavirus infection.
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1. Introduction

Orthohantaviruses are enveloped negative-sense single-stranded RNA viruses, be-
longing to the family Bunyaviridae, that are the causative agents of hemorrhagic fever
with renal syndrome (HFRS). HFRS is typically characterized by fever, increased vascular
permeability, thrombocytopenia, and acute kidney injury, and currently it has the highest
incidence rate of all zoonotic virus infections reported in Russia [1,2]. Nephropathia Epi-
demica (NE) is a mild form of HFRS that is endemic in the Volga Federal District of Russia,
that includes the Republic of Tatarstan (RT) and the Republic of Mordovia (RM) [3–6].
Mortality rate is low (0–0.4%) and complete recovery of kidney function without devel-
opment of chronic renal disease or acute kidney injury (AKI) is commonly expected [7–9].
Still, NE presents a significant public health concern due to the high incidence of infec-
tion and lack of specific treatment [10,11]. NE is caused by the Puumala virus (PUUV), a
member of the orthohantavirus genus, found circulating persistently yet asymptomatically
within reservoir populations of bank voles (Myodes glareolus) [12,13]. Human infection is
believed to occur via inhalation of virus-contaminated aerosols of bank vole excreta and
secreta [14]. Upon infection, the virus disseminates and primarily targets endothelial cells,
with little-to-no documented cytopathic impact on the endothelium associated with virus
replication [15,16]. Therefore, the severity of viral pathogenesis and disease progression
is believed to be largely due to the contribution of host immune response factors and
mechanisms that are activated during viral infection.

Studies have shown that clinical presentation may differ in patients infected with the
same strain of orthohantavirus, with a high proportion of PUUV infections reported to be
subclinical and many cases remaining undiagnosed [17]. Additionally, single-nucleotide
mutations in pro-inflammatory cytokine tumor necrosis factor (TNF)-α have been reported
to coincide with increased severity of PUUV-induced NE [18]. Case-fatality rates for PUUV-
induced NE have previously been reported to rise with age, and female patients were
observed to have a higher mortality rate in the first year after diagnosis with acute NE;
inferring that age and sex may represent predictive variables of clinical outcome [19]. The
geographical, endemically active region has also been shown to influence the severity of
orthohantavirus infections; Klempa and colleagues reported that the severity of Dobrava
virus (DOBV) cases was higher in the district of Sochi in southern Russia when compared
with that of Kurkino DOBV cases in the central Russian district of Lipetsk [20]. Although
many biological markers have been suggested to determine orthohantavirus fatality and
disease severity [21–23], the mechanisms defining the differences observed in clinical
presentation remain largely unknown.

Clinical characteristics of NE in the RT and the RM are observed to be similar, with the
onset of disease coinciding with acute, flu-like symptoms [24]. NE cases were characterized
with symptoms of lumbar pain and decreased urinary output, varying from anuria and
oliguria to polyuria. [25,26]. In some cases, the urinary output can remain unaffected
with only initial transient proteinuria being reported [27]. AKI is associated with the most
severe form of NE/HFRS. Hemorrhages, varying from small petechiae to severe internal
bleeding, are often reported in all stages of the disease [28,29]. Laboratory results typically
reveal thrombocytopenia, proteinuria, creatininemia, and uremia [30]. Increased serum
levels of chemokines and proinflammatory cytokines are also documented in patients
with NE; we have previously shown upregulation of serum levels of interferon (IFN)-γ,
interleukin (IL)-10, CCL2, and IL-12 in NE cases from the RT when compared to those of
controls [31]. Activation of regulatory cytokines such as CCL2, CCL3, and CXCL10 has also
been reported in serum samples of patients with NE from the Republic of Bashkortostan
(RB) [32]. The cytokine storm hypothesis is suggested to be responsible for orthohantavirus
pathogenesis, where increased endothelial permeability and kidney dysfunction is due to
the upregulation of proinflammatory cytokines that, too, may determine the severity of
clinical presentations and disease. Data from our previous studies support this hypothesis,
with increased serum levels of cytokines consistently observed in NE cases from the RT
and the RB regions of Russia [31,32].



Pathogens 2021, 10, 527 3 of 17

Although NE is endemic in the RM [6], human immune responses to orthohantavirus
infection remain largely un-characterized. In addition, details of the cytokine responses to
hantavirus infection in patients with NE from the RM is largely unknown. Therefore, in
this present study we determined the orthohantavirus strains associated with NE in the
RM and analyzed the cytokine activation in patients with NE from the RM. Additionally,
comparative analyses were conducted to characterize orthohantavirus strains associated
with NE cases from the RM and the RT.

2. Materials and Methods

Patients. Serum samples were collected from 58 NE cases (49 male and 9 female;
average age 38.77 (37.9, 43.44)) admitted to the Republican Infectious Disease Clinical
Hospital, Saransk, the RM and 98 NE cases (72 male and 26 female; mean age 41 (39.13,
46.2)) admitted to the Agafonov Republican Clinical Hospital for Infectious Disease, the
RT. All samples were collected during the acute phase of the disease at the time of the
admission and at the convalescent phase during the discharge. Diagnosis of NE was
established based on clinical presentation and was serologically confirmed by detection
of anti-orthohantavirus IgM antibodies. Serum samples from 27 control individuals from
the RM (12 male and 15 female; age 29.8 to 30.8) and 30 control individuals from the RT
(18 male and 13 female; age 34.1 to 31.7) were collected.

Multiplex Analysis. Serum cytokine levels were analyzed using Bio-Plex (Bio-Rad,
Hercules, CA, USA) multiplex magnetic bead-based antibody detection kits following the
manufacturer’s instructions. Multiplex kits, Bio Plex Pro Human Cytokine 27-plex Panel,
Bio Plex Human Cytokine 21-plex Panels, and Bio Plex Human Matrix metalloproteases
(MMPs) were used for detection of a total of 84 cytokines. Serum aliquots (50 µL) were
analyzed where a minimum of 50 beads per analyte was acquired. Median fluorescence
intensities were collected using a Luminex 100 or 200 analyzer (Luminex, Austin, TX,
USA). Each sample was analyzed in triplicate. The collected data were analyzed with
MasterPlex CT control software and MasterPlex QT analysis software (MiraiBio, San Bruno,
CA, USA). Standard curves for each cytokine were generated using the standards provided
by the manufacturer.

RT-PCR detection of PUUV transcripts. Total RNA was extracted from serum using
TRIzol Reagent (Invitrogen Life TechnologiesTM, Carlsbad, CA, USA) following the manu-
facturer’s recommendations. cDNA was synthesized using Thermo Scientific RevertAid
Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA, USA). Nested PCR was
carried out using TaqPol polymerase (Sileks, Badenweiler, Germany). Primers are summa-
rized in Table 1. The resulting PCR products of 19 PUUV strains from the RT and 8 PUUV
strains from the RM were purified with Isolate II PCR and Gel Kit (Bioline, London, UK)
and subsequently sequenced using ABI PRISM 310 big Dye Terminator 3.1 sequencing
kit (ABI, Vernon, CA, USA). Sequences were deposited in the GenBank database under
accession no. MW587790-MW587800, MW587805-MW587819, MW587821.
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Table 1. Primers used for amplification and sequencing.

Name Nested-PCR
Step Sequence, 5′→3′ Binding Position c Reference

PUUV-39S-F3 a,b 1st GGCCAAAACATCTATATGTATCC 560–582 d

PUUV-S-R1496 a,b 1st GTATAATTCCAGTTAACCCCTG 1496–1517 d [33]

PUUV-S-F704 a,b 2nd AACATCATGAGTCCAGTAATGGG 682–704 d [33]

PUUV-69S-B3 a,b 2nd GATATCTCTTTTACCTTCTGGTC 1297–1319 d [33]

DOBV-F212 a 1st GAAAAGAAAGGGATCCAACTGG 191–212 e

DOBV-R542 a 1st ATACTGGATTGTGCATTGGGC 542–562 e

DOBV-F348 a 2nd ATGAACCAACAGGGCAAACTG 327–348 e

DOBV-R518 a 2nd GACAGAAACAGGTGCTTTGGC 518–538 e

TulaV-For49 a 1st AAGGATCCTCTAGAAACCGCTGGTATGAGCC 19–49 f

TulaV-Rev1321 a 1st GTGTCTGCAGGATCCGTTGATTAGATTTTTAGTGG 1321–1355 f

TulaV-For91 a 2nd AGATCACCCGCCATGAACAGC 71–91 f

TulaV-Rev328 a 2nd CATCAAGGACATTCCCATATCTGAG 328–352 f

a—Primers used for amplification; b—primers used for sequencing; c—positions in relation to: d—Puumala orthohantavirus strain
Puu/Kazan (GenBank accession no. Z84204); e—Dobrava-Belgrade orthohantavirus isolate Ap-1/Goryachiy Klyuch-2000 (GenBank
accession no. AF442622); f—Tula orthohantavirus strain (Tula/76Ma/87) (GenBank accession no. Z30941).

Phylogenetic analysis. Phylogenetic analysis of PUUV partial S segment sequences
was performed using MEGA v6.0 software [34]. Nucleotide sequences of 13 PUUV strains
obtained in the bank vole populations in the RT and 5 strains from GenBank were
used (Accession No: PUUV/Observatory/MG_118/2015, MW587801; PUUV/Vysokaya
Gora/MG_1388/2018/, MW587802; PUUV/Kazan/MG_845/2017, MW587804; PUUV/
Lenino-Kokushkino/MG_1140/2017, MW504252; PUUV/Laishevo/MG_809/2017, MW504247;
PUUV/Teteevo/MG_1041/2017, MT495382; PUUV/Mamadysh/MG_980/2017, MW504250;
PUUV/Naberezhnye Chelny/MG_260/2015, MW504226; PUUV/Naberezhnye Chelny/
MG_260/2015, MW504226; PUUV/Krasnyi Klyuch/MG_158/2015, MW504225; PUUV/
Tatarskoe Utiashkino/MG_1419/2019, MW504213; PUUV/Starye Salmany/ MG_1589/2019,
MW504240; PUUV/Lesnye Morkvashi/MG_794/2017, MW587803; Puu/Kazan, Z84204;
Samara_49/CG/2005, AB433843; DTK/Ufa-97, AB297665; Sotkamo2009, HE801633; PUUV/
Orleans/Mg29/2010, KT247595), Tula orthohantavirus strain Sennickerode Sen05/205,
EU439951 was used as an outgroup. Phylogenetic trees were constructed using the maxi-
mum parsimony method included in Mega v6.0 [34]. The bootstrap values calculated for
1000 replicates are given as percentages and the values less than 70% are not shown.

Hantavirus ELISA. Detection of anti-orthohantavirus antibodies was used as a confir-
matory test for NE diagnosis [34,35]. The VektoHanta IgG ELISA kit and Vector Hanta IgM
kit (Vektor Best, Novosibirsk, Russia) were used to determine hantavirus-specific antibod-
ies [34,35]. Briefly, the serum from patients with NE and controls was diluted 1:100 (PBS)
and incubated for 60 min at 37 ◦C in a 96-well plate with pre-adsorbed hantavirus anti-
gens. Following washing (3×; 0.5% Tween20 in PBS, PBS-T), wells were incubated with
anti-human-IgG-HRP or anti-human-IgM-HRP conjugated antibodies (1:10,000 in PBS-T,
Amerixan Qualex Technologies, San Clemente, CA, USA) for 30 min at 37 ◦C. Post in-
cubation and washing (3×; 0.5% Tween20 in PBS), wells were incubated with 3,3′,5,5′

Tetramethylbenzidine (Chema Medica, Moscow, Russia). The reaction was stopped by
adding an equal amount of 10% phosphoric acid (TatKhimProduct, Kazan, Russia). Data
were measured using a microplate reader Tecan 200 (Tecan, Männedorf, Switzerland)
at OD450 with reference OD650. OD450 values higher than 0.5 were considered to be
positive results.
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Statistical analysis. Statistical analysis was performed in the R environment [36].
Statistically significant differences between groups of patients in different stages and
control volunteers were accepted as p < 0.05, assessed by the Kruskal–Wallis test with
Benjamini–Hochberg adjustment for independent populations and Wilcoxon signed rank
test for paired data.

3. Results

Clinical presentation of NE cases from the RT and the RM. A total of 25 NE cases
(21 male, 4 female) from the RM and 98 NE cases (72 male, 26 female) from the RT were
included in this study (Table 2). The average age of patients was similar in both regions
(37.28 ± 13.64 years in the RM and 41 ± 15.22 years in the RT). NE diagnosis was based on
clinical presentation, epidemiological data, and serological confirmation (Table 2). Many
clinical symptoms of the disease in both regions were similar; however, patients with
NE from the RM had a significantly longer hospitalization period (15.4 ± 1.0 days) when
compared to patients with NE in the RT (9.9 ± 3.6 days). In addition, the number of days
with fever was longer in patients from the RM (7.8 ± 1.9 days) than in patients from the RT
(5.4 ± 1.9 days). These data suggest that the clinical presentation of NE differs in the two
endemically active regions.

Table 2. Clinical and laboratory characteristics of patients with NE from the RT and the RM.

RT RM p-Value

Age (years) 37.50 (29.75, 51.50); n = 96 33.50 (26.25, 48.75) n = 58 0.203

Hospitalization (days) 11.00 (8.00, 12.00); n = 72 16.00 (14.25, 16.00); n = 58 <0.001

Fever (days) 6.00 (4.00, 7.00) n = 54 8.00 (7.00, 9.00); n = 58 <0.001

Duration of hemorrhage
(days) 0.00 (0.00, 0.00); n = 92 0.00 (0.00, 0.00); n = 58 0.641

Systolic arterial pressure
(mmHg) 116.00 (110.00, 120.00); n = 55 120.00 (110.00, 137.50); n = 58 0.120

Diastolic arterial pressure
(mmHg) 80.00 (70.00, 80.00); n = 55 80.00 (70.00, 90.00); n = 58 0.065

Urea (mg/dL) 7.10 (4.70, 12.60); n = 93 6.65 (4.85, 10.25); n = 58 0.750

Creatinine (µM/L) 131.00 (103.00, 189.00); n = 93 121.50 (96.00, 160.50); n = 58 0.172

Potassium (mEq/L) 7.10 (5.39, 10.75); n = 88 5.76 (3.95, 8.07); n = 58 0.004

Thrombocytes (×103/µL) 92.00 (67.00, 157.00); n = 93 78.50 (58.50, 109.75); n = 58 0.205

Leukocytes (×103/µL) 9.30 (6.20, 13.65); n = 55 7.50 (6.62, 9.73); n = 58 0.251

vRNA +/− (+%/−%) 72/25 (74.2/25.8); n = 96 10/7 (58.8/41.2); n = 17 0.242

Hantavirus IgM +/−
(+%/−%) 75/96 (78.1/21.9); n = 96 33/58 (56.9/43.1); n = 58 0.711

Hantavirus IgG +/−
(+%/−%) 86/96 (86.4/13.6); n = 96 50/8 (86.2/13.8); n = 58 0.096

Phylogenetic analysis of PUUV identified in NE cases from the RT and the RM.
The RT and the RM are part of the Volga Federal District, which is endemic for NE
(Figure 1) [3–6].

Two orthohantaviruses, PUUV and DOBV, have previously been detected in HFRS
cases documented in the Volga Federal District [37,38]. It appears that DOBV is the etiolog-
ical agent of severe HFRS, whilst PUUV causes NE, a mild-to-moderate form of HFRS [10].
However, Tula virus (TULV), which has been isolated from common voles, is believed to be
non-pathogenic in humans [39]. Thus, given the differences in the hospitalization period
and duration of fever in patients from the RT and the RM, we sought to determine whether
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these contrasts could be explained by the infection of patients with different orthohan-
taviruses. PCR products from the 19 RT and 8 RM NE cases were therefore sequenced and
were determined as variations of PUUV. DOBV and TULV sequences were not detected.
Sequence analysis of viral RNA revealed that all obtained strains belonged to the Russian
genetic lineage of PUUV and were phylogenetically related to PUUV strains circulating in
bank vole populations in the RT (Figure 2).
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We therefore identified PUUV as the causative infectious agent of NE from the RT and
the RM. These data support previous observations that PUUV is the prevalent etiological
agent of NE in the Volga Federal District [38,40,41], which includes the RT, the RM, the RB,
and Udmurtia. Therefore, we suggest that differences in cytokine activation in NE from the
RT and the RM could be explained by host immune response mechanisms to viral infection.

Analysis of serum cytokine and MMP levels in controls from the RT vs. the RM.
Regional differences in patient serum cytokines have been demonstrated in multiple infec-
tious diseases [42–46], suggesting a role for cytokine activation in inflammation severity.
Therefore, we sought to determine whether serum cytokine and MMPs levels differ in NE
from the RM and the RT. We have found that serum levels of IL-1α, IL-6, IL-7, b-NGF, GM-
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CSF, and MMP13 were significantly different, while levels of the remaining 78 cytokines
and MMPs were not significantly different between regional controls (Supplementary
Materials Table S1).
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Z84204) of PUUV strains from the RT and the RM generated using the maximum parsimony method.
The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches (65) only values greater than 70% are shown. The
MP tree was obtained using the subtree-pruning-regrafting (SPR) algorithm (66).

Analysis of acute NE-induced changes in cytokine and MMP levels from the RT
and the RM. A total of 84 cytokines and MMPs were analyzed in serum from control
and patients with NE from the RT and the RM (Figure 3; summarized in Supplementary
Materials Table S2).
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Figure 3. Comparison of analytes in serum of patients with NE from the RT and the RM. Serum samples from acute patients
with NE in the RT and the RM were analyzed and the levels of (A) interleukins, (B) matrix metalloproteases (MMPs), and
(C) cytokines were compared with corresponding regional controls. Data are presented as Log2 fold changes relative to
regional controls. Kruskal–Wallis test with Benjamin–Hochberg adjustment were used to identify statistical significance (p <
0.05) and a significant difference in analytes was found between the RT and the RM (black asterisks); significant difference in
analytes between patients with NE and controls in the RT (red asterisks); significant difference in analytes between patients
with NE and controls in the RM (blue asterisks).

We found that levels of the majority of cytokines and MMPs were significantly altered
in patients with NE from the RT and the RM when compared to that of the local controls
(Figure 3, red and blue stars). Levels of 46 cytokines and eight MMPs were significantly
altered in serum from patients with NE from both the RT and the RM (Figure 3, both
red and blue stars). Of these, 52 shared a similar trend in patients from both the RT and
the RM when compared with respective controls, suggesting that disease pathogenesis
and physiological responses are comparable in both regions. Levels of IL-1α, IL-2, IL-8,
IL-12(p40), IL-13, MMP10, CCL11, CCL27, CXCL1, IFNβ, LIF, M-CSF, NGFβ, SCF, and
TNFα were altered only in the RT when compared with those of controls (Figure 3; red
stars only), while IL-6, CCL7, CCL5, GM-CSF, MIF, TNFSF12, and TSLP were altered only
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in the RM NE samples compared to those of local controls (Figure 3, blue stars only).
Together, 52 out of 84 cytokines and MMPs studied possessed a similar trend in NE from
the RT and the RM suggesting that the pathogenesis of the disease in both regions shares
many similarities.

Although multiple cytokines and MMPs differ similarly compared to regional controls,
the degree of changes vary in NE from the RT and the RM. We found that levels of
30 cytokines were significantly higher in patients with NE from the RM than in those from
the RT, while 15 cytokines were lower in acute patients with NE from the RM compared to
those of patients in the RT (Figure 3A,C; black stars). In addition, we found that patients
with NE from the RT had higher levels of MMP8 than did patients with NE from the RM,
but lower levels of MMP12 and MMP13 (Figure 3B; black stars). Therefore, we suggest
that, although appearing similar, some aspects of NE pathogenesis in the RT differ from
that in the RM.

Analysis of cytokine and MMP levels in acute vs. convalescent phases of NE. Serum
cytokines and MMPs from the acute and convalescent phases of all NE were also analyzed
(Figure 4: summarized in Supplementary Materials Tables S3 and S4).

Pathogens 2021, 10, x FOR PEER REVIEW 9 of 17 
 

 

in the RM NE samples compared to those of local controls (Figure 3, blue stars only). To-
gether, 52 out of 84 cytokines and MMPs studied possessed a similar trend in NE from the 
RT and the RM suggesting that the pathogenesis of the disease in both regions shares 
many similarities. 

Although multiple cytokines and MMPs differ similarly compared to regional con-
trols, the degree of changes vary in NE from the RT and the RM. We found that levels of 
30 cytokines were significantly higher in patients with NE from the RM than in those from 
the RT, while 15 cytokines were lower in acute patients with NE from the RM compared 
to those of patients in the RT (Figure 3A,C; black stars). In addition, we found that patients 
with NE from the RT had higher levels of MMP8 than did patients with NE from the RM, 
but lower levels of MMP12 and MMP13 (Figure 3B; black stars). Therefore, we suggest 
that, although appearing similar, some aspects of NE pathogenesis in the RT differ from 
that in the RM. 

Analysis of cytokine and MMP levels in acute vs. convalescent phases of NE. Serum 
cytokines and MMPs from the acute and convalescent phases of all NE were also analyzed 
(Figure 4: summarized in Supplementary Materials Tables S3 and S4). 

 
Figure 4. Cont.



Pathogens 2021, 10, 527 10 of 17
Pathogens 2021, 10, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. Analysis of levels of cytokines and MMPs in serum of the RT and the RM in acute and 
convalescent NE cases and controls. Panel (A) represent levels of interleukins, panel (B)—MMPs 
and cytokines; (I)—level of analytes is elevated in convalescent serum as compared to regional 
control in the RM and the RT; (II)—level of analytes is lower in convalescent serum as compared 
to regional control in the RM and the RT; (III)—changes in analyte levels in convalescent serum 
differ in the RM and the RT as compared to regional control. Asterisks indicate statistically signifi-
cant differences between cytokines levels of convalescent patients and controls (p < 0.05, Kruskal–
Wallis test with Benjamini–Hochberg adjustment). 

Of the total number of cytokines and MMPs analyzed, there were 14 which were el-
evated during the acute phase of NE that returned to similar levels to controls during the 
convalescent phase (MMP1, MMP2, MMP8, MMP9, MMP12, TNFRSF8, IL-12(p70), IFN-
h1, osteopontin, IL-4, IL-7, CCL2, CCL3, and CCL4) (Supplementary Materials Tables S3 
and S4). However, we found that levels of IL-19, IL-26, sIL-6Rβ (Figure 4A), and MMP7 
(Figure 4B) remained significantly higher in convalescent patients with NE from the RT 
and the RM and did not return to the basal level of regional controls. We also identified 
interleukins (sIL-6Rα, IL-20 (Figure 4A) and sTNFR2 (Figure 4B)) that were lower in con-
valescent NE serum of both the RT and the RM compared to that of regional controls. 
Notably, IL-20 levels were elevated during the acute phase of NE in both regions but de-
creased to lower levels than that of controls during the convalescent phase (Figure 4A). 

Three interleukins (IL-1Ra, IL-2, IL-34 (Figure 4A(I)) and five cytokines and MMPs 
(IFN-h2, G-CSF, MMP13, Pentaxin-3, and sCD163 (Figure 4B(I)) were higher only in the 
convalescent phase of patients from the RT. While more analytes, nine interleukins (IL-

Figure 4. Analysis of levels of cytokines and MMPs in serum of the RT and the RM in acute and convalescent NE cases and
controls. Panel (A) represent levels of interleukins, panel (B)—MMPs and cytokines; (I)—level of analytes is elevated in
convalescent serum as compared to regional control in the RM and the RT; (II)—level of analytes is lower in convalescent
serum as compared to regional control in the RM and the RT; (III)—changes in analyte levels in convalescent serum differ in
the RM and the RT as compared to regional control. Asterisks indicate statistically significant differences between cytokines
levels of convalescent patients and controls (p < 0.05, Kruskal–Wallis test with Benjamini–Hochberg adjustment).

Of the total number of cytokines and MMPs analyzed, there were 14 which were ele-
vated during the acute phase of NE that returned to similar levels to controls during the con-
valescent phase (MMP1, MMP2, MMP8, MMP9, MMP12, TNFRSF8, IL-12(p70), IFN-h1, os-
teopontin, IL-4, IL-7, CCL2, CCL3, and CCL4) (Supplementary Materials Tables S3 and S4).
However, we found that levels of IL-19, IL-26, sIL-6Rβ (Figure 4A), and MMP7 (Figure 4B)
remained significantly higher in convalescent patients with NE from the RT and the RM
and did not return to the basal level of regional controls. We also identified interleukins
(sIL-6Rα, IL-20 (Figure 4A) and sTNFR2 (Figure 4B)) that were lower in convalescent NE
serum of both the RT and the RM compared to that of regional controls. Notably, IL-20
levels were elevated during the acute phase of NE in both regions but decreased to lower
levels than that of controls during the convalescent phase (Figure 4A).

Three interleukins (IL-1Ra, IL-2, IL-34 (Figure 4(AI)) and five cytokines and MMPs
(IFN-h2, G-CSF, MMP13, Pentaxin-3, and sCD163 (Figure 4(BI)) were higher only in the
convalescent phase of patients from the RT. While more analytes, nine interleukins (IL-2Ra,
IL-3, IL-5, IL-11, IL-15, IL-16, IL-17, IL-18, IL-27(p28) (Figure 4(AI)), and seven cytokines
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and MMPs (MMP3, CXCL9, IFNα2, NGFβ, SCGFβ, PDGFbb, and sTNFR1 (Figure 4(BI))
remained higher during the convalescent phase of patients from the RM compared to those
of regional controls.

We also identified IL-10 (Figure 4(AII)) as well as IFNβ and TNFSF13β (Figure 4(BII))
that had lower levels during convalescent phases in the RT. Interestingly levels of five
interleukins (IL-1β, IL-12(p40), IL-13, IL-22, IL-32 (Figure 4(AIII)) and six cytokines (CCL7,
Chitinase 3-like-1, MIF, TNFα, TNFSF14, and VEGF (Figure 4(BIII)) were lower during
convalescent phases in the RT, whilst corresponding samples from the RM remained higher
than regional controls.

Analysis of cytokines in male and female NE. NE/HFRS have a strong bias towards
more male patients than female patients [19,47]. However, it appears that the severity of
disease [48] and the mortality rate in the first year following recovery is higher in females
when compared to males [19]. Therefore, we sought to determine whether cytokine levels
differ in male and female patients with NE. We examined acute samples from female
and male patients from the RM and the RT to analyze serum cytokine level in each sex
group. We observed significantly increased serum levels of IL-3, IFNα2, SCF, and TRAIL
(TNFSF10) in female patients when compared to those of male patients (Figure 5).
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4. Discussion

Analysis of clinical data of patients with NE from the RM and the RT revealed that the
duration of the hospitalization period and febrile phase is longer in the RM compared to
that in the RT. This prompted our investigation of orthohantavirus strains associated with
NE in these regions. Many clinics throughout Russia use standard operating procedures
(SOPs) for the treatment of patients presenting with HFRS or NE, suggesting that the
differences in clinical presentation is not due to differences in treatment methods between
regions [49]. Orthohantavirus RNA in serum samples was analyzed using PCR primers
for PUUV, DOBV, TULV; however, PCR products were only generated when using PUUV
primers. Therefore, these data suggest that PUUV is the main causative agent of NE in the
RM and the RT and suggest that PUUV lineage-related differences are not the dominant
factor contributing to the differences in clinical presentation of NE. Therefore, we conclude
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that extended hospitalization and prolonged febrile phase in patients with NE in the RM
compared to that in the RT is more likely due to local reactivity to orthohantavirus infection
and is unrelated to PUUV lineage. To test this hypothesis, we observed differential levels
of several serum cytokines in controls from the RM and the RT. This observation suggests
that the immune reactivity of the local population in general differs between the RM and
the RT regions even in the absence of PUUV infection. Multiple factors could affect the
levels of serum cytokines and MMPs, including regional dietary preferences, lifestyle, and
environmental factors.

Hantavirus pathogenesis can be explained by the “cytokine storm” hypothesis, where
clinical symptoms are the result of overproduction of proinflammatory cytokines [22,50,51].
Therefore, we sought to determine whether expression of serum cytokines in patients with
NE differed between regions of the RT and the RM. NE cases from both the RM and the RT
were characterized by upregulation of proinflammatory cytokines, as similarly reported
in previous studies [31,32]. However, it appears that the magnitude of upregulation
of several cytokines was higher in patients with NE from the RM compared to that of
patients with NE from the RT. The most striking observation was an upregulation of
several MMPs in the serum of patients with NE from the RT and the RM compared
to that of local controls. MMP7, 8, 9, 12, and 13 are tightly regulated and prolonged
periods of elevated MMP levels in serum can lead to increased immunopathology and
prolonged clinical presentation [52,53]. Our data also demonstrate the upregulation of
MMP9 in NE cases from the RT and the RM. Interestingly, studies have shown that Th1
lymphocytes producing MMP9 have higher migratory capacities in comparison to that of
Th2 lymphocytes [54], suggesting that this MMP could contribute to the role of leukocyte
subsets in the pathogenesis of NE. Hence, MMPs may contribute to the pathogenesis of NE
in the RM and the RT [55].

We found increased levels of several cytokines in the sera of patients with NE from
the RM compared to that of patients with NE from the RT. For example, we have found
that several chemokines such as CCL2, CCL3, and CCL4 were higher in patients with NE
from the RT compared to that of patients with NE from the RM. In addition, cytokines with
strong inflammatory activity, IL-1α and IL-1β, were higher in patients with NE from the
RM compared to that of patients with NE from the RT. In contrast, anti-viral IFNα2 and
IFNβ were higher in patients with NE from the RT compared to that of patients with NE
from the RM, but that the period of hospitalization and duration of fever of patients with
NE was shorter in the RT when compared to that of the RM. These IFNs play a critical and
central role in the innate immune response to viral infection [56]. These data suggest the
possible connection between higher IFN production and milder clinical symptoms in NE.

Amongst the upregulated interleukins, the following families could be identified:
the IL-1 (IL-1β and IL-18), common γ chain cytokine (IL-2, IL-2Ra, IL-4, IL-7 and IL-9),
IL-10 (IL-26), and IL-12 (IL-12p70, IL-12p40, IL-27p28). The IL-1β and IL-18, members of
the IL-1 family, have strong pro-inflammatory functions, responsible for many symptoms
of inflammation [57–59]. A combined effect of the IL-1 and IL-12 families of cytokines
could support proliferation of Th1 lymphocytes [60], thereby playing a role in antiviral
defense [61]. In addition to Th1 lymphocytes, activation of Th2 immune responses is also
evident in Patients with NE from the RM, where increased levels of IL-4, IL-5, and IL-9
are detected [62]. Strong evidence supporting the activation of NK cells in the RM NE is
demonstrated by increased serum levels of IL-3, IL-5, and IL-9 [63]. These data suggest
that enhanced inflammatory responses and higher activation of Th1 and Th2 types of
the immune response combined with NK activation contribute to differences in clinical
presentation of NE in the RM in comparison to that in the RT.

Interestingly, the level of IFN-γ in the sera of patients with NE was higher in the RM
when compared to that in the RT. IFN-γ is produced only by limited subset of leukocytes,
such as activated CD8+ T lymphocytes, γδT cells, and natural killer (NK) cells [55,64,65],
thus contributing to sustained paracrine and autocrine activation [66]. Under physiological
conditions, IFN-γ contributes to leukocyte function, control of cell proliferation, apoptosis,
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and cytokine secretion [67–69]. However, in a “cytokine storm” environment, IFN-γ could
synergize with pro-inflammatory cytokines, triggering cell death, tissue damage, and
fatal cytokine shock [70,71]. We suggest that higher level of IFN-γ in the RM NE could
contribute to differences in the clinical presentation of the disease in these two regions of
the Russian Federation.

An increased serum level of IL-3, IFNα2, SCF, and TRAIL (TNFSF10) in patients with
NE was found in females when compared to that of males. IL-3 and SCF contribute to
proliferation and differentiation of stem cells, suggesting that proliferation of progenitors
in patients with NE is more pronounced in females when compared to males [72,73]. Inter-
estingly, in females these “proliferation promoting” cytokines were upregulated together
with TRAIL. TRAIL is pro-apoptotic cytokine [74] that can be induced by IFNα [75] and
is also found to be upregulated in females with NE when compared to males with NE. It
has been suggested that TRAIL induction by virus infection could lead to apoptosis of
infected cells [76]. We therefore propose that a faster clearance of virus occurs in females
compared to that of males but highlight that the protective role of TRAIL could lead to
enhanced cell death and tissue damage. Further studies will help to determine the role of
TRAIL in higher severity [48] and mortality rates in the first year after recovery in females
versus males [19].

In conclusion, we have shown that NE cases in the RT and the RM are associated with
PUUV infection. Clinical symptoms of NE in both locations were similar; however, the
hospitalization and duration of the febrile phase was longer in patients with NE from the
RM than those from the RT. We have shown elevated levels of several serum cytokines,
chemokines, and MMPs in patients with NE from the RT and the RM, thus contributing
to the cytokine storm hypothesis of NE pathogenesis and suggesting the occurrence of
leukocyte activation, extracellular matrix degradation, and leukocyte chemotaxis. However,
several cytokines were differentially expressed in NE serum between the two regions, which
may contribute to differences in the clinical presentation of NE between the two regions.
These differences are not related to the genetic variation of orthohantaviruses circulating
in those regions as only the RUS lineage of PUUV was detected. Therefore, we conclude
that demonstrated differences in serum cytokine levels between patients with NE from the
RT and those of the RM are related to individual host immune responses to infection and
hypothesize that these responses are influenced by multiple regional, environmental, and
host factors. Identification of these factors could lead to improved and more personalized
management protocols for patients with NE.
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