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influence gene expression
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In brief

Milevskiy et al. investigate the epigenetic

states of three epithelial lineages and two

stem cell populations in the mouse

mammary gland. Each epithelial cell type

utilizes distinct epigenetic mechanisms

to govern cell-specific expression: basal

promoters display lineage activation;

luminal promoters are promiscuous and

rely on intricate chromatin looping

patterns to achieve lineage specification.
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SUMMARY
Although lineage-specific genes have been identified in the mammary gland, little is known about the contri-
bution of the 3D genome organization to gene regulation in the epithelium. Here, we describe the chromatin
landscape of the three major epithelial subsets through integration of long- and short-range chromatin inter-
actions, accessibility, histone modifications, and gene expression. While basal genes display exquisite line-
age specificity via distal enhancers, luminal-specific genes show widespread promoter priming in basal cells.
Cell specificity in luminal progenitors is largelymediated through extensive chromatin interactionswith super-
enhancers in gene-body regions in addition to interactions with polycomb silencer elements. Moreover, line-
age-specific transcription factors appear to be controlled through cell-specific chromatin interactivity. Finally,
chromatin accessibility rather than interactivity emerged as a defining feature of the activation of quiescent
basal stem cells. This work provides a comprehensive resource for understanding the role of higher-order
chromatin interactions in cell-fate specification and differentiation in the adult mouse mammary gland.
INTRODUCTION

Chromatin structure is fundamental to the transcriptional control

of genes that dictate lineage commitment and differentiation,

enabling specific interactions between promoters, enhancers,

and other cis-regulatory elements (CREs) to regulate transcrip-

tion.1,2 Genome structure exhibits a hierarchical organization of

multiscale structural units ranging from chromosome territories

to active (A) and inactive (B) compartments to topological-asso-

ciated domains (TADs) to enhancer-promoter chromatin

loops.3–5 Gene promoter and CRE activities are coordinately

regulated at the epigenetic level through methylation, acetyla-

tion, and/or ubiquitination of histones at varying lysine resi-

dues.6,7 Silencer elements have only recently come into focus,

with polycomb complexes implicated in controlling their activity

via chromatin looping.8,9 Both enhancers and silencers play key

roles in development, and alterations in either element can lead

to aberrant reprogramming of cells and pathogenic states.10,11
C
This is an open access article under the CC BY-N
The mammary gland is composed of an epithelial ductal

tree that undergoes dramatic morphogenesis across the

different developmental phases.12 Structurally, each duct

comprises an inner layer of luminal cells and an outer layer

of elongated, contractile myoepithelial (basal) cells. In the

steady-state adult gland, there are three major cell types:

basal, luminal progenitor (LP), and hormone-sensing (HS)/

mature luminal (ML) cells. The basal compartment is enriched

for cells with mammary repopulating capacity defined through

in vivo transplantation studies, including a small subset of

deeply quiescent mammary stem cells (MaSCs).13,14 The

luminal compartment is composed of two lineages, which

are primarily distinguished by their hormone receptor (HR) sta-

tus. The LP pool predominantly contains HR-negative progen-

itors for the alveolar lineage but also a small population of HR-

positive cells.15,16 HS/ML cells constitute the dominant

luminal cell type in the homeostatic mammary gland and are

enriched for HR-positive cells.
ell Genomics 3, 100424, November 8, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:visvader@wehi.edu.au
https://doi.org/10.1016/j.xgen.2023.100424
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2023.100424&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C D

F

E

G

(legend on next page)

2 Cell Genomics 3, 100424, November 8, 2023

Resource
ll

OPEN ACCESS



Resource
ll

OPEN ACCESS
Anumber of studies have investigated the gene expression pro-

files, DNA methylation, and histone epigenomes of the different

mouse mammary epithelial subsets, leading to the definition of

lineage-specific genes.17–21 Chromatin accessibility assays have

uncoveredmixed-lineage chromatin accessibility in fetal and adult

basal cells.19,22–25 In human breast epithelial cells, luminal

enhancer elements can be pre-marked in basal cells.26,27 The

most well-characterized mammary CRE is the super-enhancer

associatedwith themousewheyacidicprotein (Wap) gene, pertur-

bationofwhich results in reduced interactions anddecreasedWap

expression during pregnancy.28,29 Fundamental questions remain

about the nature and repertoire of promoter and enhancer states

that operate in the adult mammary gland and the role of chromatin

interactivity in instructing lineage commitment. In this report, we

systematically characterize the epigenetic statesof three epithelial

lineages in themousemammaryglandaswell as thequiescentand

activated basal populations through the integration of genome-

wide chromatin interaction, chromatin accessibility, histonemodi-

fication, and gene expression data. Remarkably, each epithelial

lineage was found to utilize distinct epigenetic mechanisms to

govern cell-specific gene expression. This epigenomic atlas pro-

vides a resource for understanding the role of higher-order chro-

matin interactions in dictating cell-fate specification and differenti-

ation in themammary gland and for uncovering novel transcription

factors (TFs) implicated in these processes.

RESULTS

Generation of an epigenetic atlas of murine mammary
epithelial cells
To further explore gene regulation in the mammary gland, we

have generated an extensive epigenetic atlas for mammary

epithelial cells (MECs) that includes lineage-negative basal

(CD29hiCD24+), LP (CD61+CD29loCD24+), and ML/HS (hereafter

termed ML; CD61�CD29loCD24+) cellular populations sorted

from 9-week adult female mice, in addition to quiescent

(Tspan8+CD29hiCD24+) and activated ‘‘stem cells’’ (Tspan8�

CD29hiCD24+) in the basal compartment14 (Figures 1A and

S1A). The atlas encompasses chromatin interaction analysis

for both short- (NG Capture-C)30 and long-range interactions

(Omni-C), chromatin accessibility analysis via assay with trans-

posase-accessible chromatin with sequencing (ATAC-seq),31

and RNA sequencing (RNA-seq; Figure 1B), together with the

mapping of nine histone marks and RNA polymerase II (Pol II)

via cleavage under targets and tagmentation (CUT&Tag)32 (Fig-

ure S1B; Table S1). The following chromatin modifications

were determined by CUT&Tag sequencing: H2AK119ub (poly-
Figure 1. Chromatin modifications display lineage-specific associatio

(A) Experimental design for the mammary epithelial epigenetic atlas encompa

(activated) basal cells.

(B) Multidimensional scaling (MDS) plot of RNA-seq data.

(C) Pearson correlation coefficients (p) for each epigenetic mark measured by C

(D) Heatmap of chromatin changes for DEGs between cell types for ATAC-seq a

(E) Coverage track plots for ATAC-seq and CUT&Tag at gene promoters.

(F) Heatmap showing the percentage of regions that display significant differentia

cell types (FDR < 0.05).

(G) Bar plot showing TSSs considered to be primed or active across DEGs. See
comb repressive complex 1 mark; PRC1), H3K4me1 (enhancer

marking), H3K4me3 (promoter marking), H3K9ac (active pro-

moters), H3K9me2 (heterochromatin), H3K9me3 (repeat ele-

ments and heterochromatin), H3K27ac (active regulatory ele-

ments), H3K27me3 (PRC2), and H3K36me3 (polymerase

elongation). Different datasets were subjected to a range of dif-

ferential analyseswith pairwise comparisons and then integrated

for chromatin-state modeling and TF networking.

Promoter regions display unique chromatin patterns in
the three major mammary epithelial cell types
Correlation of gene expression, accessibility, and histone modi-

fication data was performed for each cell population (Figures 1C

and S1C). For most epigenetic marks, except for H3K9me2/3,

there was a clear increase in correlation with gene expression

in both luminal populations, and as anticipated, the PRC1/2 his-

tone modifications displayed an increased negative correlation

with expression, consistent with previous findings.17,21,26 The

associations between promoter epigenetic modifications and

gene expression in luminal cells were particularly evident when

examining differentially expressed genes (DEGs) between pair-

wise comparisons (Figures 1D and S1D; Table S2). For DEGs en-

riched in basal cells, there were increases in active marks,

including RNA Pol II, H3K27ac, H3K4me3, and H3K9ac,

compared with luminal cells, as well as increased chromatin

accessibility, and a decrease in the repressive marks

H2AK119ub and H3K27me3 (Figure 1E). For genes enriched in

LP compared with basal cells, there was no increase in chro-

matin accessibility at the transcription start site (TSS) in the LP

population (Figure 1D); rather, nucleosome-free regions (NFRs)

were decreased across the LP epigenome (Figures S1E and

S1F). The LP gene NFRs appear to be established in basal cells

prior to increased gene expression in the LP population (Fig-

ure S1G). Active marks (RNA Pol II, H3K4me3, H3K9ac, and

H3K27ac) increased across some luminal gene promoters in

both luminal subsets, such as forCd14, Foxi1, andWnt4; howev-

er, a number of genes exhibited similar activity at their promoter

across all three cell types, e.g., Hey1 and Prom1 (Figure 1E).

Interestingly, H3K27me3 associated more with gene repression

than H2AK119ub (Figure S1D); however, many luminal genes ex-

hibited minimal changes in both marks upon comparison of

basal and luminal populations (e.g., Cd14, Foxi1, Hey1, Prom1,

and Wnt4) (Figure 1E).

The genome-wide changes in chromatin modifications, tran-

scriptional activity, and accessibility were next examined by de

novo detection of differential regions (Figure 1F; Table S3),33 con-

firming that highly dynamic changes primarily occur at basal gene
ns with gene expression

ssing basal, LP, and ML cells as well as Tspan8+ (quiescent) and Tspan8�

UT&Tag and ATAC-seq versus RNA expression.

nd CUT&Tag (reads per kilobase per million [RPKM], log2) data.

l logFC (>0 up/<0 down) for ATAC-seq and CUT&Tag marks between the three

also Figures S1 and S2; Tables S1, S2, and S3.
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promoters (Figures S1H and S2A). Chromatin accessibility was

found to be dynamic between the basal and the luminal lineages

across a large portion of the genome, as were H3K27me3,

H3K36me3, H3K4me1, and H3K9me3 marks. Not surprisingly,

H3K36me3 displayed large differences between luminal popula-

tions, as this ‘‘elongation mark’’ was associated with the gene

bodies of most DEGs (71% of ‘‘up’’ genes in LP and 65% of up

genes in ML cells) (e.g., Esr1, Fxyd2, Prom1, Pgr, Pinc, and

Hey1). H2AK119ub was found at most sites marked by

H3K27me3; however, H3K27me3 displayed a greater number of

differential regions particularly between the basal and the luminal

populations (Figure 1F). Recent reports suggest that PRC1 has

functions independent of PRC2-mediated gene repression.34,35

We found several regions of discordance between these poly-

comb marks exemplified by Acaa1b, Ankrd53, Cdk6, Fgfr3, and

Mmp17, suggesting that differential regulation by PRC1 versus

2 occurs in a subset of genes in MECs (Figures 1F and S2B;

Table S3). Collectively, these data indicate that the promoter re-

gions of genes highly expressed in luminal cells are often active

and primed in the basal population (34% up genes in LP and

32% up genes in ML). Conversely, most genes enriched in the

basal population have repressed or silent promoter regions in

luminal cells (�83% up genes in basal cells) (Figure 1G).

Chromatin looping and compartmental changes
influence lineage-restricted gene expression
To explore 3D genome architecture in the different lineages, we

performed Omni-C (Figures S2C and S2D), which measures the

interaction frequency of all loci with all other loci in the genome.

Differential interaction (DI) analysis based on the diffHic36 pipe-

line was used to partition the genome into 50-kb bins and to

count the number of read pairs mapping to each pair of bins

(an interaction) (Figure 2A). We found more than 30,000 signifi-

cant DIs between basal, LP, and ML cells (false discovery rate

[FDR] < 0.1) (Figure 2B; Table S4) that positively correlated

with DEGs (Figure 2C). Evaluation of the top DIs based on signif-

icance revealed several loci that displayedmarked differences in

interactivity, including a cluster of collagen genes (Col6a1,

Col6a2, and Col18a1) in basal cells, Dock8 in LP cells, and

Plac8, Kcnj11, and Abcc8 in ML cells (Figures 2D and S2E).

We next determined the percentage of the genome classified

into active (A) or inactive (B) chromatin compartments (Fig-

ure S2F). Compartments were altered in�6%of the genome be-

tween basal and luminal populations, while remaining stable be-
Figure 2. Chromatin looping dictates lineage-specific gene expression

(A) MDS plot of the Omni-C data for the basal, LP, and ML cells.

(B) Number of DIs for pairwise comparisons.

(C) Fold change (log2) of DIs overlapping DEGs for pairwise comparisons.

(D) Normalized contact matrices of the top clustered DIs between basal, LP, and M

are DI Z scores (�log10 p values). Triangles indicate loci of significant change.

(E) Percentage of genome undergoing a compartment strength change between

(F) Normalized contact matrices of Omni-C data at 20 kb resolution of the Snai2 a

the Snai2/Kit TSSs. Arcs are as in (E). Red, increasing logFC in basal cells; blue,

(G) Compartment strength (PC1 eigenvalues) and gene expression across the Sn

(H) Expression of genes located within A and B compartments.

(I) Expression of DEGs within compartments that are altered in strength for pairwis

that go from A to weak-A/B is shown, demonstrating positive enrichment of expre

determined using two-tailed t tests with Welch’s corrections: *p < 0.05, ****p < 0
tween LP andML cells (<0.7%altered) (Figure 2E; Table S5). Two

regions of significant compartment switching encompassed the

Snai2 (basal specific) and Kit genes (LP specific) (Figure 2F). The

Kit locus displayed increased chromatin looping in LP cells

(indicative of an A compartment) compared with basal cells,

which had significantly reduced chromatin contacts, character-

istic of B compartments. Snai2 displayed the reverse pattern

compared with Kit, with enrichment of interactions in basal cells

relative to LP cells. Analysis of genes located within compart-

ments that differed between cell populations demonstrated

that >75% show increased expression when their chromatin re-

gion changed from a B to an A compartment or when the A

compartment showed an increase in interactivity (Figure S2G),

as apparent for the Snai2 and Kit loci (Figure 2G). As expected,

gene expression was higher in A versus B compartments (Fig-

ure 2H). Interestingly, gene expression was significantly higher

for genes in B compartments in basal cells compared with those

in B compartments for luminal cells (Figure 2H). In altered com-

partments, there was stronger gene repression from the basal to

the luminal populations (basal A to luminal weak-A or B compart-

ment) (Figure 2I). While B compartments exhibited reduced

gene expression, these data raise the possibility that gene

expression in basal cells is less reliant on chromatin interactions

and compartment strength compared with the luminal lineages.

As expected, all active chromatin marks were higher in A than

B compartments, whereas the heterochromatin mark H3K9me2

was enriched in B compartments (Figure S2H). Interestingly,

H2AK119ub, but not H3K27me3, was higher in A compartments.

H3K4me1, H3K36me3, H3K4me3, and H3K27me3 correlated

with changes in compartment strength between cell compari-

sons (Figure S2I). Surprisingly, we saw little correlation between

compartment switching, chromatin accessibility, and H3K9ac,

suggesting that these epigenetic features may be regulated in-

dependent of chromatin interactivity. Collectively, these data

indicate that major changes in genome architecture and epige-

netic modifications distinguish the basal versus luminal lineages,

accompanied by alterations in gene expression. Genome archi-

tecture, however, was largely unchanged between LP and ML

cells despite dynamic changes in epigenetic marks.

Super-enhancers frequently interact with luminal
progenitor genes
To further examine lineage-restricted differences in chromatin

interactions at high resolution, we employed Capture-C.30 This
in the adult mammary gland

L cell comparisons. The Omni-C bin pairs are plotted at 20-kb resolution; arcs

cell populations.

nd Kit loci in basal and LP cells with corresponding Capture-C reads (CPM) for

increasing logFC in LP cells with A/B compartments indicated.

ai2 and Kit loci. The mean and standard deviation are plotted.

e comparisons of basal, LP, and ML cells. The differential expression of genes

ssion for genes in the A compartments in each comparison. The p values were

.0001. See also Figure S2; Tables S4 and S5.
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enabled mapping of short-range interactions involving the TSSs

of 18 genes, which were mainly lineage-restricted TFs

(Figures S3A and S3B). Capture-C and Omni-C data displayed

high concordance, as illustrated by Cited1 and Foxa1, which

show increased interactivity between their promoter regions

and distal sites in ML cells (Figures 3A and S3C). A number of

genes displayed increases in TSS connectivity between cell

types that positively correlated with expression (DNp63, Snai2,

Kit, andMsx2) (Figure 3B). LP gene TSSs were the most interac-

tive with their surrounding chromatin (Figures 3B and S3D). This

increased TSS interactivity suggests the involvement of super-

enhancers (SEs), as they have previously been shown to interact

more frequently than typical enhancers (TEs).37,38

To identify potential SEs, we applied the ROSE algorithm39 to

the H3K27ac data and ranked regions based on read density

(Figure 3C). SEs were identified for a number of lineage-specific

genes derived from signature analysis (35% of basal genes, e.g.,

Trp63,Col16a1, andMyh11; 42% of LP genes, e.g.,Notch1, Ehf,

Kit, and Elf5; 33%ofML genes, e.g., Esr1, Foxa1, andPrlr). Over-

all, 444, 174, and 170 SEs were unique to the basal, LP, and ML

populations, respectively. Basal cells comprised the most

enhancer regions (either TEs or SEs), and surprisingly, LP cells

displayed �40% fewer TEs and �20% fewer SEs. However,

an increased proportion of SEs (11%) were unique to LP cells

compared with TEs (6%) (Figure S3E). Relative to TEs, SEs

were associated with genes showing increased expression (Fig-

ure 3D) and TSS-SE interactions, with SEs in LP cells showing

the highest TSS-SE interactivity (Figures 3E and S3F). In

conjunction, SEs in LP cells showed increased H3K27ac

compared with basal SEs (Figures 3F and S3G) and spanned

shorter distances compared with SEs in either basal or ML cells

(Figure S2H).

To determine whether increased interactivity in LP cells asso-

ciatedwith the span of TSS-distal regions, we performed a differ-

ential analysis based on the Capture-C data (capture DIs [cDIs])

(Table S6). Both luminal populations displayed an enrichment for

cDIs with a smaller span compared with basal cells (cDIs span-

ning <200 kb: �27% of basal up genes, �48% of LP up genes,

and �35% of ML up genes) (Figure 3G). Indeed, the genome-

wide Omni-C data showed a similar pattern, with enrichment

of interactions spanning 5–100 kb in luminal cells, while those

spanning >500 kb were highest in the basal population

(Table S1). When examining the Capture-C signals for genes
Figure 3. LP genes are highly interconnected to intragenic super-enha
(A) Normalized contactmatrices of theOmni-C data at 20 kb resolution andCaptur

to the TSSs in ML cells.

(B) Normalized Capture-C reads of the 18 selected genes.

(C) Identification of SEs and TEs in MECs. Examples of SEs associated with line

(D) Expression of genes associated with either TE or SEs. Fold change expressio

(E) The number of interactions, as determined by FitHiChIP, connecting genes to

(F) SE acetylation, shown as the percentage of the pooled biological replicate co

(G) The distance of cDI regions for pairwise comparison between basal, LP, and

(H) Coverage track plots of gene bodies showing Capture-C (CPM) (500-bp slidin

TSS to gene body interactivity.

(I) In silico 5C analysis of Omni-C data of DEGs.

(J) In silico 4C analysis, measuring TSS-to-intergenic regions (left) and TSS-to-g

tests withWelch’s correction (D, E, F, andG) or paired two-tailed t tests (I and J): n

median, quartiles, and 5th and 95th percentiles. See also Figure S3; Table S6.
>30 kb in length (9/18 capture genes), we observed highly signif-

icant (FDR < 0.05) intragenic cDIs for five genes, Trp63 and Tcf7

in basal cells, and Elf5, Ehf, and Kit in LP cells, with overlapping

intragenic SE sites (Figure 3H; Table S6). Interestingly, when

extended to all lineage-specific TFs, we observed that 45% of

LP TFs contained SEs across their gene bodies compared with

25% of basal and 17% of ML TFs, suggesting that high TSS in-

teractivity relates to short-range interactions with SEs within

gene bodies.

To examine TSS interactivity on a genome-wide scale, we per-

formed in silico 4C and 5C analysis on the unbiased Omni-C li-

braries (Figure S3I). These global and unbiased analyses re-

vealed that LP cells are more enriched for TSS-intragenic and

TSS-intergenic interactions compared with basal and ML cells

(Figures S3J). When assessing DEGs, we observed an associa-

tion between expression, gene-body connections (Figure 3I),

and intragenic and intergenic connectivity in all comparisons

performed (Figure 3J), and these correlated with differences in

the number of DE genes connected to an SE (Figure S3K). These

genome-wide data confirm findings from Capture-C experi-

ments that LP TSSs are more interactive than basal or ML pro-

moter regions. Moreover, the data suggest that short-range in-

teractions, especially those from TSSs to gene bodies, are

more frequent in LP cells despite widespread SE involvement

across the different cell types.

Chromatin looping determines transcriptional start-site
usage
Alternative TSS usage from the canonical TSS provides an addi-

tional regulatory mechanism for cell-specific expression. We

therefore investigated whether alternative promoter usage dis-

plays lineage specificity and associates with differential

enhancer activation in MECs. To explore ‘‘on’’ or ‘‘off’’ TSSs,

we identified TSSs that have little or no RNA expressed in any

epithelial subset (e.g., TAp63, ‘‘off’’ 12,817 TSSs) and those

where the TSS was expressed in at least one cell type (e.g.,

DNp63, ‘‘on’’ 16,945 TSSs) (Figure 4A). Trp63, encoding a key

basal-restricted TF required for mammary gland develop-

ment,40,41 has two known TSSs that produce the longer TAp63

(not expressed in MECs) and shorter DNp63 (basal-enriched)

isoforms (Figures 4B and S4A). The DNp63 isoform interacts

extensively with a basal SE within its gene body and another

within the Tprg gene, which is a transcriptional target of p63.42
ncers
e-C reads (CPM) for theCited1 and Foxa1 loci. Arrows indicate sites connected

age-enriched genes are highlighted.

n between TE and SE is indicated.

a TE or SE.

unts.

ML cells.

g windows), CUT&Tag (RPKM), and SEs. Arrows highlight significant regions of

ene-body interactions (right). The p values were determined using two-tailed t

.s., not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Boxes show

Cell Genomics 3, 100424, November 8, 2023 7
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Many genes showed a similar pattern to Trp63 with one ‘‘off’’

TSS and one or more ‘‘on’’ TSSs, including Elf5, Grhl1, Runx1,

andCd36. TSS to gene-body chromatin interactions were higher

for ‘‘on’’ TSSs, as were typical promoter activation marks

(Figures 4A and S4B). Interestingly, intragenic interactions ap-

peared to be dependent on the position of the alternative TSS

within the gene body, with those at the 50 end being the least

interactive (Figure 4C). These data indicate that the ‘‘on’’ state

of a TSS is associated with increased chromatin interactivity in

conjunction with increased active histone marks, compared

with those TSSs switched ‘‘off.’’

To identify differentially expressed alternative TSSs

(DEATSSs), we determined differentially expressed TSSs

(DETSSs) across lineages and thenmeasured intragene variation

between alternative TSSs (DEATSSs) (Figure S4C). We identified

196 DEATSSs between basal and LP cells: 237 for basal versus

ML cells, and 102 for LP versus ML cells (Figure 4D; Table S7).

For example, Eya2 and Lrrfip1 displayed DEATSS usage be-

tween the basal and the luminal lineages (Figures S4A and S4D).

The TF Foxp1, which is critical for the activation of MaSCs,43 is

translated as two major isoforms (A and D) that originate from

DEATSSs. Foxp1-D is strongly enriched in basal cells, while

Foxp1-A occurs at similar levels across the three populations

(Figure 4E). Expression of the Foxp1-A and -D mRNAs parallels

these findings (Figure 4F). Interestingly, the Foxp1-D TSS inter-

acted more frequently with three intragenic SE regions and the

Foxp1-A TSS in basal relative to luminal cells (Figure 4G).

Notably, interactions within the gene body of Foxp1 and those

specifically involving Foxp1 TSSs were higher in basal than in

luminal cells (Figures 4H and 4I). Given these lineage-specific

chromatin interactions with SEs and the critical function of

Foxp1, the role of Foxp1-D in mammary gland development war-

rants further attention.

Chromatin modeling reveals dynamic changes in
enhancer and promoter states in mammary epithelial
cells
To decipher the contributions of different histone modifica-

tions to chromatin states, we integrated the CUT&Tag and

ATAC-seq datasets and utilized ChromHMM44 to model

genome-wide chromatin states (Figure 5A). With 12 input da-

tasets, we produced a 24-state model comprising five pro-

moter (TSS), six enhancer (Enh), two transcription (Tx), three

polycomb (PRC), three quiescent/silent (Quies), and five het-
Figure 4. Super-enhancer interactivity determines Trp63 and Foxp1 iso

(A) Expression and connectivity of TSSs identified as ‘‘off’’ or ‘‘on.’’ t test withWelc

quartiles, and 5th and 95th percentiles.

(B) Coverage track plot of the Trp63 locus. Shown are the isoforms, alternative TSS

interactions between the TSSs and the distal regions.

(C) Heatmaps of expression and chromatin connectivity for TSSs based on their

(D) Heatmap of DEATSS expression with examples indicated.

(E) Western blot for Foxp1 expression. Histone 3 (H3) was used as a loading con

(F) Foxp1 TSS expression, annotated as genomic coordinates.

(G) Chromatin state of the Foxp1 locus. Shown are the isoforms, SEs, in silico 4C

Omni-C interactions called by FitHiChIP.

(H) Foxp1 gene-body (GB) connectivity determined by in silico 5C analysis.

(I) Foxp1 chromatin interactivity between the alternative TSSs and the GB determin

(GRCm38). The p values were determined using one-way ANOVA: ***p < 0.001,
erochromatin and repeat element states (Het) (Figures S5A

and S5B). An increased percentage of the genome in basal

cells was covered by active promoter states 1 and 3 (Fig-

ure 5B), concordant with widespread promoter priming

evident in these cells. Consistent with the Capture-C analysis,

intragenic enhancers (Enh_A_G, state 6) were most abundant

in LP cells. Regions covered by H2AK119ub (primed and

PRC1/2 states 10, 14, and 16) also appeared more abundant

in LP cells, while bivalent promoters (state 5) increased from

basal to LP to ML cells. Moreover, the five promoter (1–5)

and three polycomb states (14–16) differentially associated

with transcriptional activity, with state 1 reflecting the most

highly expressed genes and states 14 and 15 (promoters

covered by PRC1/2 and PRC2) associated with the lowest ex-

pressed genes (Figure 5C). Interestingly, genes marked by

bivalent or polycomb-repressed chromatin appeared to have

higher expression in basal cells compared with those similarly

marked in LP or ML cells. To explore this further, we devised a

summary score of TSS and CRE activity based on our

ChromHMM modeling and chromatin looping, enabling a hier-

archical clustering of DEGs by their scores and gene expres-

sion (Figure 5D). Cluster C2 highlights a number of genes

(e.g., Tbx21, Tcf24) that are marked with bivalent or poly-

comb-enriched chromatin across all cell types but are signif-

icantly upregulated in basal cells (Figure S5C).

To explore chromatin state similarities between MECs, we

examined Jaccard values and Sankey transition plots

(Figures 5E and S5D). State 1 active promoters and intragenic

enhancers (state 6) were the most stable between cell types,

while the weaker promoters (states 2 and 3), weaker enhancers

(state 8), and active intergenic enhancers (state 7) were the most

dynamic regulatory elements (Figure 5E). Most active enhancers

(states 6 and 7) exhibited de novo formation from silent to active

chromatin (Figure 5F). Active enhancers in luminal cells were

more likely to be weak/marked enhancers (state 8, 20%) in basal

cells, whereas active enhancers in basal cells were more often

marked by polycomb in luminal cells (16% state 10 and 21%

states 14–16). Enhancer marking in LP cells for activation in

ML cells (e.g., enhancers of Cldn6, Fxyd2, Wnt4, Mgat5, and

Fzd10) was slightly less prevalent (25%–34%) than de novo for-

mation of active enhancers in ML cells (38%–40%) (e.g., Foxa1,

Prom1, Syt17, Fxyd2). These observations indicate that basal

cells are more likely to mark enhancers without repressive poly-

combmodifications, while luminal cells utilize polycomb-marked
form expression

h’s correction for ‘‘off’’ versus ‘‘on’’ TSSs. ****p < 0.0001. Boxes showsmedian,

s, in silico 4C forDNp63 and TAp63 TSSs (CCPM), CUT&Tag (RPKM), SEs, and

position within the gene.

trol.

(CCPM) for Foxp1-A and Foxp1-D TSSs, coverage (RPKM) for CUT&Tag, and

ed by in silico 4C analysis. Genome coordinates are fromMusmusculusmm10

****p < 0.0001. See also Figure S4; Table S7.
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chromatin to either repress enhancers or prime them for

activation.

Little concordance was observed between PRC1- and PRC2-

marked chromatin, as PRC1 states (states 10 and 16) were more

dynamic between cell populations compared with those defined

by PRC2 (states 5, 14, and 15) (Figures 5E and S5D). Despite the

strong genome-wide correlation between H3K27me3 and

H2AK119ub, we observed a reduced correlation in basal cells

at regions where PRC2 was highest (state 5, bivalent promoters,

and state 14, PRC1/2) (Figure S5E). Thus, PRC1 may not be

required for all bivalent and polycomb-repressed regions in

basal cells but may be more critical for repression in luminal cells

(Figure 1C). Furthermore, we observed more polycomb-marked

enhancers in luminal cells that were active in basal cells,

compared with the reverse (Figure 5F).

State 10, which exhibits increased H2AK119ub over

H3K27me3, appears to represent a ‘‘primed’’ enhancer state,

and active basal enhancers were more likely to be primed rather

than weak/marked in luminal cells (Figure 5F). Interestingly,

these primed regions were more enriched for CpG islands than

active enhancers, consistent with the known link between DNA

methylation and polycomb repression (Figures S5A and S5F).

We speculated that these regions may become active during

pregnancy, as LP cells comprise precursors for the alveolar line-

age. To assess gene changes in LP cells during pregnancy, we

assessed the expression of marker genes for the LP-alveolar

lineage cluster from our single-cell RNA-seq dataset spanning

adult, early and late pregnancy, lactation, and involution (cluster

1 in the pregnancy cycle).25 We reclustered the marker genes

and overlaid the ChromHMM TSS and CRE states onto the

four subclusters formed (Figure 5G). Genes that were upregu-

lated in pregnancy, such as Wap, Wfdc18, and Litaf (sub-clus-

ters C1, C2, and C3), displayed increased chromatin contacts

with primed enhancers and polycomb-repressed regions (Fig-

ure S5G). The previously identified Wap SE region28 was

found to be marked by H2AK119ub in luminal cells, with

enhancer 1 (proximal to theWap TSS and the first to be activated

during pregnancy) exhibiting state 10 chromatin marked by
Figure 5. Chromatin state modeling reveals differential usage of enha

eages

(A) Epigenomes of epithelial subsets modeled as 24 chromatin states with Chrom

chromatin marks and IgG (control) across each state, with annotations listed on t

Prm, primed; Wk, weak.

(B) Genomic overlap of ChromHMM states across MECs.

(C) Expression of genes with a defined TSS, states 1–5, and polycomb states 14–1

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(D) Hierarchical clustering of DEGs by expression, TSS, and enhancer score. Sho

differential expression log2 FC (DE), TSS score (TS), CRE score (CS), expressio

teractions as determined by FitHiChIP, CRE ChromHMM states, cluster number

(E) State similarity (Jaccard values) for pairwise comparisons of basal, LP, and M

(F) Active enhancer regions (states 6 and 7) displayed as altered state for each pa

subset and the percentage of those same regions that are weak/marked (state 8

chromatin (states 17 to 24) within the comparator subset.

(G) Hierarchical clustering of LP-alveolar genes, as identified in Pal et al.25 Shown f

TSS score, TSS ChromHMM states contributing to the TSS score, CRE score, nu

contributing to the CRE score, subclusters, and highlighted genes.

(H) Chromatin state for TSS regions of DEGs.

(I) The number of interactions detected by FitHiChIP for genes categorized base

(J) The median genomic distance between TSSs and CREs. See also Figures S5
H3K4me1, low-H3K27ac, low-H2AK119ub, and low chromatin

accessibility, especially evident in the LPpopulation (Figure S6A).

WhileWfdc18 exhibited an active promoter region, the TSS inter-

acted with distant primed and polycomb regions exclusively in

luminal cells (Figure S6B). Hence, through the inclusion of the

PRC1 mark (H2AK119ub) combined with the enhancer mark

(H3K4me1) in our ChromHMM analysis, ‘‘primed’’ regions were

shown to harbor low levels of H2AK119ub without H3K27me3,

suggesting that these regions may serve to prime enhancers

for activation during pregnancy, such as in the case of Wap.

Previous reports have shown that bivalent domains can poise

genes for activation during development.45,46 We therefore

determined genes that displayed bivalent promoters unique to

each lineage (248 basal, 123 LP, and 209 ML genes) and per-

formed a Gene Ontology (GO) analysis (Table S8). Interestingly,

we found that bivalent genes in LPs were enriched for GOs asso-

ciated with pregnancy, consistent with these cells serving as

progenitors for alveolar cells. Bivalent genes within the basal

population were enriched for membranal proteins and signaling

genes, while those in ML cells were enriched for cell adhesion

and mammary morphogenesis and, surprisingly, included genes

enriched in the ML population (Figures S6C and S6D). These

data suggest that bivalent chromatin may poise gene expression

in the LP population but associate with expressed genes in ML

cells.

Promoter states exhibit differential interactivity with
enhancer and silencer regions
We next analyzed the impact of chromatin states on the expres-

sion of cell-specific genes (Table S2; Figures 5H and S6C). Pro-

moter regions of genes highly expressed in basal cells (e.g.,

Tbx3,Mycn, and Snai2) were mostly active (states 1 to 3) in basal

cells andweak, bivalent, or repressed (states 2, 5, 14, 15, and 16)

in the luminal populations (clusters C4, C9–C11) (Figures 5D and

S6C). By contrast, for genes highly expressed in LP cells (e.g.,

Rora, Hey1, and Tcf7l2) (Figure 5D), many promoters showed

similar activity in basal (70% with state 1, 2, or 3) compared

with LP cells (88%) and minimal repressive or bivalent states.
ncers and polycomb regions in the different mammary epithelial lin-

HMM using ATAC-seq and CUT&Tag data. Heatmap displaying frequencies of

he left and terms on the right. A1/2, active; Biv, bivalent; Flk, flanking; G, genic;

6. The p values were determined using two-tailed t test withWelch’s correction:

wn from left to right is the cluster dendrogram, DEGs for pairwise comparisons,

n (RNA-seq, RPKM, log2), TSS ChromHMM states, number of significant in-

s, and highlighted genes.

L cells.

irwise comparison. Shown is the percentage of active enhancer regions in one

) or primed (state 10), polycomb only (states 14, 15, and 16), or silent/hetero-

rom the left to right: cluster dendrogram, single-cell RNA expression (Z scores),

mber of significant interactions as called by FitHiChIP, CRE ChromHMM states

d on their TSS chromatin state.

, S6, and S7; Table S8.
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Many genes enriched in ML cells, 58% of those with lower

expression in LP cells (e.g., Myb, Esr1, Esrrb, Pgr, Cited1,

Bmp3), exhibited bivalent and polycomb-enriched chromatin at

their promoter regions (cluster C6, states 5 and 14) (Figures

5D, S6C, and S6D), suggesting either heterogeneity within the

ML population or a more complex mechanism of promoter-

mediated transcription such as allele-specific repression.

To identify significant chromatin interactions (FDR < 0.1) within

each cell type, the FitHiChIP pipeline was applied to link distal

CREs (>20 kb up- or downstream of the TSS) and TSSs genome

wide. Examination of the average number of significant interac-

tions for each promoter and polycomb state (H3K27me3 and

H2AK119ub states overlapping TSSs) revealed that state 1 pro-

moters showed the highest level of interactivity with distal re-

gions (Figure 5I). Similar to the Capture-C data, LP gene pro-

moters (states 1–4) were more interactive, interacting with

�2.4- and �1.3-fold more chromatin than basal and ML pro-

moters, respectively (clusters C7 and C8) (Figure 5D). We then

examined the expression of genes that have no interacting

CREs or increasing numbers (up to >9) (Figure S6E). Enhancer

regions (state 7) had the greatest positive influence on expres-

sion, while bivalent promoters (state 5) and polycomb regions

containing PRC2 (states 14 and 15) were negatively associated

with expression, serving as putative silencer elements. State

10 CREs had no impact on expression, consistent with these re-

gions being ‘‘primed’’ and not yet influencing transcription. We

also observed an association between CREs and the genomic

distance they span to interact with their target TSS, with en-

hancers generally located closer to TSSs than to the more distal

polycomb-marked sites (Figure 5J).

We next investigated the type of distal CRE that interacted

with promoter elements. Active promoters (state 1) interacted

more frequently with active enhancers and transcribed regions,

while repressed promoters (states 5, 14, and 15) weremore often

linked with polycomb-silenced distal regions (Figures 5D and

S6F). There was a clear positive association between expression

and active promoters, enhancers, and transcribed regions

(states 1–4, 6–8, and 11–13) and a negative association with pol-

ycomb regions (states 14–16) for each population (Figure S6G).

Genes enriched in ML compared with LP cells displayed a

different pattern, with a lack of interacting active enhancers

(states 6 and 7) but an increased involvement of weaker en-

hancers and interacting active or weak promoters (states 1–3

and 8). To deconvolute chromatin interaction complexity,

we turned to UpSet plot analysis (Figures S7A and S7B). Gene

interactions involving polycomb silencer regions displayed

decreased expression in the luminal populations but minimal

impact on basal cell expression (clusters C9, C10, and C11) (Fig-

ure 5D). This was particularly evident for the basal-specific gene

Cxcl14, where an intergenic region comprising multiple en-
Figure 6. Long-range regulation of transcription factor genes defines

(A) Coverage track plots. Capture-C is shown as CPM, 500-bp sliding windows,

(B) Experimental design of sgRNA targeting of lineage-restricted enhancers usin

(C) Western blot analysis of Snai2 expression following sgRNA-mediated enhanc

(D) qRT-PCR of Elf5 and Msx2 expression, following enhancer activation (n = 2).

(E) TF networks for lineage-specific TFs. Node color represents gene expression

footprinted motifs with thickness as relative enrichment. See also Figure S8.
hancers displayed polycomb-marked chromatin in both luminal

populations but maintained chromatin interactivity (Figure S7C).

Similarly, the basal-restricted TF Dzip1 demonstrated the high-

est level of interactivity in LP cells where the promoter appears

to interact with distant PRC1 and primed enhancer sites. Overall,

these data indicate that basal lineage specification relies on

typical promoter and enhancer epigenetic profiles. By contrast,

promoters of the luminal lineages appear promiscuous, with

many LP TSSs exhibiting a weak/active state and bivalent mod-

ifications occurring across ML TSSs in all cell types. Notably,

luminal enhancer and silencer elements displayed exquisite

cell specificity, likely accounting for lineage determination.

Lineage-specific transcription factors are defined by
their chromatin binding profiles
To test whether gene activation could be achieved through distal

CRE involvement, three lineage-specific TF genes representing

the primary lineages were investigated using CRISPRa-dCas9

editing47 in COMMA-DbGeo cells: Snai2, Elf5, and Msx2

(Figures 6A and 6B). The Snai2 promoter interacts with at least

three distal enhancer loci that display basal cell specificity. Tar-

geting of an 18-kb region within an Efcab1 intron (221/239 kb

downstream) had the strongest impact on Snai2 expression

(Figures 6C and S8A). Interestingly, the effect of enhancers on

Snai2 transcription appeared to be independent of distance

from the TSS, with similar increases observed for the closest

(94/95 kb) and furthest enhancers (405/409 kb downstream).

The Elf5 promoter region interacts with distal and intragenic

SEs that display de novo activation in LP cells and retain activity

in the ML population (Figures 6A and S8A). Targeting the intra-

genic enhancer or the upstream enhancer (58/59 kb) led to

increased Elf5 expression (Figure 6D). Msx2 harbors a promoter

region that displays bivalent chromatin across each cell type but

paradoxically interacts with enhancers that are active in ML cells

(Figures 6A and S8A). Targeting the distal upstream enhancer re-

gion (184/186 kb) led to a robust increase in Msx2 (Figure 6D).

Thus, enhancers can be specifically targeted in MECs to

augment target gene expression.

To identify potentially novel regulators of cell fate and TF bind-

ing dynamics across the genome, we performed footprinting

analysis with TOBIAS48 on the ATAC-seq data. Networks were

constructed for the cell-specific TF signatures (Figures S8B

and S8C) by mapping footprinted binding sites to gene pro-

moters and interacting regions (Figure 6E).49 This analysis re-

vealed highly interconnected TFs in both basal and LP cells,

but less so in ML cells, due to a reduced number of interactions

(Figures 5I and 6E). In basal cells, Snai2, Trp63, and Foxp1 were

highly interconnected, but several other regulators dominated

the network, including Egr2, Egr3, Prdm1, Runx1, Tead1, Nfatc1,

and Nfyb. The Egr, Nfat, Runx, Tcf, and Tead motifs were also
the mammary epithelial lineages

Omni-C (CCPM) for interactions anchored at TSS regions (10 kb resolution).

g CRISPRa-dCas9.

er activation versus non-targeting control (NTC). Hsp70, loading control.

The mean and standard deviation are shown.

(RNA-seq, RPKM, log2), node size shows network connectivity, lines represent
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found to be enriched in human breast basal TF networks.26,50

Using ChromHMM-defined states to map the DNA-binding ele-

ments bound by these TFs, we predicted that Egr2, Nfyb, and

Egr3 primarily bound to active TSSs, while Prdm1, Snai2,

Trp63, Tead1, Nfatc1, and Runx1 were likely enhancer-bound

factors (Figure S8D). In LP cells, the known alveolar lineage regu-

lator Elf551 and the Notch pathway effector Hey141,52 emerged

as key TFs together with potentially novel regulators Ror⍺,

Rorg, and Crem, which demonstrated high expression and inter-

connectivity, suggesting central roles in LP maintenance or dif-

ferentiation (Figure 6E). Hey1 displayed strong enrichment at

active TSSs, while Elf5 and Crem were predicted to bind pro-

moter and enhancer regions and Ror⍺ and Rorg to serve as

strong enhancer-bound factors (Figure S8E). Many ML-enriched

TFs have been previously studied (e.g., PR, ER, and Foxa1), but

the developmental roles of other well-connected TFs such as

Smad3, Myb, and Meis1 are yet to be determined (Figure 6E).

The binding of these TFs was enriched at active enhancers, sug-

gesting that distal elements are a central point of gene regulation

in ML cells, such as the case for Msx2 (Figure S8F).

Chromatin accessibility dictates cellular states within
the basal compartment
To interrogate chromatin structure in the Tspan8+ (quiescent

basal; QBa) and Tspan8� (active basal; ABa) sub-populations,14

sorted cells were subjected to ATAC-seq, low-cell CUT&Tag,

and Omni-C sequencing (Figure 1A; Table S1). Differential

gene expression and differential accessibility (ATAC-seq data)

analysis identified 8.1 3 106 100-bp bins with increased acces-

sibility in Tspan8� cells and 5 3 106 in Tspan8+ cells (Figure 7A;

Tables S2 and S3), revealing that accessibility at promoter and

distal CRE sites increased with expression in most cases (Fig-

ure 7B). Notably, we observed increased chromatin accessibility

in Tspan8+ cells throughout the Slc14a1 locus (highest DEG) and

the adjacent Lgr5 and Tspan8 loci, which together define the

most quiescent state14 (Figure 7C). Broad changes to luminal

gene accessibility were not observed between the two basal

populations, consistent with the CUT&Tag data. Thus, luminal

gene priming appears ubiquitous within the basal compartment

(Figure S9A).

Widespread changes in chromatin interactions were not

evident between the two basal subsets, as no DIs were found.

Through ChromHMM-modeling, however, differentially acces-

sible (DA) sites were shown to be enriched for intergenic

enhancer states in Tspan8+ cells, while both intragenic and inter-

genic enhancers were enriched in more accessible regions in

Tspan8� cells (Figure 7D). Alterations in accessibility were

shown to associate with changes in enhancer states (i.e., active

to weak enhancer: Lama1, Col4a2, Ptx3, Col6a1), enhancer
Figure 7. Chromatin accessibility remodels the basal genome upon ex

(A) Differentially accessible (DA) regions between basal Tspan8+ (quiescent; QBa

(B) DEGs between QBa and ABa cells with a DA region overlapping the promote

(C) Coverage track plots for QBa and ABa loci.

(D) Genomic enrichment (observed/expected) of chromatin states overlapping D

(E) Differential TF network comparing QBa versus ABa. Node and line colors de

enrichment and node size depicts network connectivity.

(F) Chromatin states for TF loci, with footprinted TF motifs indicated. See also Fi
repression (i.e., active to primed or repressed region: Ccnd1,

Col4a2, Col6a1), and enhancers whose activity did not change

(i.e., active to active or weak to weak: Col4a2, Plet1)

(Figures S9B and S9C). These findings indicate that active

enhancer states (states 6 and 7) are stable within the basal pop-

ulation, whereas de novo enhancer activation or repression

tends to occur for weaker enhancers (states 8–11) and is likely

the result of changing chromatin accessibility and not interac-

tions (Figure S9D).

A differential TF network was next created for the enrichment

of footprinted binding sites mapped to differentially expressed

promoters and interacting regions in the two basal subsets (Fig-

ure 7E). This analysis identified a number of highly intercon-

nected factors within the network: Fli1, Rara, Erg, Foxc1, Gli1,

and Batf were enriched in Tspan8+ cells and E2f8, Dlx3, Egr4,

Tbx2, Etv4, Etv5, Ahr, Zfhx4, and E2f1 in Tspan8� cells. The

most differentially expressed TFs included Batf, a member of

the AP-1/ATF superfamily of TFs,53 and Tbx2, which has been

implicated in mammary development along with its family mem-

ber Tbx3.54 Batf expression was higher in Tspan8+ cells in

conjunction with enrichment of motifs for the putative regulators

Egr2, Gata3, and Elf1, which are predicted to bind the promoter

and enhancer regions of Batf (Figures 7E and 7F). The early-

growth-responsive TF Egr2 was also implicated in the regulation

of Tbx2, alongside Egr4 and E2f8, through binding at promoter

and enhancer regions in basal Tspan8� cells. The roles of Batf,

Egr, and Ets family members (with the exception of Elf5) in the

mammary gland have yet to be elucidated.

DISCUSSION

Epigenetic regulation is central to tissue-specific function, where

higher-order chromatin structure allows cell-specific TFs to

govern specification and differentiation.2,55 Through a multi-

modal analysis of chromatin structure, we provide evidence

that gene regulation in the different epithelial cell types is under-

pinned by distinct epigenetic mechanisms. Basal-specific genes

are characterized by typical interactions between promoters and

distal enhancers and increased involvement of silencer elements

in luminal cells. However, the promoter regions of many luminal-

specific genes were active in basal cells, with lineage-specific

expression achieved through extensive chromatin interactivity

with enhancer regions. LP-specific genes were characterized

by the highest level of chromatin looping between lineage-spe-

cific intragenic SEs and the promoters of TF genes. In ML cells,

many genes exhibited bivalent chromatin domains over their

promoters, despite interacting with active and/or weak en-

hancers. Together these data highlight the plastic nature of chro-

matin in basal cells, where the luminal gene program is primed
it from quiescence

) and Tspan8� cells (activated; ABa).

r or DA region overlapping R1 CREs interacting with their promoter.

A regions connected to DEGs.

pict differential expression and binding, respectively; line width shows motif

gure S9; Tables S1, S2, and S3.
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for activation, while in the more differentiated luminal compart-

ment, the basal program is repressed, consistent with the

inability of these cells to reconstitute a functional gland upon

transplantation.56,57

Investigation of chromatin interactivity on a global scale re-

vealed extensive enhancer marking and de novo enhancer acti-

vation across the different MEC types. Enhancer marking of

luminal genes (20% of enhancers), including Notch1, Foxi1,

Fhad1, and Rora, was evident in basal cells, consistent with a

previous report for human breast,26 while de novo activation in

LP cells (60% of enhancers) was seen for enhancers of other

LP genes, such as Cd14, Krt8/18, Klf6, and Gata3. Similarly, en-

hancers of Prlr, Meis1, Msx2, Myb, and Smad3 were marked in

LP cells (25% of enhancers), presumably for activation in ML

cells, but enhancer priming (state 10) in luminal cells was more

frequent than in basal cells (24%–30% versus 8%–16%). The

enhancer marking together with promoter priming and bivalency

seen for ML genes in LP cells is consistent with the LP pool

contributing to both the HR� and the HR+ lineages.15,16 Thus,

luminal lineage priming predominantly occurs in basal cells at

the promoter level, while lineage priming of ML genes in the LP

population occurs extensively at both promoter and enhancer

regions. These data also suggest that de novo activation of en-

hancers is at least as prevalent as enhancer marking.

Substantial evidence for enhancer priming was seen in the LP

pool, which may be PRCmediated through H2AK119ub. Recent

reports have shown that PRC1 is critical for chromatin structure

and that its loss diminishes chromatin looping irrespective of

whether the target gene transcription increases or decreases.58

Potential chromatin remodeling by PRC1 and enhancer activa-

tion in the mammary gland during periods of expansion would

support earlier findings that H3K27ac permanently increases

across the epigenome in post-pregnancy glands.59 While a pos-

itive association between enhancer marking (low H3K4me1,

H3K27ac, chromatin accessibility, states 8/9) and expression

was observed, primed enhancers (H3K4me1 and low

H2AK119ub, state 10) interacted minimally with target genes,

with no effect on expression, indicative of distinct enhancer

states. Thus, PRC1 may play a novel role in hormone-driven

‘‘epigenetic priming’’ of mammary epithelium.17,18,21,60 Further-

more, we identified lineage-specific SEs that overlapped crucial

mammary regulatory genes, including Trp63, Foxp1, Foxa1,

Gata3, Esr1, and Notch1. In the case of Foxp1, we identified dif-

ferential SE interactions with TSSs in basal cells that likely con-

trol alternative isoform expression, implicating SEs in influencing

promoter usage.

Through a multifaceted integrative analysis, we identified

candidate TFs likely to execute roles in lineage restriction along

the mammary epithelial hierarchy. In basal cells, these include

known regulators (e.g., Trp63, Foxp1, Snai2, and Id4) and novel

factors (e.g., Egr and Batf) that were linked through chromatin in-

teractivity studies. Our data also highlight the emergence of the

retinoic acid-related orphan receptors Ror⍺ andRorg as putative

regulators of TFs in LP cells. Themajority ofML TFs preferentially

bound to enhancer sites; in combination with active genes exhib-

iting promoter bivalency, these findings suggest that distal en-

hancers are critical for specification in ML cells. It is likely that

enhancer-binding TFs such as Trp63, Foxp1, Rorg, Foxa1, and
16 Cell Genomics 3, 100424, November 8, 2023
Pgr contribute to the maintenance of chromatin interactions or

control loop formation, analogous to the roles of TFs in driving

changes in chromatin architecture in other systems.61,62 Future

work will entail dissecting the novel TF networks in refined mam-

mary epithelial subsets at a functional level, including their phys-

iological roles during development.

Limitations of the study
First, based on population-level sequencing of RNA and epige-

netic features, we cannot exclude the possibility that bivalent do-

mains and weak promoters/enhancers represent heterogeneity

within the basal, LP, or ML/HS populations. For example, the

small HR+ LP subset (5%–10%) in the luminal compartment

could display different epigenetic patterns across regulatory el-

ements. Due to the input required for interactivity studies, it

was not possible to isolate sufficient cells from this subset. Sec-

ond, we utilized ChromHMM to model chromatin states based

on nine histone marks, RNA Pol II, and chromatin accessibility.

Modeling is predictive by nature and warrants confirmation by

functional studies based on in vivo perturbation of key regulators

coupled with chromatin state analyses. For example, ablation of

PRC1within themammary gland could assess the importance of

this mark in establishing primed enhancers (state 10). Third,

although validation of enhancers was performed in a relevant

cell line, chromatin interactions and enhancer activity may differ

in primary cells. Finally, despite the rapid growth of single-cell

technologies, it is not yet possible to assess the plethora of his-

tone marks and RNA and chromatin interactions within a cell at

the same level of precision as for bulk populations.
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7-Aminoactinomycin D (7AAD) Sigma Aldrich Cat#A9400

Clarity electrochemiluminescence substrate Biorad Cat# 1705060

blot via NuPAGE 4–12% Bis-Tris 1.5 mm gel Life Technologies Cat# NP0335BOX

DPBS, no calcium, no magnesium Gibco Cat# 14190144

Tris-HCl Fisher Cat# BP1521

Sodium chloride Sigma Aldrich Cat# S5150-1L

Magnesium chloride Sigma Aldrich Cat# #M8266-100G

IGEPAL CA-630 Sigma-Aldrich Cat# I8896

UltraPureTM DNase/RNase-Free Distilled Water Invitrogen Cat# 10977015

NEBNext High-Fidelity 23 PCR Master Mix New England Biolabs Cat# M0541

100x SYBR Green I Invitrogen Cat# S-7563

Bovine Serum Albumin Sigma Aldrich Cat# A80577

Calcium chloride Sigma Aldrich Cat# C4901

Digitonin Millipore Cat #300410

Dimethyl sulfoxide Sigma Aldrich Cat# D4540

Ethanol 100% VWR Cat# 20821.330

HEPES pH 7.5 Sigma Aldrich Cat# H3375

Manganese chloride Sigma Aldrich Cat# 203734

Potassium chloride Sigma Aldrich Cat# P3911

SDS Invitrogen Cat# AM9820

Sodium acetate Invitrogen Cat# AM9740

Spermidine Sigma Aldrich Cat# S2501

cOmpleteTM, Mini Protease Inhibitor Cocktail Roche Cat# 4693159001

Concanavalin A-coated magnetic beads Bangs Laboratories Cat# BP531

Protein A-Tn5 (pA-Tn5) fusion protein Fred Hutchinson Cancer Center N/A

Proteinase K (thermolabile) New England Biolabs Cat# P811

RNase Roche Cat# 10109169001

AMPure� XP Beads Beckman Coulter Cat# A63881

UltraPureTM 0.5M EDTA, pH 8.0 Invitrogen Cat# 15575020

DpnII New England Biolabs Cat# R0543M

Glycine Sigma Aldrich Cat# G7126

Formaldehyde (37%) Sigma Aldrich Cat# 252549

T4 DNA ligase (30 U/mL) Thermo Fisher Scientific Cat# EL0013

Proteinase K Thermo Scientific Cat# EO0491

Phenol-chloroform-isoamyl alcohol (PCI, 25:24:1) Sigma Aldrich Cat# 77617

1 mg/ml COT DNA of relevant species (mouse) Thermo Fisher Scientific Cat# 18440016

M-270 Streptavidin Dynabeads Thermo Fisher Scientific Cat# 65305

Disuccinimidyl Glutarate (DSG) Thermo Fisher Scientific Cat# A35392

Triton-X-100 Biorad Cat# 1610407

BbsI-HF New England Biolabs Cat# R3539

T4 DNA ligase (plasmid cloning) Promega Cat #M1801

Critical commercial assays

miRNeasyTM Micro Kit Qiagen Cat# 217084

TruSeq RNA Library Preparation Kit v2 Illumina Cat# RS-122-2001

On-column Dnase Qiagen Cat# 79256

ATAC Illumina Cat# FC-121-1030

MinElute Qiagen Cat# 28204

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q32854

(Continued on next page)
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Qubit dsDNA BR Assay Kit Thermo Fisher Scientific Cat# Q32853

NEBNext Ultra DNA Library Prep Kit for Illumina New England Biolabs Cat# E7370S

NEBNext Multiplex Oligos for Illumina Primer set 1 New England Biolabs Cat# E7335S

NEBNext Multiplex Oligos for Illumina Primer set 2 New England Biolabs Cat# E7500S

Herculase II Fusion Polymerase Kit Agilent Technologies Cat# 600675

Nimblegen SeqCap EZ Hybridization and wash kit Roche Cat# 05634261001

Nimblegen SeqCap EZ Accessory kit v2 Roche Cat# 07145594001

Nimblegen SeqCap EZ HE-oligo kit A Roche Cat# 06777287001

Nimblegen SeqCap EZ HE-oligo kit B Roche Cat# 06777317001

Omni-CTM Kit Dovetail Cat# 21005

Omni-CTM Library Module for Illumina 8Rx Dovetail Cat# 25004

Omni-CTM Library Module for Illumina 8Rx Dovetail Cat# 25010

Omni-CTM Filter Set Dovetail Cat# 25003

Zymo DNA Clean & Concentrator-5 Zymo Research Cat# D4013

Plasmid Max Kit Qiagen Cat# 12162

Deposited data

RNA-seq, ATAC-seq, Omni-CTM and CUT&Tag This paper NCBI GEO accession number: GSE227750

scRNA-seq mouse atlas Pal et al.25 NCBI GEO accession number: GSE164017

Experimental models: Organisms/strains

Mouse: FVB/NJ The Jackson Laboratory Cat# JAX:001800:

RRID: IMSR_JAX:001800

Experimental models: Cell lines

Mouse: COMMA-DbGeo Dr D. Medina RRID: CVCL_5733

Others

BD FACSAriaTM C BD Biosciences Flow Cytometry, Walter and Eliza

Hall Institute of Medical Research

BD FACSAriaTM Fusion BD Biosciences Flow Cytometry, Walter and Eliza

Hall Institute of Medical Research

LowBind DNA tubes Eppendorf Cat# 0030108051

Tapestation loading tips Agilent Technologies Cat# 5067-5153

Genomic DNA ScreenTape Agilent Technologies Cat# 5067-5365

Genomic DNA Reagents Agilent Technologies Cat# 5067-5366

D1000 DNA ScreenTape Agilent Technologies Cat# 5067- 5582

D1000 DNA Reagents Agilent Technologies Cat# 5067- 5583

D5000 DNA ScreenTape Agilent Technologies Cat# 5067- 5588

D5000 DNA Reagents Agilent Technologies Cat# 5067- 5589

Covaris microTUBE

AFA Fiber pre-split

snap-cap 6 x 16 mm

Covaris Cat# 520045

Recombinant DNA

CRISPRa plasmid:

pLH-gRNA-MSx2-sfGFP

addgene Cat# 75389;

RRID: Addgene_75389

CRISPRa plasmid:

pLH-MS2-p65-HSF1-P2A-BFP

addgene Cat# 61423;

RRID: Addgene_61423

CRISPRa plasmid:

pLH-dCas9-VP64-T2A-mCherry

addgene Cat# 61422;

RRID: Addgene_61422

(Continued on next page)
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Software

R R Project for Statistical Computing RRID: SCR_001905

R packages Rsubread, edgeR, limma,

Glimma, csaw, diffHic, HiCRep, Sushi,

plyranges, Iranges, rtracklayer,

BSgenome.Mmusculus.UCSC.mm10

Bioconductor RRID: SCR_006442

R package gplots, ComplexUpset,

Pheatmap, viridisLite

CRAN RRID: SCR_003005

Mus musculus gene information NCBI ftp://ftp.ncbi.nlm.nih.gov

Picard-tools The Broad Institute RRID:SCR_006525

BEDtools Quinlan et al.63 Bioinformatics RRID: SCR_006646

Trim Galore The Babraham Institute RRID: SCR_011847

Bowtie2 Langmead et al.64 RRID: SCR_016368

CCanalyser3 Davies et al.65 https://github.com/Hughes-Genome-

Group/Capture-C/releases

Deeptools Ramirez et al.66 RRID: SCR_016366

Samtools Danecek et al.67 RRID: SCR_002105

HOMER Heinz et al.68, Heinz et al.69 RRID: SCR_010881

SEACR Meers et al.70 https://github.com/FredHutch/SEACR

HiC-Pro Servant et al.71 RRID: SCR_017643

FitHiChIP Bhattacharyya et al.72 https://github.com/ay-lab/FitHiChIP

ChromHMM Ernst et al.73 RRID: SCR_018141

TOBIAS Bentsen et al.48 https://github.com/loosolab/TOBIAS

Cytoscape Shannon et al.49 RRID: SCR_003032

JASPAR2018_CORE_vertebrates_

non-redundant

Castro-Mondragon et al.74 RRID: SCR_003030

HOCOMOCOv11_core_MOUSE_mono Kulakovskiy et al.75 RRID: SCR_005409

Python Python Programming Language RRID: SCR_008394
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Lead contact
Further information regarding the resources and reagents used in this study should be directed to Jane Visvader (visvader@wehi.

edu.au).

Materials availability
The study did not generate any new unique reagents.

Data and code availability
Sequencing data for ATAC-seq, CUT&Tag, Omni-C and RNA-seq have been deposited at GEO under the superseries accession

number GSE227750. Data will be publicly available on the date of publication.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

FVB/N mice were provided by the WEHI animal facility. All mice were bred and maintained in the WEHI animal facility according to

institutional guidelines and all experiments approved by the WEHI Animal Ethics Committee. COMMA-DbGeo cells were kindly pro-

vided by Dr. Daniel Medina.

METHOD DETAILS

Isolation of mammary epithelial subsets
Mammary epithelial cells were isolated as previously described (Shackleton et al 2006).56 Briefly, mammary glands from six adult

(9-10 week-old) female FVB/N mice were pooled and cell suspensions were generated via tissue chopping and digestion with
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collagenase/hyaluronidase/DNase, TEG, Dispase/TEG and a final red-cell lysis performed. Cell suspensions were stained for flow

cytometry using the following antibodies: FITC anti-mouse CD29 (rat, clone HMb1-1, BioLegend Cat#102206, 1/200 dilution), Pacific

Blue anti- mouse CD24 (Armenian Hamster, cloneM1/69, BioLegend Cat#101820, 1/200), PE anti-mouse CD61 (Armenian Hamster,

clone HMb3-1, BioLegend Cat#104308, 1/ 100), APC anti-mouse CD31 (rat, clone 390, BioLegend Cat#102410, 1/40 dilution), APC

anti-mouse CD45 (rat, clone 30-F11, BioLegend, Cat#103112, 1/100 dilution), and APC anti-mouse TER-119/erythroid cell (rat, clone

TER-119, BioLegend Cat#116212, 1/80 dilution). Stained cells were resuspended in 2% FCS/PBS with 7-AAD to exclude dead cells.

RNA-sequencing and differential gene expression
Sorted cell pellets were washed in PBS and snap-frozen on dry ice. Pellets were then resuspended in QIAzolTM and RNA prepared

following Qiagen’s recommended protocol for the miRNeasyTM micro kit (Qiagen Cat#217084), including the on-column DNase

digestion (Qiagen Cat#79256). 100 ng total RNA was used to prepare sequencing libraries following Illumina’s TruSeq RNA v2 pro-

tocol (Illumina #RS-122-2001, RS-122-2002). RNA libraries were sequenced on the Illumina NextSeq 500, aiming for >30M 80 bp

paired-end reads. Reads were mapped to the mouse genome (mm10) and using Rsubread counted with the inbuilt mm10

RefSeq gene annotation.76 Differential gene expression analysis was performed using the edgeR package, with lowly expressed

genes removed via filterByExpr and library normalization with the TMM method.77 To select genes with large differences in expres-

sion we applied a fold-change cut-off using glmTreat (fc=2.5) between basal, LP andML comparisons and glmTreat (fc=1.2) between

Tspan8+ and Tspan8– comparisons. Signature genes of basal, LP and ML were obtained by intersecting the up-regulated DE genes

between the pairwise comparisons, where the glmTreat fold-change cut-off was 2 for basal signatures and 1.2 for LP and ML

signatures.

ATAC-sequencing
Cells (50,000) from sorted mammary epithelium were reserved for bulk ATAC-sequencing. ATAC-sequencing was performed as pre-

viously described78,79: cells were lysed (50 ml lysis = 10 mM Tris-Cl (Tris-Cl pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% NP-40 in

nuclease-free H2O) and transposed with Illumina’s Tn5 enzyme (50 ml trans-position = 25 ml 2X TD Buffer (Illumina Cat#FC-121-

1030), 2.5 ml TDE1 (Illumina Cat#FC-121-1030), 22.5 ml nuclease-free H2O). Cells were incubated for 20 min at 22�C then 30 min

at 37�C and purified with the MinElute kit from Qiagen (Cat#28204). ATAC libraries were sequenced on Illumina’s NextSeq 500, aim-

ing for >100M 80 bp paired-end reads per biological replicate. Reads were processed as previously described.25

CUT&Tag sequencing
CUT&Tag sequencing was performed as described.32 100,000 FACS purified cells were bound to Concanavalin A-coated magnetic

beads and incubated overnight at 4�C in 50 ml of primary antibody buffer: 20 mM HEPES pH 5.5, 150 mM NaCl, 0.5 mM spermidine

(Sigma-Aldrich, Cat#S2501), 1x cOmpleteTM Mini Protease Inhibitors (Roche Cat#4693159001), 0.05% Digitonin (Millipore

Cat#300410), 0.1% BSA (Sigma-Aldrich Cat#A80577), 2 mM EDTA and MilliQ H2O. Primary antibodies used for CUT&Tag:

H2AK119ub (CST Cat#8240, 1:50), H3K4me1 (abcam Cat#8895, 1:50), H3K4me3 (Merck Cat#07-473, 1:50), H3K9ac (abcam

Cat#4441, 1:50), H3K9me2 (abcam Cat#1220, 1:50), H3K9me3 (abcam Cat#8898, 1:50), H3K27ac (abcam Cat#4729, 1:50),

H3K27me3 (Merck Cat#07-449, 1:50), H3K36me3 (Active Motif Cat#61021, 1:50), RNA Pol II (Merck Cat#05-623, 1:50) and mouse

IgG (Merck Cat#12-371, 1:50). Cells were then incubated in secondary antibody, either anti-mouse IgG (Sigma Cat#SAB3701102) or

anti-rabbit IgG (Sigma Cat#SAB3700926) before addition of pA-Tn5 (kind gift from the Henikoff laboratory, 1:250) and tagmentation.

Tagmented DNAwas solubilized with Thermolabile Proteinase K (NEB Cat#P8111S) for 1-2 hrs at 37oC to 300 rpm, then purified with

elution buffer (10mMTris-HCl pH 8, 1mMEDTA, 1/400 RNase A (Roche Cat#10109169001) andDNase-free H2O) and PCR amplified

(17 cycles). Libraries were subjected to SPRI bead purification and sequenced on an Illumina NextSeq 500, aiming for >2M 80 bp

paired-end reads per antibody. Small aliquots from libraries of untested antibodies were sequenced as pilot experiments to ensure

appropriate enrichment for histone modifications and RNA Pol II (Table S1). Trim Galore (The Babraham Institute) was used to trim

adapter sequences before mapping with Bowtie264 as previously described. PCR duplicates were removed with picard-tools and

files converted to bam format for counting with bedtools, peak calling and differential analysis. For CUT&Tag of the Tspan8-defined

cell populations, adaptations were made for low-cell inputs of 10,000-20,000 cells. Cells were incubated with in 10 ml primary anti-

body buffer, 20 ml secondary antibody buffer, 20 ml pA-Tn5 mix and PCR amplified for 19 cycles.

Omni-CTM library preparation and sequencing
Chromatin interaction libraries were generated using the Omni-CTM protocol from DovetailTM genomics (Cat#21005). Purified MECs

(300,000-500,000 cells) were pelleted and snap-frozen on dry ice before fixation with formaldehyde and in situ DNase digestion (1/8

dilution of DNase following optimization). Fixed chromatin (1 mg) was bound to chromatin capture beads before end-polishing, bridge

ligation to insert biotin labels on DNA-ends, intra-aggregate ligation and crosslink reversal followed by a SPRI bead clean-up and size

selection. End-repair was performed on 150 ng of ligated DNA, followed by Illumina adapter ligation. Ligation products were bound to

streptavidin beads, and final products were indexed and sequenced on an Illumina NextSeq 500, aiming for >100M 80 bp paired-end

reads per biological replicate.
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NG Capture-C library sequencing and processing
Capture-C was performed as described80 on 300,000 sorted cells. Briefly, 3C libraries were generated on fixed cells and digested

with DpnII (NEB Cat#R0543M) overnight. Following heat-inactivation, DNA was ligated and chromatin de-crosslinked. Up to 1 mg

of 3C library was sonicated on a Covaris S220 Focused Ultrasonicator using the following settings, 10% duty cycle, 5 intensity,

200 cycles/burst for 360 seconds before adding SPRI beads. End repair and adapter ligation were performed using the recommen-

ded conditions for NEBNext Ultra DNA Library Prep Kit for Illumina (NEB Cat#E7370S) and NEDNext Multiple Oligos for Illumina

Primer set 1 and 2 (NEB Cat#E7335S and E7500S). Biotinylated capture oligonucleotides (probes) were 5’ biotin-tagged 120 bp

oligonucleotides. Capture probe design was adapted from80, targeted at the TSS of DNp63, Foxi1, Gli3, Esr1, Lgr5, Tcf7, Tbx2,

Foxa1, Msx2, Snai2, Ehf, Elf5, Hey1, Kit, Tbx3, Pgr, Cited1 and Maf see below. Enrichment of capture sites was adapted from the

protocols for Nimblegen SeqCap EZ Hybridization (Roche Cat#05634261001, 07145594001, 06777287001 and 0677317001). Cap-

ture probes were pooled to a concentration of 2.9 nM and hybridization was performed over three days before streptavidin bead pull-

down, SPRI bead clean-up and size selection. Capture probe hybridization was repeated on the library. Following the second

hybridization, libraries were sequenced on an Illumina NextSeq 500 aiming for >2M 150 bp paired-end reads per biological

replicate. Reads were mapped to mm10 and processed using the recommended pipeline from CCanalyser3 (https://github.com/

Hughes-Genome-Group/Capture-C/releases) aiming for >10,000 capture fragments per TSS. Analysis of capture differential inter-

actions (cDIs) was performed using Glimma and edgeR. Briefly, capture counts were counted across each DpnII restriction fragment

(�500 bp) on the same chromosome ± 2.5 Mb of each gene TSS (TSS based off RefSeq refGene.gtf, downloaded 8/2/2017) (except

Esr1which lies close to the telomere). Counts were then TMMnormalized and differential interactivity determined from a linear model

(lmFit) with an empirical Bayes moderation and FDR < 0.05 calculated by the Benjamini-Hochberg method.

NG Capture-C biotinylated probes for 18 genes with lineage-restricted expression. 5’ Biotin is denoted by the IDT code /5Biosg/
Oligo_Name Sequence with mod

Trp63_CapC_5p_A /5Biosg/GATCTAGATTTTTTTCCAGAATTTTAATCCCCTAAATTTTAGAAGAAATTTAACATTCACTCTTACTAGT

CTTAGGCAGTTAGAATCTTAGGTACATTAGAGAAAACTGTGCTGCGGATT

Trp63_CapC_3p_A /5Biosg/CAGAAAAGAGGAGAGCAGCCTTGACCAGTCTCACTGCTAACATGTTGTACCTGGAAAACAATGCCC

AGACTCAATTTAGTGAGGTAAGGCTTTAAGATTTTAGCCCTCTGCATAGAGATC

Trp63_CapC_5p_B /5Biosg/GATCCTTTTCTTCGCTTCTTCTTTTAAATAAAAACATACTTAGCTGTGGTTCTAGTGACCCAATGTAAAT

GTGTTTGCAAGTCGCATGTAGGAAACTGCTTTTCTGAGTGAATGTTTTCT

Trp63_CapC_3p_B /5Biosg/AGTGAGAAGACCCTGCTGGGAATATTGGTGGGTGTGAATGTACCAGTGATAGAAACGAATTGATTGT

GTATTAACTGTATAGTAAAGTTCTCCAGGCTTCATACTAAAAGGAAATGGATC

Foxi1_CapC_5p /5Biosg/GATCTGGCTCAGTGTGAGGCGCTGGTCGGGCGCACCGTGGATTGCCATGGCAATGAGGGCTGAAT

AGGAATATGGTGGGCGTACCAGCTTCATGAGCTCTTCCTGAGAGGGGATGGGCAG

Foxi1_CapC_3p /5Biosg/GGCTCTTAAAAAGAACATCAAAAGATAGAGGATGGGAACTGGATTTTAGGTAGAAATGAGAAAGAAC

ACCCACGATTCAAGTTTCTTTCTAGCTTTAAGGCACAGCAGTCTCCCCTGATC

Gli3_CapC_5p /5Biosg/GATCCGCGCGCGCGGAGCGGGACCCCGCCGGGCGCGGCCTGGAAAGGAGCGGGAAAGCAAAGT

AAGGCGAGCAGTCTTCCCAAGTTTTTAAACCAACTTCGCCCCCTGCGGCGGCGGCGG

Gli3_CapC_3p /5Biosg/GCCCTTAGTCGTTGAAAAGTCGACTTGACGGTCGGGGGGCTCCTTTCTTTCTCTTTCTCCTCCCACC

CGCGGTTGAACCAAATCAGAACTGTCACTCAGGGCCGGTGACTCAGAGGGATC

Esr1_CapC_Prom1_5p /5Biosg/GATCACTTTTTTTTTTTTTTTTCAGCCAGAGGCTTGTCCTTCTGCAAACATCTATCTGTAGGCAAACGC

TGAGAAAGTTGGAAGCAGACCTGGCTGGAGAGAGAGAGGAAGGCCACCCCC

Esr1_CapC_Prom1_3p /5Biosg/TTAAAGCTGACCTTGGTCCCATGGAAATTCACTCCGGGGAAGCTACATTCAGCTGAGTCAGACACAG

TTATCTGTTCTTGGTGCAGCACTGGCAGGCTCTCTCTCTGCCTGCCTCAGATC

Esr1_CapC_5p_Up /5Biosg/GATCAGAGGTAATGTGTTTGCTTAGCACATCAAAGTTTTGGGTTTATCCCTAGTACCAAAAAGGAAAA

TAAATTTAAAATGCTTTTTATCTCATATTATTGCTTCAGCGTGTTTGTCTCT

Lgr5_CapC_5p /5Biosg/GATCGGGTTACCTCAAGGTGGCCTGACCCTGGTCTCTGGGCCCCAAGGAACCGAGCTTCAGATTTG

AAGGAGAGTCGGGAGGAGTACTTATCTCGGTCCCACAGAGATGAGTCGCTTCTG

Lgr5_CapC_3p /5Biosg/GCTTCAAAACAACCTAAGGGGACACTTAGGGACTGAAAGATAACACAGGCTTTCTCTGGTCCATGTC

AGATAACCTAGGGGGATGCATGCAGTGCTTGTTAAAAGGACCAAAATCTGATC

Tcf7_CapC_5p /5Biosg/GATCTCCTTTTGGGTCAGACTCCTCTGGATGTTAACTGGGCAAGAGCATCTAGGAATTGGGCAGAGA

AGTCCTTTTTTGTCCAAGCATCACCTGTGTGGTCAAGTAGGTAGCCAGCCCCA

Tcf7_CapC_3p /5Biosg/ACAGCGTCCTTTGCTCAATCTGGAGGCTTCTTACGTCCCCGGGATACTAGATGGACCCTGacacacac

acacacacacacacacacacacacacacacacaaacacCTGCCCTTTTGATC

Tbx2_CapC_Prom2_5p /5Biosg/GATCGGTCCTCTGCGCTTTCCAGCCCTCGCCCAGGCAGCGGCGGGCGCGGGCGGCGAGGTGGG

GGCCAGGCCAGGGGGAGGGGTCTCGGGGCCCGCTGGCCCGTCATTGGTTAATATTTT

(Continued on next page)

e6 Cell Genomics 3, 100424, November 8, 2023

https://github.com/Hughes-Genome-Group/captureC/releases
https://github.com/Hughes-Genome-Group/captureC/releases


Continued

Oligo_Name Sequence with mod

Tbx2_CapC_Prom2_3p /5Biosg/TCCCCTCCCGTCCAGAGCTTGGCCTGAGCTGTCAAAACCCCGCCCCCGGAGACCCACAATTGGTC

CAAAAAGCGTAAAATCAGCAATCAAGGGGGGCCTGGCTCGTTAGCGCAGGGGATC

Foxa1_CapC_5p /5Biosg/GATCTTACGTCGCCGGAGTGCCCACCTCCTCGTCCTCTCCCCATTTGTCCGCCGCACAAAGACGCT

CGCACCTACAAAGCCCGAGGTGCACCTGTGAGGCGGCCGCCCGCCAGTCCAgcc

Foxa1_CapC_3p /5Biosg/aaaaagaagaaaaggaaaaATAGGCGGTGCCTTGGAGGACAGGCCAGGGCTCTGGACCCAAAGAGCTGT

GCTGCGGGAGAAGGACCTGGGTGGTGGCATCAGAGCTACAGCGCAAGGATC

Msx2_CapC_5p /5Biosg/GATCCCGTCCCAGACGCGCACTCACTGGGCGGCGGGGAGTATCTGCCGGGCTCCTGTATCCACG

GTGCTCCGTCTTCGGAATTTTCCGACTTGACCGAGGCGGTCTCGAAGGGCTTGACG

Msx2_CapC_3p /5Biosg/CACGGACGCTCGCCACCGATTGGCTCTCCCTGGAGAGGCTTGGGGCCCTTCCCCCGCCCCGTTT

GAAATAAATTAGGAGTTAATTACAGGAGCAGTCAGCAGAGTTGTTATTAGGCGATC

Snai2_CapC_5p /5Biosg/GATCAGCAAGTTAACTTTCTGGCACGCCGCCCTAGACCTGCTGTGGCAGCTGCGGGGAGCCTTTA

CCTTCCTTTCCCAAAAGCCAGAGCCTACAGCTGCTTGTGTGCAATAACCCCCCTC

Snai2_CapC_3p /5Biosg/CGGTTCTATTGCTTGACTCAGAGAACACACCGGGCCGCTTTCCTTTTAATGCTGTGCCAAAACTGTC

CTTGCAGTCTCTTGATTACTTAGGTTAAGTTTTAATTCAAAACCTTTGAGATC

Ehf_CapC_5p /5Biosg/GATCATTTTTAAGGGTACCACCTGCCTAACCTTGACCACCTGACTCCTGCCGCCTTTGTGAATATAG

ATTCTTTTACCTATCTACACCTATTTCCTCAAACTGGAATACACTAAAGATGA

Ehf_CapC_3p /5Biosg/GAATAGAAAAGCCAAGTCCAAGTCCCTGTCAAGCAAATGAAGGAAGAGGGCCTGAGGTGCTCTTAA

ACATCCGGCTCATTTTCTAACCCGTATTTAGTCCTCTGCTATGTCATCAAGATC

Elf5_CapC_5p /5Biosg/GATCCCTGAAGCACCTTTATTCTTTACCACTTCTTGGCACTGCTCTTCTTTCCTAACACGCACAGAAT

AGGGGATAACACTACATACAGAGGTTCGGGACTTGGCCAGCCCAGGCAAAGG

Elf5_CapC_3p /5Biosg/GTCTGTATGCGTTCAGGGGTTTGTGCGCATTTGCCCCCTACTGGCAGCAACTGGAAACACATGCTC

TCCCGCATCTGCGTTAAGGTAGGagaatttaagacagaataggggtcctagatc

Hey1_CapC_5p /5Biosg/GATCCCACTCACGCTCAGTCTCCGGTTAAAACTCAACCATCCCTTTCCCACGCTGCGCCCCTTCCC

ATGGATAGGGGGAGGGCGGGGAAGGCGGAGAGGTTGGGGCAGGGGCGGGGCCAC

Hey1_CapC_3p /5Biosg/TTTTCTGGGTTAGCTTGAGGGAGGAGTAGCTATCCCCCGAGACATTCATTATGTTGGGATTTTTGCT

GTTGTTTTGTTTTGTTTTTGTCCTCCCTTCCCCCTAGTGTTGGCGGCCAGATC

cKit_CapC_5p /5Biosg/GATCTGCTCTGCGTCCTGTTGGTCCTGCTCCGTGGCCAGACAGGTGGGAAAGAGCGGCAGACAAG

AGGACTGCACCCTCTGTGGGCGCAGCCCGGGTCCGGGAGGGGTGCCACCTGGGTG

cKit_CapC_3p /5Biosg/ACCAGGACCGAGTCAGTTCTCCCCAGCTTTGGAAACCTCTGGTTTCAGTGTATGCGACTTGTAATCG

CAGGTGGCCGttttttttttttttttttttttttGGAGGGGAATCCCGAGATC

Tbx3_CapC_5p_Up /5Biosg/GATCTCGCTGCCTGTGAAAGCCAGAGTCTAGCTCAACTAAGACGCCTCCTGCGAGAAAGCCAGAG

AAGAGCTAGGGGGCGGGGGAAGGAGTCGAAAAAAAGGTTAAAAAAAAAAGTCTCC

Tbx3_CapC_3p_Up /5Biosg/CTTGGGCGCCAGTCGAGCCCCTGCTTGCTGCTTGCCCTACTGAAACCGACTTCCAGGAGCGGCTT

TTCCAACACACTCCACGCACCAGGACAGCCCCTGCAGCGGCTATGTCTCCAGATC

Pgr_CapC_PromB_5p /5Biosg/GATCTAGCCAGTGATTGGCTAGGGAGGGGCTTTGGGCGGGCCTTCCTAGAGCGCCAACGCTTGCT

AGAAAGCTATGGAGCCAGTCTAGACTGTCACTATCAGTCTTTGTAGTATTTACGG

Pgr_CapC_PromB_3p /5Biosg/TTCCTGTCCTCACCCCACCGCGACCGGGACAGCGCGACTACCACCCTTCCTCTGCGTCTGGGTGG

AGGGTAAGGACAGGAGCTGACCAAGACCGCCCCTCCCAACCAGGAGGTGGAGATC

Pgr_CapC_Exon_5p /5Biosg/GATCAAGGAGGAGGAGGAGGGCGCGGATGCTGCTGTGCGCTCGCCGCGCCCCTACCTGTCGGCT

GGAGCCAGCTCCTCCACCTTCCCAGACTTCCCGCTGGCACCCGCGCCGCAGCGAGC

Pgr_CapC_Exon_3p /5Biosg/CGGGCATAAAAGGGAGTGCAGATATACCATTTTATTGTGTACCATTCTCCCAAACATTGCCTGCAAA

CTTCCTGAAGCCTGAGCACCCAGGTTCAAACCCTGAGGCCTCGCTCTAAGATC

Cited1_CapC_5p /5Biosg/GATCACAGCCACCACGCTTGGTTCTCGGCGCGGGGACCGGGCTCTTAAGCCCCCACTGCCTCCC

GTAGAGCCCTGGCGCACAAGCACACAGCAGCAGGCTGGCCTCGGCTAGGAATCCCA

Cited1_CapC_3p /5Biosg/CTTCCTCACCGCAGCTCGGCAGCGCACTTCTGCAGCTGTGCCGCCGGGAACATTTTATAGCGGCG

GGCTGGCGTGTGTGGCCCTTTAAAGGCGCTCGAGCTGGTGCAGTCACCGTGGATC

Maf_CapC_Up_5p /5Biosg/GATCCCGGGCGCTTCAGGCTCGGGAAGGTCCTCCGCGGCTGGCGGTGACGGTGGTGATGACAGC

GGCAGAGAGGATGCCGGAGGAGCACGGCCCGGTGCGCGGCGTCCCCGGCTCGCCGC

Maf_CapC_Up_3p /5Biosg/GCGGGTGGCTGTCCCGGAGGCGCCGGCCTCCACACCGGAGTGGTTAACACTTCACGCTTCTCTCC

TCTTCTGCCTGGCTCTTATGGTTACTATTATTATTTTCTTTTCTCTCTCCGGATC
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Chromatin accessibility and histone mark analysis
For analysis of chromatin accessibility and histone marks associated with genes, we mapped the merged biological replicate bam

files using bedtools to three separate regions. Using genes from RefSeq, we annotated 500 bp up and downstream of the start of the

gene as the TSS, the next ± 2 kb (excluding 1 kb TSS) as the TSS-proximal region and finally, we took the entire gene-body and sub-

tracted counts within the TSS and TSS-proximal region. We then used the TSS with the highest number of CUT&Tag and ATAC

counts when multiple TSSs were present. Data were normalized by subtracting IgG counts from each region (except ATAC, which

does not have a control) and log2 RPKM determined using edgeR’s rpkm function. For coverage track-plots, bedgraphs were pro-

duced from bam files using the RPKM setting from DeepTools bamCoverage.81 To ascertain TSSs that were primed or active, we

determined the percentile ranks across all three cell types for the CUT&Tag and ATAC-seq datasets and considered as TSS primed

or active if the ATAC, H3K27ac and H3K4me3 percentile ranks were all >0.25.

CRISPRa/dCas9 guide and plasmid generation
Guide RNAs (gRNAs) for enhancers were designed to target peaks from the ATAC and CUT&Tag sequencing , see below for primer

sequences. Guides that showed the largest increase in gene expression tended to be adjacent to the central ATAC peak at an

enhancer and not overlapping conserved motif sites. gRNAs were designed with Benchling as 20 bp in length, targeting the

mm10 genome and using the NGG PAM site design. Guides were cloned into pLH-gRNA1-MS2x2-sfGFP plasmid via the BbsI re-

striction site. In brief, pLH-gRNA-MS2x2-sfGFP was modified from pLH-sgRNA1-2XMS2 (Addgene #75389) by replacing the

ccdB fragment with the BbsI cloning cassette and replacing the hygromycin resistance with a superfolder GFP with the BbsI site

removed , see below for cloning sequences. The transactivator and deactivated-Cas9 plasmids were constructed from Addgene

plasmids #61423 and #61422, respectively, as previously reported.82 sgRNAs were ordered from IDT Signapore and were cloned

as described.82 Annealed oligos were phosphorylated by T4 polynucleotide kinase (PNK) (Promega #M4101): pLH-sgRNA1-

2XMS2 was digested with BbsI-HF � (New England Biolabs, #R3539) and ligated with the phosphorylated oligonucleotides. Plas-

mids were cloned using the Stbl3 Escherichia coli strain.

CRISPRa/dCas9 sgRNA target sequences used for enhancer activation
sgRNA name 20 bp sgRNA target sequence

Snai2 -94/95 sgRNA #1 GACACCGTTAGTCATCCTAG

Snai2 -94/95 sgRNA #2 AGCATCCTAGACACTGCACA

Snai2 -221/239 sgRNA #1 TGTACACAGAGATATCTGAG

Snai2 -221/239 sgRNA #2 AAGAATGGTGATGATTTGTG

Snai2 -221/239 sgRNA #3 GTGCCCTGCTAACAGCCTAG

Snai2 -221/239 sgRNA #4 AATCTTGCAGACAGACAATG

Snai2 -405/409 sgRNA #1 ACACCTGTTCTGCCCAGGCA

Snai2 -405/409 sgRNA #2 AGCTAGTAAGAAACCCCCAG

Elf5 +278/280 sgRNA #1 ATCAGAAGGAATCCACCAGG

Elf5 +278/280 sgRNA #2 TCATGGGCTCAGGAGCGGGG

Elf5 +58/59 sgRNA #1 GGCAAGAACTCACTCCCCAA

Elf5 +58/59 sgRNA #2 TGGCCTTTGAGAAGACGTCA

Elf5 -17/18 sgRNA #1 CAACCAAGGGAGGTGCTAGG

Elf5 -17/18 sgRNA #2 GGAGTTGGTATTGGCACTCA

Msx2 +184/186 sgRNA #1 GAACTAGTGTCTCCTGAGCA

Msx2 +184/186 sgRNA #2 ACCTAGTCAAGTCTAGCCTG

Msx2 +184/186 sgRNA #3 TTGCTTCTCCCATCGCACTG

Non-targeting control (NTC) GCCGTAAGCGGGCCGGTTGA
Cloning sequences for pLH-gRNA-MS2x2-sfGFP
Primer Sequence 5’ – 3’

BbsI cassette rowhead ACCGGTGTCTTCGAGGCTTACAGGACGAAGACCC

AAACGGGTCTTCGTCCTGTAAGCCTCGAAGACAC

(Continued on next page)
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Primer Sequence 5’ – 3’

Superfolder GFP rowhead ATATGGATCCTTAATGCCGCCACCATGCGTAAAGGCGAAGAGCTGTTCAC

CAGGATATTGCCGTCCTCTTTAAAGTCAATG

CATTGACTTTAAAGAGGACGGCAATATCCTG

AATTGTCGACGTCGGCATCTACTTTATTTGTACAGTTCATCCATACCATGCGTGATG
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CRISPR-activation of target gene enhancers
COMMA-DbGeo cells were maintained in DMEM/F-12 GlutaMAXTM (Gibco, #10565018), supplemented with 2% FCS (Gibco,

#10099-141), 10 mg/ml insulin and 5 ng/ml hEGF (Sigma Aldrich, #E9644). Cells were transduced with lentivirus by spin infection

for 90 mins at 32�C. mCherryhighBFPhighGFP+ cells were sorted on the BD FACSAriaTM Fusion one or two passages following trans-

duction and frozen for protein and RNA analysis.

Quantitative real-time PCR
RNA was purified from sorted, transduced COMMA-DbGeo cell pellets using the RNeasy kit from Qiagen (Cat#74004) with on-col-

umn DNase digestion (Qiagen Cat#79256) performed. Purified RNA was used to produce cDNA with Invitrogen’s SuperScriptTM IV

and Oligo dTs (ThermoFisher Cat#18090010). qRT-PCR was then carried out with Bioline’s SensiMixTM Hi-Rox (Cat#QT605-05) on a

Corbett Rotor-Gene 3000. qRT-PCR primers for Rplp0: forward, GACAACGGCAGCATTTATAACC and reverse, ACTCAGTC

TCCACAGACAATGC; Elf5: forward, ACAGGATGACGTACGAGAAGC and reverse, ATCAAATGAGCCTGGTGTCC; Msx2: forward,

CGGAAAATTCCGAAGACG and reverse, TTCAGAGAGCTGGAGAACTCG.

Western blot analysis
FACS purified cells were resuspended in RIPA buffer and sonicated, then lysates were clarified by centrifugation. Lysate was

incubated at 95�C for 5 min with loading dye and reducing agent before being resolved by western blot via NuPAGE 4–12% Bis-

Tris 1.5 mm gels (Life Technologies, #NP0335BOX). Proteins were transferred to polyvinylidene fluoride membrane using the

iBlot 2 Dry Blotting System (Thermo Fisher Scientific) according to the manufacturer’s instructions. Membranes were probed

with anti-FoxP1 (Cell Signaling Technology #2005, 1:1000), anti-total Histone 3 (Millipore #07-690, 1:5000), anti-a-tubulin

(Sigma Aldrich #T6199, 1:5000), anti-Snai2 (Cell Signaling Technologies, #C19G7, 1:1000) or anti-HSP70 (clone N6, WEHI,

1:10,000) primary antibodies, followed by mouse or rabbit IgG secondary antibodies (1:10,000) conjugated to horseradish

peroxidase. For Foxp1 blots, 22,500 sorted cells were probed per lane, and 100,000 cells per lane for Snai2. Membranes

were developed using Clarity electrochemiluminescence substrate (Biorad #1705060) and imaged on ChemiDoc Touch Imaging

System (Biorad).

Differential analysis of CUT&Tag and ATAC-seq data
Differential binding between libraries of each data type was assessed using the csaw package33 v1.30.1 with basal, LP and ML li-

braries in a separate analysis to the Tspan8+ and Tspan8– basal libraries. Biological replicates were kept separate for the analysis.

For each data type, read parameters were defined with readParam with pe=’’both’’, minq=20 and reads in blacked regions were dis-

carded. Max.frag was set for each data type depending on the fragment distribution and is shown in the ‘‘Bin sizes for csaw analysis’’

table below. Sliding windows of a width (depending on the library) were tiled across the genome of interval width/2. Windows were

filtered with a global enrichment approach with the filterWindowsGlobal function. Data were binned with a larger window size (see

below table) and required to be higher than a threshold plus the background. Loess-based normalization was performed with the

normOffsets function. Differential binding was assessed for using the quasi-likelihood (QL) framework in the edgeR package

v3.38.483 with robust=TRUE for the glmQLFit. The design matrix was constructed using a layout that specified the cell type and

the mouse group (for basal Tspan8+ and Tspan8– cells and analysis with H3K27me3, H2AK119ub, H3K9me2, K3K9me3 CUT&Tag

libraries, themouse groupwas not included in the designmatrix). Proximal testedwindowsweremerged into regions by clusterWind-

ows with a cluster level FDR target of 0.05 and where the maximummerged windows size and allowed distance between windows is

given in the table below. DA regions between basal Tspan8+ and Tspan8– cells were allocated to a gene if they overlapped a TSS or an

interacting region as determined by FitHiChIP (FDR < 0.1).

Multidimensional-scaling plots were constructed with the plotMDS function in the limma package applied to all the filtered and

normalized logCPM values of windows. When required, logCPM values were corrected for experimental batch with the remove-

BatchEffect function of the limma package.
Cell Genomics 3, 100424, November 8, 2023 e9



Resource
ll

OPEN ACCESS
Bin sizes for csaw analysis
Data type Max.frag Width (bp) Binned size Threshold Tspan8± Threshold MEC Distance between Max merged width

ATAC 500 100 2 kb 8 6 500 10000

RNA PolII 700 1000 50 kb 2 2 1000 50000

H3K36me3 600 1000 50 kb 1.8 1.8 1000 50000

H3K4me1 1000 1000 50 kb 1.8 1.8 1000 50000

H3K4me3 1000 1000 50 kb 1.8 1.8 1000 50000

H3K9ac1 600 1000 50 kb 1.8 1.8 1000 50000

H3K27ac 1000 1000 50 kb 1.8 1.8 1000 50000

H3K27me3 1000 10000 1 Mb 1.8 1.8 10000 1000000

H2AK119ub 800 10000 1 Mb 2 1.8 10000 1000000

H3K9me2 600 100000 5 Mb 2 1.5 100000 5000000

H3K9me3 600 100000 5 Mb 1.2 1.2 100000 5000000
Omni-CTM data processing with diffHic pipeline
Fastq libraries were aligned to the mm10 genome with the iter_map.py script in the diffHic package36 which implements iterative

mapping84 and utilizes bowtie2 for alignment. The BAM files for the sequencing runs for libraries were merged with samtools then

the FixMateInformation command from the Picard suite v1.117 (https://broadinstitute.github.io/picard/) was applied, duplicate reads

were marked with MarkDuplicates and then re-sorted by name. Each BAM file was further processed to identify valid read pairs with

the preparePairs function in diffHic. A param object was created from the genomic ranges object created by the emptyGenome func-

tion with the BSgenome.Mmusculus.UCSC.mm10 object. Read pairs were discarded if one read was unmapped, marked as dupli-

cates or had a mapping quality score below 5. Read pairs were determined to be dangling ends or self-circling reads and removed if

the pairs of inward-facing reads or outward-facing reads on the same chromosome were separated by less than 1000 bp.

Differential interactions analysis with diffHic
Differential interactions (DIs) were detected using the diffHic package. Two separate analyses were performed: for basal, LP and ML

cells and for basal Tspan8+ and Tspan8– cells. Read pairs were counted into 50 kb bin pairs for all autosomes and sex chromosomes.

Bins were discarded if they had a count of less than 5 or contained blacklisted genomic regions as defined by ENCODE for mm10.85

Filtering of bin-pairs was performed using the filterDirect function, where bin pairs were only retained if they had average interaction

intensities more than 4-fold higher than the background ligation frequency. The ligation frequency was estimated from the inter-chro-

mosomal bin pairs from a 2 Mb bin-pair count matrix. Diagonal bin pairs were also removed. The counts were normalized between

libraries using a loess-based approach. Tests for DIs were performed using the quasi-likelihood (QL) framework86 of the edgeR pack-

age with a generalized linear model87 and empirical Bayes strategy88 as described previously.61 The design matrix was constructed

using a layout that specified the cell type and themouse group. A DI was defined as a bin pair with a FDR< 0.01. The DIs and genomic

ranges were overlapped with the overlapsAny function from the IRanges package.

Multidimensional-scaling plots were constructed with the plotMDS function in the limma package applied to the filtered, normal-

ized and mouse group corrected logCPM values of each bin pair. The logCPM values were corrected for mouse group with the re-

moveBatchEffect function of the limma package. The distance between each pair of samples was the ‘leading log fold change’,

defined as the root-mean-square average of the 10,000 largest log2-fold changes between that pair of samples. Upset plots were

created using the ComplexUpset package.89

A/B compartment analysis
The HOMER HiC pipeline68,69 was used to identify A/B compartments, create contact matrices and decay curves. After preprocess-

ing with the diffHic pipeline, libraries in HDF5 format were converted to the HiC summary format with R. Then input-tag directions

were created for each library with the makeTagDirectory function, with the genome (mm10) specified. Summed biological-replicate

tag directories for each cell type were also created. A/B compartments were identified at a resolution of 100 kb as described.90 With

the summed biological-replicate tag directories, the runHiCpca.pl function was used on each library with -res/window 100,000 and

the genome (mm10) specified. To identify changes in A/B compartments between libraries, the getHiCcorrDiff.pl functionwas used to

directly calculate the difference in correlation profiles. Compartments were considered flipped if the difference in correlation was less

than 0 and were considered melting if the difference was >0 and <0.4.
e10 Cell Genomics 3, 100424, November 8, 2023

https://broadinstitute.github.io/picard/


Resource
ll

OPEN ACCESS
Omni-CTM

Library reproducibility

To determine the reproducibility of the libraries the HiCRep R package was utilized to quantify the similarity between all libraries with

the stratum adjusted correlation coefficient (SCC).91 For every combination of libraries, the raw contact matrices (50 kb resolution) of

individual chromosomes for each replicate were used to compute the SCC with smoothing parameter 4 and maximum distance

considered 5 Mb. For each pairwise comparison, a median SCC was calculated across all chromosomes. Values were plotted

with pheatmap package.

Visualization of Omni-CTM

Normalized contact matrices at 20 kb resolution were produced with the HOMER HiC pipeline for visualization with the summed bio-

logical-replicate tag directories. The analyzeHiC function was used with the -balance option. Contact matrix plots were constructed

using the plotHic function from the Sushi R package v1.34.0.92 The color palette was reversed inferno from the viridisLite package

v0.4.1.93 DI arcs were plotted with the plotBedpe function of the Sushi package. The Z-score shown on the vertical axis was calcu-

lated as –log10(P value). ChromHMM tracks and A/B compartments were plotted with the plotBed function. Capture-C data were

plotted with the plotBedgraph function. Gene annotation was plotted with the plotGenes function.

TSS/genebody interactivity (in silico 4C/5C)
Using the diffHic processed data, for genes >100 kb, interactivity within the genebody, TSS and gene-body (intragenic) and with the

TSS and the regions 2.5 Mb upstream and downstream of the TSS excluding the genebody (intergenic) was calculated. The TSS

region was defined at 2.5 kb ± the TSS and included alternative TSSs. Any read pairs overlapping blacklisted regions were discarded.

The genome was partitioned into 5 kb bins. For interactivity within the genebody, the connectCounts function was used with the bins

across the genebody as the regions and second.regions arguments. For each gene the counts were summed. For the interactivity

between the TSS and the genebody, the connectCounts function was used with TSS regions and the bins across the corresponding

genebody excluding the TSS region as the regions and second.regions arguments. For each TSS region the counts were summed.

For the interactivity between the TSS and the regions outside the genebody, the connectCounts function was used with the TSS re-

gions as the regions argument and the bins in the 2.5 Mb regions upstream and downstream excluding the genebody and TSS re-

gions as the second.regions argument. All gene/TSS counts were normalized with TMM normalization. Reads per interaction length

(TSS) or area (within gene-body) permillion were calculatedwith the RPKM from the edgeR packagewhere the gene.length argument

was set to: the gene length square for within gene-body interactions, the gene length for intragenic and the 2.5 Mb upstream and

downstream of TSS excluding the gene-body for intergenic.

Identification of super-enhancers
H3K27ac CUT&Tag sequencing data were used to map super-enhancers with the ROSE39 (Rank ordering of super-enhancers) al-

gorithm. Biological replicates were merged and down-sampled to 13.7M for H3K27ac and 1.9M reads for IgG from basal, LP and

ML cells, while basal Tspan8+ and Tspan8– cells were down-sampled to 6.5M reads for H3K27ac and 2.5M for IgG. Peakswere called

by SEACR70 (Sparse Enrichment Analysis for CUT&RUN) with normalization to IgG and a stringent peak curve cut-off. ROSE was

performed using the H3K27ac peaks and merged read file from each cell population. SEs were linked to a gene if they overlapped

their TSS proximal region (± 2.5 kb), gene-body regions (intragenic) or interacted with TSSs as determined using Omni-CTM data.

FitHiChIP significant interactions
To determine significant interactions within each cell type, Omni-CTM reads were mapped with HiC-Pro using Dovetail’s recommen-

ded pipeline. Interactions were centred around TSS as determined by RefSeq (refGene.gtf, downloaded 8/2/2017) and interactions

were then called using HiC-Pro allValidPairs files with FitHiChIP72 using the following settings, ‘‘peak to all’’ interactions over 10 kb

genomic bins, between 2 Mb and 20 kb from the TSSs with coverage bias regression and Q-value of <0.1.

Analysis of alternative TSSs
Read counts within ± 500 bp of the TSS regions were summarized using featureCounts for each transcript in the RefSeq annotation

(refGene.gtf, downloaded 8/2/2017). Differential alternative TSSs analysis was performed using the edgeR quasi-likelihood pipeline,

generating DETSSs. Regions with low read coverage were removed using filterByExpr, and the TMM normalization was applied. The

testingwas done by glmTreat. The fold-change cutoff was set at 2 for basal vs LP and basal vsML, and 1.2 for LP vsML comparisons.

To distinguish differentially expressed TSSs from alternative and differentially expressed TSSs (DEATSSs), we applied a percent rela-

tive range calculation, determining the variability in all TSSs for a single gene across the threeMEC populations. A final list of DEATSS

was determinedwith the following parameters: 1- gene passes filtering using edgeR’s function filterByExpr, 2- aminimumFDR< 0.05

for at least one TSSwithin the gene, 3- gene containsR 2 TSSs, 4- remove bi-directional promoters, 5- percent relative range of TSS

CPM within a gene is R 0.75.
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Chromatin state modeling
Chromatin states of MECs were modeling using a hidden Markov model (ChromHMM).73 ChromHMM parameters were adjusted for

CUT&Tag sequencing data, as there is very little background compared to ChIP-Seq and antibody-specific differences are larger.

Genomic enrichment was first determined using DeepTools.81 plotFingerprint tool and calculated as ‘‘1-Elbow Point.’’ Each antibody

and ATAC sample was down-sampled to match the number of reads from the sample with the minimum reads and maximum

genomic enrichment. ChromHMM was then run on these down-sampled and genomic-enrichment normalized bam files with the

following parameters: 24 states, bin size of 400 bp, information smoothing of 0.01, initialization method ‘‘information’’ and a pseudo

count employed for 0 count regions. States were then reordered as TSSs, enhancers, transcription, polycomb, silent and heterochro-

matin and repeat regions. States are described as follows: (1) TSS_A1=active transcriptional start site #1, (2) TSS_Wk=weak TSS, (3)

TSS_A2, active TSS #2, (4) TSS_Flk, TSS flanking region, (5) TSS_Biv=bivalent TSS, (6) Enh_G_A=active genic enhancer, (7) En-

h_A=active enhancer, (8) Enh_W=weak enhancer, (9) Enh_Flk=enhancer flanking region, (10) Enh_Prm=primed enhancer, (11)

Enh_G=genic enhancer region, (12) Tx_1=transcription #2, (13) Tx_2=transcription #2, (14) PRC1/2=polycomb repressive complex

1 and 2, (15) PRC2=PRC2 enriched, (16) PRC1=PRC1 enriched, (17-19) Quies_#=quiescent/silent chromatin, (20-24) Het_#=heter-

ochromatin and repeat regions.

TSS and CRE scores
ChromHMM states were used to derive TSS and CRE scores. When multiple refseq promoters were available for a gene, the pro-

moter with the highest read count was used. Promoter states were assigned a score based on their association with gene expression:

state 1 = 2, states 2 and 3 = 1, states 5 and 16 = -1 and states 14 and 15 = -2. TSS scores were calculated as: maxscore(states 1:3) +

minscore(states 5, 14:16). CREs were assigned to a gene using FitHiChIP analysis of the merged biological replicate Omni-CTM data

at 10 kb resolution with a FDR < 0.1. CRE states were assigned scores based on their association with expression: states 1:3 = 1,

states 6 and 7 = 2, states 5, 10 and 16 = 1, states 14 and 15 = 2. The number of interactions to the target TSS and the distance

spanned are critical for CRE activity.94 Taking these data into account, the CRE score was calculated as: zscore((sumscores(state

1:3, 6 and 7) - sumscores(state 5, 10, 14:16)) x enriched CCPM / squareroot(span of interaction from TSS to CRE)).

Hierarchical clustering
DEGswere clustered using themean-centered difference for the log2 RPKMgene expression and the TSS and CRE scores using the

r package pheatmap. Expression (log2 RPKM), TSS and CRE ChromHMM states and interactions were then mapped based on the

clustered gene order. Genes from the LP-alveolar single-cell cluster (Pal et al 2021,25 cluster C1) were clustered based on their

scRNA-seq expression (NCBI GEO accession number: GSE164017), then ChromHMM states, scores and interactions weremapped

based on the clustered gene order. Clustered dendrograms were used to determine the clusters marked on the heatmaps.

Transcription factor motif analysis
To predict transcription factor occupancy, we utilized the TOBIAS48 tools (Transcription factor Occupancy prediction By Investiga-

tion of ATAC-seq Signal). We merged JASPAR74 (JASPAR2018_CORE_vertebrates_non-redundant) and HOCOMOCO75 (HOCO-

MOCOv11_core_MOUSE_mono)motif databases and ran TOBIASwith default settings on narrow peaks called byMACS295 (param-

eters: callpeak –nomodel –shift -75 –extsize 150 – qvalue 0.05) on merged biological ATAC replicates.

To create networks and heatmaps of motif enrichment the bound sites for individual motifs from the TOBIAS analysis were im-

ported into R and converted to Granges objects. ChromHMM states were imported into R as GRanges objects and split into

400 bp-width bins with tile ranges function from the plyranges package. The motifs were overlapped (connected) with the

ChromHMM states, genes or DIs with the overlapsAny function from the IRanges package. Networks were constructed for each line-

age (basal, LP and ML) for the TFs identified in the RNA-seq signature analysis that also had binding sites identified by the TOBIAS

analysis and had expression more than 1 RPKM for LP and ML and 10 RPKM for basal cells. Footprinted motif sites mapped were to

TSSs, proximal regions and distal interacting regions as determined by FitHiChIP. The distal region of an interaction was defined as

the anchor not containing a gene; if an interaction contained a gene in both anchors an interaction was duplicated to include both

overlapping events. Motif enrichment was the number of motifs in a region per bp. Networks were created Cytoscape49 using the

gene as the target and the TF binding site as the source. Interconnectivity (betweenessCentrality) was calculated with the

NetworkAnalyzer and treating the network as directed. For the differential transcriptional network, the network was created using

the difference in motif enrichment between the basal Tspan8+ and Tspan8– populations. TFs were expressed at >1 RPKM and genes

were DEGs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests between two groups used a two-tailed T-test with Welch’s corrections, unless otherwise specified. Statistical anal-

ysis was performed in R v4.2.0 and GraphPad Prism 9. P-values of statistical tests were as follows: n.s. = not significant, * P<0.05, **

P<0.01, *** P<0.001 and **** P<0.0001.
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