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Abstract: The opioid crisis in the United States poses a major threat to public health due to psy-
chiatric and infectious disease comorbidities and death due to opioid use disorder (OUD). OUD is
characterized by patterns of opioid misuse leading to persistent heavy use and overdose. The stan-
dard of care for treatment of OUD is medication-assisted treatment, in combination with behavioral
therapy. Medications for opioid use disorder have been shown to improve OUD outcomes, including
reduction and prevention of overdose. However, understanding the effectiveness of such medications
has been limited due to non-adherence to assigned dose levels by study patients. To overcome this
challenge, herein we develop a model that views dose history as a time-varying covariate. Proceeding
in this fashion allows the model to estimate dose effect while accounting for lapses in adherence.
The proposed model is used to conduct a secondary analysis of data collected from six efficacy and
safety trials of buprenorphine maintenance treatment. This analysis provides further insight into the
time-dependent treatment effects of buprenorphine and how different dose adherence patterns relate
to risk of opioid use.

Keywords: clinical trial; functional general linear mixed model; opiate substitution treatment; opi-
oid urinalysis

1. Introduction

There have been nearly 500,000 overdose deaths from opioids in the United States
alone in the last 20 years, with associated annual costs exceeding $1 trillion [1]. The treat-
ment of opioid use disorder (OUD) is inherently complex, with clinician assessment of
the patient, comorbidities, suitability for one of the three FDA-approved medications, psy-
chosocial counseling and care for comorbidities [2]. One of the two more heavily utilized
medications in OUD treatment is buprenorphine, an opioid partial agonist. Studies have
been conducted to assess the effectiveness of various formulations and doses of buprenor-
phine on detoxification, retention in treatment, and on the elimination of illicit opioid
use [3]. A meta analysis of clinical trials found that any dose over 2 mg of buprenorphine
was useful at retaining patients in treatment but only higher doses (16 mg or more) reduced
illicit opioid use [4]. It has been shown that illicit opioid use and the number of weeks
abstinent from illicit opioid use are significantly associated with daily buprenorphine ad-
herence [5]. Given the potential interaction between buprenorphine dosing and adherence,
further investigations aimed at better understanding these interactions are warranted and
will support translational clinical research that seeks to optimize the overall effectiveness
of medications for OUD treatment (MOUD).

A challenge to being able to accurately assess the effectiveness of MOUD in clinical
trials is non-adherence. For example, a multicenter, randomized clinical trial (CSP-999)
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considered the effectiveness and safety of four buprenorphine dose levels (1, 4, 8, 16,
or 32 mg/day), which were administered daily in clinic. Due to the mode of delivery,
adherence for this study was directly observed, i.e., patients were either present or absent
from the clinic visit. Figure 1 provides a depiction of dose history over a 50 day period for
four randomly selected CSP-999 trial patients. In particular, three of the selected patients
were assigned to a 16 mg/day dose while the remaining patient was assigned to a 8 mg/day
dose. Days when patients missed a dose (i.e., were non-adherent) are represented by a
dose level of 0 mg/day. Induction and re-induction after a lapse in dosing can be seen by
increasing dose levels from 0 mg/day to the assigned levels. Failing to account for the
patterns in adherence depicted in Figure 1 when trying to relate assigned dose to opioid
use will obscure the true effect of buprenorphine on illicit opioid use. In particular, not
accounting for these patterns will lead to underestimation of the effect (or log-odds) of dose
on reducing illicit opioid use.
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Figure 1. The four figures depict a time series of daily dose of buprenorphine taken by four randomly
selected subjects, each coming from the CSP-999 trial, for the first 50 days of the study.

Given the challenge of non-adherence in substance abuse trials aimed at assessing
efficacy of various treatments and dosing protocols, the goals of this paper are two-fold.
First, we seek to develop and demonstrate a methodology that can be used to directly
acknowledge and account for the effects of adherence when assessing treatment effects.
Second, we seek to use our proposed model to assess the effectiveness of buprenorphine
as a MOUD. To this end, we compiled, aligned, and harmonized publicly available data
from six efficacy and safety clinical trials of buprenorphine maintenance treatment with
detailed logs of patient buprenorphine dose. For more on the combined data set and
merging steps see [6]. As a part of these trials, patients were expected to attend weekly
follow-up clinic visits with opiate urinalysis testing. Dose administration varied across the
six trials, with CSP-999 being the only trial requiring daily doses to be self-administered
in clinic. Weekly dose adherence for the remaining trials was reconstructed using other
available information, e.g., self reported non-adherence and returned pills. Additionally
available were a collection of various sociodemographic and substance use variables that
were included in the analysis to address potential confounding.



Int. J. Environ. Res. Public Health 2022, 19, 5456 3 of 21

To analyze these data, we develop a generalized linear functional mixed-effects model.
The proposed model views daily dose level as a functional covariate whose value reflects
the mg/day dose taken, with a value of 0 corresponding to days when the subject is
non-adherent. By construction, our model has several key features. First, we can extract
an estimate of, and conduct inference about, the dose effect for individuals with strict
adherence (i.e., 100% compliance with the prescribed dosing protocol). Second, we can
assess the effect of different types of dose self-administration or medication adherence
patterns on illicit opioid use. Our model makes use of random effects to account for across
trial heterogeneity, and across subject heterogeneity within studies. To complete model
fitting, we cast our model into the Bayesian paradigm and develop a custom Markov chain
Monte Carlo (MCMC) posterior sampling algorithm.

2. Materials and Methods
2.1. Generalized Linear Functional Mixed-Effects Model

In what follows, we outline the salient features of our proposed model, which was
designed to relate illicit opioid use to time-varying dose adherence while controlling for
various demographic and drug use history factors purported to be related to the same.
To this end, let Yij, for j = 1, . . . , ni, and i = 1, . . . , m, be a binary indicator such that Yij = 1
denotes the event that the ith individual has a positive urinalysis test during the jth clinic
visit with urinalysis and Yij = 0 otherwise. To relate the observed test data to the available
covariates, we posit the following generalized linear functional mixed-effects model

νij = g−1(πij) = log

(
πij

1− πij

)
=
∫
Aij

Dij(s)β(s)ds + xT
ijα + γ0i + γ1k(i), (1)

where g(·) is the logit link function which is used to relate the linear predictor, νij, to the
probability of relapse, πij = P(Yij = 1). To elucidate the key feature of our model adopted
to capture the effect of dose adherence, we note that the first term on the right-hand
side of (1) is the functional component which consists of the time-varying buprenorphine
dose curve (Dij(·), e.g., see Figure 1), the functional coefficient (β(·)), and the time frame
(Aij) leading up to the urinalysis clinic visit over which the dose levels are allowed to
impact the probability of relapse. The remaining components of the model consist of
xij a P-dimensional vector of demographic and drug use history risk factors whose first
entry is a one to allow for the usual intercept, α the corresponding vector of regression
coefficients, γ0i a subject-specific random effect entered into the model to account for the
heterogeneity across subjects, γ1k(i) = γ1k if the ith subject is part of the kth trial, and γ1k is
a random effect specified to account for the heterogeneity across trials, k = 1, . . . , K. Herein,
the random-effects distributions were taken to be

γ0i
iid∼ N(0, σ2

0 )

γ1k
iid∼ N(0, σ2

1 ),
(2)

and note, here the random effects are taken to be independent given the nesting of subjects
within trials. A few comments on the form of the model are warranted. First, through
adopting the functional regression framework, we are able to directly acknowledge and
estimate the effect of time-varying dose adherence, whereas more traditional variable ag-
gregation techniques (e.g., average dose) fail to acknowledge key trends in dose adherence,
e.g., waning adherence from the point of care or weekly patterning. Second, the time
window (i.e., Aij) should be selected so that the upper bound is just before the jth clinic
visit with urinalysis for the ith individual and that the length of the interval reflects the
approximate elimination time for buprenorphine, i.e., buprenorphine doses taken prior to
the lower bound are no longer present in the patient’s system and therefore cannot impact
the probability of opioid use. Generally speaking, it typically takes five half-lives for a
drug to completely leave a subject’s system. Thus, given that the elimination half-life of
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buprenorphine is 24 to 42 h, we specified a time window consisting of 15 days to more than
adequately capture the relevant dose history. Lastly, given the form of the proposed model,
we can extract dose effect for individuals with strict adherence to their prescribed dosing
regime. To see this, we note that if a subject adheres to the dosing regime, then Dij(s) = Dij
for all s. Thus, we would have∫

Aij

Dij(s)β(s)ds =
∫
Aij

Dijβ(s)ds = Dij

∫
Aij

β(s)ds

= Dijβ
∗

where β∗ =
∫
Aij

β(s)ds. Note, β∗ represent the usual increase in log odds associated with

a one unit increase in buprenorphine dose level. Thus, by estimating β(·), we can also
estimate β∗.

Estimating the buprenorphine dose effect β(·) in model (1) is challenging from both a
theoretical and computational perspective because of its infinite dimension. To reduce the
number of unknown parameters needed to be estimated while also maintaining adequate
modeling flexibility, we approximate β(·) using B-splines [7]. This leads to the following
representation of β(·):

β(·) =
L

∑
`=1

η`b`(·), (3)

where b`(·) is a spline basis function and η` is the corresponding spline coefficient, for ` =
1, . . . , L. The L spline basis functions are fully determined once the degree and knot set are
specified, thus the only unknown parameters in (3) are the spline coefficients. In specifying
the basis functions, the degree controls the overall smoothness of the basis functions and the
number of knots determines the overall modeling flexibility; for further discussion see [7].
We suggest selecting a relatively large knot set (e.g., 5–6 knots) and then regularizing the
estimation of the spline coefficients through the methodology outlined below.

Using the spline representation of β(·) depicted in (3), we can re-express the functional
component in model (1) as follows

∫
Aij

Dij(s)β(s)ds =
∫
Aij

Dij(s)

(
L

∑
`=1

η`b`(s)

)
ds

=
L

∑
`=1

(∫
Aij

Dij(s)b`(s)ds

)
η`

:= mT
ijη,

(4)

where mij is an L-dimensional vector whose `th element is mij` =
∫
Aij

Dij(s)b`(s)ds and

η = (η1, . . . , ηL)
′. Thus, the linear predictor of our model can be expressed as

νij = mT
ijη+ xT

ijα + γ0i + γ1k(i). (5)

2.2. Prior Specification

To facilitate both parameter estimation and inference, we cast our problem into the
Bayesian paradigm. The first step in this process involves specifying prior distributions
for all unknown parameters. Given the complexities of our problem, priors are chosen to
regularize the estimation of the parameters. In particular, the prior for the spline coefficients
is designed to encourage smoothness in the functional estimate while the prior for the
regression coefficients is meant to “shrink” unimportant variables toward zero. In what
follows, we briefly expand on these specifications.

To avoid overfitting issues and to encourage smooth functional estimates, herein we
adopt a prior for the spline coefficients which leverages a covariance structure inspired
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by the usual roughness penalty [8]. This common penalty encourages smoothness by
penalizing for abrupt changes in the function through the following:∫ [

β(2)(s)
]2

ds = ηT Rη,

where β(2)(·) denotes the second derivative of β(·) and R is an L× L matrix with entries
R``′ =

∫
b(2)` (s)b(2)`′ (s)ds with b(2)` (·) being the second derivative of b`(·). Note, the spline

representation adopted for β(·) is key to being able to represent this penalty as the quadratic
form depicted above; for details of this derivation see [8]. Capitalizing on the structure of
this penalty and the duality that exists between regularized estimation and prior distribu-
tions in the Bayesian paradigm, we specify the following smoothing penalty inspired prior
distribution for η:

η ∼ N(0, λR−1)

λ ∼ Inv-Gamma(aλ, bλ).

In the prior specification above, the additional variance parameter λ governs the
amount of smoothness and controls the trade off between over and underfitting the data.

To aid in variable selection, we adopt the generalized double Pareto shrinkage prior,
proposed by [9], for all of the regression coefficients with the exception of the intercept,
i.e., we specify

α0 ∼ N(0, τ0)

αp ∼ GDP(ψ = bδ/aδ, aδ), for p = 1, . . . , P− 1,

where GDP(ψ, aδ) refers to the generalized double Pareto distribution [9]. Under these
prior choices, setting τ0 to be large provides a vague prior on α0, while the hyperparameters
aδ > 0 and bδ > 0 govern the amount of shrinkage. In particular, these parameters
control the dispersion, with aδ controlling the heaviness of the tails of the distribution.
A typical default specification, and the one adopted herein, is to set aδ = bδ = 1 which
leads to Cauchy-like tail behavior which is known to have desirable Bayesian robustness
properties [9].

Finally, we place inverse gamma priors on the variance components of the random
effects, i.e., we specify

σ2
q ∼ Inv-Gamma(aq, bq), q = 0, 1.

This specification is common among the literature and it leads to a proper posterior [10].
Based on the prior specifications outlined above, we develop a Markov chain Monte Carlo
(MCMC) sampling algorithm which facilitates both posterior estimation and inference.
In what follows, we provide a brief overview of this algorithm and its construction.

2.3. Data Augmentation and Posterior Sampling

With ease of implementation and computational efficiency in mind, herein we outline
the construction of a posterior sampling algorithm that consists solely of Gibbs steps [11].
To accomplish this, we consider a two-stage data augmentation process. The first stage
follows the work of [12], and introduces carefully constructed Pólya-Gamma latent random
variables so that the logistic function can be hierarchically expressed as a scale mixture
of normals, where the mixing distribution is Pólya-Gamma; for further details, see [12].
The second stage decomposes the generalized double Pareto shrinkage prior as a scale
mixture of normals; for further discussion see [9]. For the specific details of this two-stage
data augmentation process, see Appendix A.
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The data augmentation scheme outlined above leads to the following full conditionals

α|Y , w, η, γ0, γ1, τ ∼ N(µα, Σα)

η|Y , w, α, γ0, γ1, λ ∼ N(µη , Ση)

λ|η ∼ Inv-Gamma(a∗λ, b∗λ)

σ2
q |γq ∼ Inv-Gamma(a∗q , b∗q )

wij|α, η, γ0i, γ1k(i) ∼ PG(b∗δ /a∗δ , a∗δ)

τp|αp, δp ∼ Inv-Gaussian(a∗τp , b∗τp)

δp|αp ∼ Gamma(a∗δp
, b∗δp

),

where the specific form of the parameters of these distributions are given in Appendix A.
These full conditionals were used to construct an MCMC algorithm in the usual manner;
for further discussion see [11].

3. Secondary Data Analysis of Buprenorphine Efficacy
3.1. Trial Data

Clinical trial data for this analysis were sourced from the Clinical Trials Network
(CTN) at NIDA’s Data Share resource (https://datashare.nida.nih.gov/ (accessed on
5 September 2017)). Using the search keyword opiate, we identified 10 efficacy and safety
trials involving detoxification or maintenance treatment of DSM-IV opioid dependence.
We selected six efficacy and safety trials focused on buprenorphine maintenance treatment
for analysis. Detailed information on these trials are provided in Table A1.

3.2. Patient Characteristics

The data consist of 55,739 urinalysis results from 3022 subjects who participated in
one of the six aforementioned clinical trials aimed at assessing the efficacy of buprenor-
phine for treating OUD. The number of urinalyses (i.e., urine drug screens for opioids)
per subject ranged from 1 to 60 urinalyses, while the mean number of urinalyses per
subject was 18.44 and the median was 18. The data were harmonized across the six trials
and candidate predictors with a missingness greater than 25% were filtered out. This
resulted in 18 demographic, sociodemographic, and substance use variables (excluding
prescribed buprenorphine dose, handled by the functional component of the model). Miss-
ing demographic, sociodemographic, and substance use variables were imputed using the
regularized iterative factorial analysis for mixed data (qualitative and quantitative vari-
ables) algorithm [13], implemented by the imputeFAMD function in the missMDA R package.
Summaries of the retained variables (with imputed values included) are given in Table 1.
The daily dose of buprenorphine taken by each patient was either reported (CSP-999) or
inferred from alternate information. Daily dose could vary throughout time for a variety of
reasons, e.g., adherence, induction, re-induction after lapse in dosing, and modification by
a provider’s clinical judgement.

Given the number of demographic and substance use variables considered, the refer-
ence group is specifically white men with a high school diploma who are employed full
time doing skilled manual labor, married and living with a partner or child, and their pri-
mary mode of opioid use being intravenous, with a history of heroin, cocaine, alcohol and
marijuana use and no history of methamphetamine, tranquilizer, or PCP use. The mean age,
income, and years of opioid use are 36.14 years, $20,834 per year and 8.23 years, respectively
(presented in Table 1), while the mean dose is 12.65 mg/day (presented in Table 2). When
we discuss conditional probabilities of relapse, comparisons will be made with respect to
this hypothetical individual in the reference group by changing specific variables as noted.

https://datashare.nida.nih.gov/
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Table 1. Sociodemographic characteristics and drug use history for the individuals used in the analysis.

Demographics Sociodemographics

Age Mean SD Income Mean SD
36.14 9.85 20,834 30,025

Gender N % Employment History N %
Male 2017 67 Skilled Manual 889 29

Female 1005 33 Never Gainfully 653 22

Race N % Machine Operator 445 15
White 2001 66 Clerical/Sales 407 13

Hispanic 495 16 Administrative 239 8
Black 422 14 Unskilled 235 8

American Indian 50 2 Business Manager 101 3
Asian 48 2 Executive 53 2

Other 6 <1 Work Type N %
Full time 1758 58

Drug Use History Unemployed 582 19

Years of Opiate Abuse Mean SD Irregular PT 284 9
8.23 8.41 Regular PT 232 8

Heroin Use N % Retired 84 3
YES 2354 78 Student 64 2
NO 668 22 Controlled 17 <1

Mode of Opiate Abuse N % Military 1 <1

IV 1710 57 Education N %
Snort 1089 36 High School 1456 48
Oral 122 4 Partial College 829 27

Smoking 74 2 Partial High School 304 10
Other 22 1 Standard College 213 7

Sublingual 5 <1 Junior High School 116 4

Cocaine Use N % Complete Graduate School 89 3
YES 1837 61 Less than 7th Grade 15 1

NO 1185 39 Marital Status N %

Meth Use N % Married 1038 34
NO 2304 76 Never Married 1014 33
YES 718 24 Divorced 602 20

Alcohol Use N % Separated 261 9
YES 1891 63 Widowed 87 3
NO 1131 37 Remarried 20 1

Tranquilizer Use N % Living Arr N %
NO 1997 66 Partner and Child 1251 41
YES 1025 34 Partner Only 537 18

Marijuana Use N % Parents 294 10
YES 1953 65 Family 263 9
NO 1069 35 Friends 255 8

PCP Use N % Alone 190 6
NO 2545 84 Child Only 183 6
YES 477 16 Controlled 25 1

No Stable 24 1
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Table 2. Treatment and outcome characteristics of individuals used in the analysis. Urinalysis is a
binary indicator that takes value 1 to denote a positive opioid drug screen and 0 otherwise.

Mean Median Range

Daily Dose 12.65 14 0–90
Days in Trial 112.70 87 1–527

Urinalysis 0.41 0 0–1

3.3. Functional General Linear Mixed Model

The outcome variable in this analysis was the urinalysis test result for illicit opioid use
(1 = positive drug screen vs. 0 = negative drug screen). Through the model in (1), we relate
the daily dose patterns leading up to the clinic visit with urinalysis, while controlling for the
18 demographic, sociodemographic, and substance use variables detailed in Table 1. For the
functional dose component in model (1), the time trajectory was chosen to be the 15 days
leading up to the current urinalysis clinic visit and, for the B-spline basis expansion of the
coefficient function in (3), we specify the degree to be 3 to construct cubic basis functions.
Two interior knots were placed at the 33.33th and 66.67th percentiles of our 15 day time
range. This leads to five fully determined spline basis functions and, hence, five spline
basis coefficients to estimate. For the priors outlined in Section 2.2, we take τ0 = 1000 to
specify a vague prior on the global intercept α0 and let a0 = b0 = 0.001, a1 = b1 = 0.005,
aδ = 1, bδ = 1, aλ = 1, bλ = 0.005. These hyperparameter values are chosen so to produce
uninformative, proper prior specifications. For sampling, we retain 5000 MCMC iterates
after a burn-in of 5000 samples. Convergence of the MCMC chains was assessed in the
usual manner, i.e., trace plots. To summarize our analysis, we report the estimated posterior
means (point estimates of the effects), estimated posterior standard deviations (measures
of uncertainty), and 95% equal-tailed credible intervals.

Figure 2 summarizes the estimated functional coefficient β̂(t) (black solid line), which
represents the buprenorphine daily dose effect for the 15 days leading up to a clinic visit
with urinalysis. The dashed lines are the 95% credible interval limits. On the horizontal axis,
if t is the day of the current urinalysis clinic visit, then t− 15 represents 15 days prior and
t− 1 represents one day prior. Table 3 reports the demographic and substance use variables
that were found to be significant. Of the 54 fixed effects, four were deemed to be important
by the model (i.e., their estimated credible intervals did not contain zero). Table 3 summa-
rizes these significant factors by reporting the estimated posterior means (point estimate
of the effect), estimated posterior standard deviations (measure of uncertainty), and 95%
equal-tailed credible intervals. The analogous results for the full set of demographic and
substance use variables are provided in Tables A2 and A3 in Appendix C.2.

Table 3. Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95) for
the significant fixed effects.

Variable Est ESE CI95

Intercept 2.05 0.27 (1.54, 2.61)
Age −0.02 0.01 (−0.03, −0.01)
Work Type (Ref: Full time)
Unemployed 0.33 0.14 (0.05, 0.59)
Heroine Use (Ref: YES)
No Heroine Use −0.57 0.21 (−1.00, −0.16)
Mode of Opioid Abuse (Ref: IV)
Oral −1.32 0.23 (−1.78, −0.88)
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Figure 2. Estimated buprenorphine dose effect for the 15 days leading up to a urinalysis test, with 95%
equal-tailed credible interval limits displayed as black dashed lines. The intersection of the vertical
and horizontal lines is the point at which the credible interval is entirely below zero, marking the
point where the dose effect becomes significant.

As previously stated, daily dose adherence was only directly recorded for patients in
the CSP-999 trial. Specifically, while the assigned daily dose of buprenorphine was recorded
as a part of the five other trials, adherence was not. For these trials, dose adherence
was reconstructed using other available information, e.g., self reported non-adherence
and returned pills. To examine how the buprenorphine dose reconstruction could have
impacted our results, we reran our analysis on data from the CSP-999 trial only. A summary
of these results can be found in Appendix C.

To extract an estimate of dose effect for subjects that were strictly adherent to their
assigned dosing regime, we compute the following integral for each realization β(s),
denoted β(g)(s), drawn from the posterior

β∗(g) =
∫
Aij

β(g)(s)ds,

with β∗(g) being a posterior realization of β∗. Table 4 provides a summary of these results
for both the full and reduced (CSP-999) analysis to include the posterior mean estimate
(point estimate of the effect), estimated standard deviation of the posterior (measure of
uncertainty), and 95% equal-tailed credible interval.

Table 4. Analysis results: Summary includes the posterior mean estimate (Est), the estimated standard
deviation of the posterior (ESE), and the estimated 95% equal-tailed credible interval (CI95) for the
dose effect (i.e., β∗) for the full and reduced (CSP-999) analysis.

Est ESE CI95

All Trials −0.09 <0.01 (−0.09, −0.08)
CSP-999 −0.11 0.01 (−0.12, −0.10)
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4. Discussion

The primary focus of our analysis is two-fold. First, we wish to demonstrate a novel
approach to account for non-adherence that commonly arises in medication-assisted treat-
ment trials; especially those targeting substance use disorders. Second we wish to refine
the understanding of the effectiveness of buprenorphine as a MOUD, while accounting
for the potential non-adherence of study patients. To accomplish both of these tasks, we
investigated the influence of multiple demographic, sociodemographic, drug use history,
and treatment variables on the risk of illicit opioid use with publicly available individual
patient data from six Federally sponsored buprenorphine efficacy and safety trials. To ac-
knowledge and account for patterns of non-adherence, we conceptualized the daily dose
histories of the study patients as a functional covariate and we estimated an associated func-
tional effect. A summary of this estimated functional is provided in Figure 2. From these
results, we identify several key findings. First, these results suggest that buprenorphine,
as an MOUD, significantly reduces the risk of illicit opioid use. This can be seen from the
fact that the point estimates, and associated credible intervals, are all below zero, i.e., the
integral over the the product of this functional and Dij(·) ≥ 0 results in a negative quantity.
Second, we find that dose history extending to approximately 12.5 days prior to an opioid
screening visit is significantly related to the risk of short-term lapses. Third, the risk of
illicit opioid use is related to dosing adherence patterns throughout the considered 15 day
window leading up to the urinalysis, although, recent patterns have more influence. This
can be seen from the decreasing nature of the functional estimate, especially for the five
(approximately) days before the urinalysis test. Fourth, based on our estimated functional,
we are able to extract an estimate of dose effect for subjects that were strictly adherent to
their assigned dosing protocol. Based on this approach, we estimate that the log-odds of
short-term lapse decreases by 0.09 with every 1 mg/day increase in dose; see Table 4. This
new assessment of the efficacy of buprenorphine as an OUD treatment is unobscured by
the effects of non-adherence and leverages six NIDA-sponsored efficacy and safety trials to
render its conclusions.

When examining the association between risk of illicit opioid use and the other
demographic, sociodemographic, and drug use history variables, four of the 54 were
found to be significant. In particular, we find that increasing age is protective, while being
unemployed, a drug use history of using heroine, and a drug use history of using opioids
intravenously are associated with an increased risk of illicit opioid use. A similar finding
that increasing age is associated with no positive urine drug screen was recently reported in
an analysis of Veterans Administration patients undergoing buprenorphine treatment [14].
The protective nature of employment for patients in recovery [15] is concordant with
unemployment being identified as a risk factor for illicit opioid use. Older age, no heroine
use history and no IV drug use have already been reported as protective with respect to
successful opioid use outcomes (abstinent during week 24 and ≥2 of the previous 3 weeks)
in a secondary data analysis of the Prescription Opioid Addiction Treatment Study (POATS
or CTN-0300) [16,17], one of six CTN trials included in this study. Notably, the largest
protective effect we observed was “primary mode of opioid abuse” with the log-odds of
short-term lapse decreasing by 1.32 when the primary mode of abuse is oral. This could
be attributable to the severity of the opioid use disorder, with intravenous use being a
hallmark of more severe cases.

When examining the results of the sensitivity analysis (see Appendix C) of the CSP-999
trial only, we note several similarities and differences. Importantly, the full and CSP-999
analysis came to virtually the same conclusions with regard to the efficacy of buprenorphine
as an OUD treatment. In particular, the estimates of β(·) are not statistically different from
each other. However, the estimate from the full analysis is slightly attenuated toward zero
when compared to the CSP-999 only analysis. This feature can also be observed in the
effect estimate reported in Table 4. A plausible explanation for this would be that our
approach to reconstructing dose histories for the study patients, though effective, was not
perfect, and therefore introduced “measurement error” into this variable. A hallmark of
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measurement error is the attenuation of effect estimates toward zero, e.g., see [18]. When
comparing the estimated effects of demographic, sociodemographic, and substance use
variables we find that most are not statistically different, yet there are differences in those
deemed to be significant by the two analyses. These differences are likely attributable to
increased precision due to larger sample sizes in the full analysis and differences in the
demographic distribution across the full and reduced data.

We also acknowledge the lack of other risk factors that could be used to better un-
derstand/predict short-term lapse. Inclusion of time-varying predictors such as current
stress levels, occurrences of major life events (e.g., familial death and loss of job), and other
psychological measures would undoubtedly enhance our model. However, the impact of
not having these variables is mitigated by the adoption of subject specific random effects.

Importantly, this study was specifically aimed at estimating the effectiveness of recent
buprenorphine treatment at reducing short-term lapse. With that being said, this analysis
did not consider adherence and its impact on illicit opioid use over longer periods of time
and the subsequent associations with OUD-related adverse outcomes, which is a far more
complex problem. Studies aimed at these more long-term outcomes could reveal OUD
treatment strategies that would be poised to positively impact public health. That is, there
have been nearly 500,000 overdose deaths from opioids in the United States alone in the last
20 years [1]. Further, OUD-related mortality appears to be increasing. Specifically, the CDC
estimates that overdose deaths from opioids increased to 75,673 in the 12-month period
ending in April 2021, up from 56,064 in 2020 [19]. Moreover, less than one-third of patients
enrolled in comprehensive health care with current OUD are being treated with one of
three approved medications for OUD [20]. Extended MOUD treatment (>1 vs. ≤1 year)
appears to reduce mortality [21]. Thus, more in-depth studies relating MOUD treatment to
long-term outcomes has the potential to identify OUD treatment strategies that can be more
effectively utilized to treat this epidemic and shift current clinical practice. Future research
efforts will be aimed at studying these more complex topics related to dose, adherence and
treatment outcomes and their association with OUD-related mortality rates.

5. Conclusions

Inspired by adherence issues in six efficacy and safety clinical trials of buprenorphine
maintenance treatment, this work proposed a generalized linear functional mixed-effects
model that can acknowledge and account for the effects of adherence when assessing
treatment effect. The proposed model was applied to the six motivating clinical trials in an
effort to better refine understanding about the time-dependent effect that buprenorphine
has on treating OUD. In particular, we find that dose history approximately 12.5 days prior
to an opioid screening visit is significantly related to the risk of short-term lapses, with the
more recent history being more impactful. Further, we are able to extract an estimate of
dose effect that is not obscured by adherence issues. That is, we estimate that the log-odds
of short-term lapse decreases by 0.09 with every 1 mg/day increase in buprenorphine dose.
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or maintenance treatment of DSM-IV opioid dependence. We selected six efficacy and safety trials
focused on buprenorphine maintenance treatment for analysis (Table A1).

Conflicts of Interest: J.W.B. is a LLC member and employee of BioRealm LLC. BioRealm LLC offers
data science services. All other authors declare no conflict of interest.

Appendix A. Posterior Distributions

We assume conditional independence given the covariate effects and random effects
and observe that Yij depends on the model parameters only through the linear predictor,
νij. Hence, the likelihood can be expressed as

p(Y |ν) ∝ ∏
i,j

g(νij)
Yij{1− g(νij)}1−Yij ,

where g(·) is defined to be the logit link function.
We develop a two-stage data augmentation process to construct a posterior sampling

algorithm consisting only of Gibbs steps. In the first stage, we exploit a hierarchical
representation of the proposed data model by introducing Póyla-Gamma latent random
variables wij; for further details, see [12]. Under this specification, the joint density of the
observed and latent data for the ith individual is given by

p(Yi, wi|νi) ∝ exp
{
−1

2
(hi − νi)

TWi(hi − νi)

}
×∏

j
ξ(wij),

where hi = (κi1/wi1, . . . , κini /wini )
T are synthetic responses with κij = Yij − 1/2, Wi =

diag(wi), ξ(wij) = f (wij|1, 0) exp{κ2
ij/(2wij)}, and f (wij|a, b) denotes the Pólya-Gamma

density with parameters (a, b); for further details, see [12].
Attention is now turned to the second stage of the data augmentation process and the

construction of the hierarchical representation of the joint posterior distribution. Recall
from Section 2.2, we specify a generalized double Pareto shrinkage prior for all of the
regression coefficients with the exception of the intercept, i.e.,

α0 ∼ N(0, τ0),

αp ∼ GDP(ψ = bδ/aδ, aδ), for p = 1, . . . , P− 1.

As noted by Proposition 1 of [9], the generalized double Pareto shrinkage prior can be
represented as a scale mixture of normal distributions. Thus, for the regression coefficients,
the following hierarchical representation provides the same prior specifications as those
given above:

α ∼ N(0, T), where T =diag(τ), τ = (τ0, τ1, . . . , τP−1)
T

τp
ind.∼ Exponential(δ2

p/2), for p = 1, . . . , P− 1

δp
iid∼ Gamma(aδ, bδ), for p = 1, . . . , P− 1.

The δps are the global shrinkage parameters, while the τps are the local shrinkage
parameters and override the impact of the global shrinkage components for the variable
fixed effects that are not near zero [9].

In deriving the full conditional distributions, for notational convenience, a dot · is
used as shorthand for all the parameters one is conditioning on, e.g., we may write the
posterior p(α

∣∣Y , w, η, γ, τ) as p(α
∣∣·).

We begin by deriving the full conditional distribution for the spline coefficients η,
based on the smoothing penalty inspired prior distribution outlined in Section 2.2. Letting
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hη = (hη
1 , . . . , hη

n)
T , where hη

i := hi − Xiα − 1ni γ0i − 1ni γ1k(i), and M = (M1, . . . , Mn)T ,
W = diag(w),

p(η|·) ∝ p(Y , w|ν)p(η|τ)

∝ exp
{
−1

2
(hη −Mη)TW(hη −Mη)

}
× exp

{
−1

2
ηT
(

λ−1R
)

η

}
∝ exp

{
−1

2
(
η− µη

)T(
Ση

)−1(
η− µη

)}
,

where Ση =
(

MTW M + λ−1R
)−1 and µη = Ση MTWhη . Recognizing this as the kernel of

a normal density, we have
η
∣∣· ∼ N(µη , Ση).

Further, the full conditional distribution for the variance parameter λ associated with
the smoothing prior for the spline coefficients η is derived as follows.

p(λ
∣∣·) ∝ p(η

∣∣λ)p(λ)

∝ (λ−1)L/2 exp
{
−λ−1

2
ηT Rη

}
× (λ−1)aλ−1 exp

{
−λ−1bλ

}
∝ (λ−1)a∗λ−1 exp

{
−λ−1b∗λ

}
,

where a∗λ = aλ + L/2 and b∗λ = bλ + 0.5 · ηTη. Recognizing this as the kernel of a Gamma
density, we find that

λ
∣∣· ∼ Inv-Gamma(a∗λ, b∗λ).

Given the hierarchical representation of the priors placed on the regression coefficients,
let hα = (hα

1 , . . . , hα
n)

T where hα
i := hi−Miη− 1ni γ0i− 1ni γ1k(i), and let X = (X1, . . . , Xn)T .

We derive the full conditional distribution for the regression coefficients α as follows.

p(α
∣∣·) ∝ p(Y , w

∣∣α)p(α
∣∣τ)

∝ exp
{
−1

2
(hα − Xα)TW(hα − Xα)

}
× exp

{
−1

2
αTT−1α

}
∝ exp

{
−1

2
(α− µα)

T(Σα)
−1(α− µα)

}
,

where Σα =
(
XTWX + T−1)−1 and µα = ΣαXTWhα. Recognizing this as the kernel of a

normal density, we find that
α
∣∣· ∼ N(µα, Σα).

Next, we derive the full conditional of the local shrinkage parameters τp, for
p = 1, . . . , P− 1:

p(τp
∣∣·) ∝ p(αp

∣∣τp)p(τp
∣∣δp)

∝ exp

{
−

τ−1
p

2
α2

p

}
× exp

{
−τp

δ2
p

2

}

∝ exp

−
δ2

p

(
τ−1

p − µp

)2

2
(
µp
)2

τ−1
p

,

where µp =
√

δ2
p/α2

p. Recognizing this as the kernel of an inverse-Gaussian density, we
find that

τ−1
p
∣∣· ∼ Inv-Gaussian(µp, δ2

p), for p = 1, . . . , P− 1.
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Moreover, the full conditional distribution for the global shrinkage parameters δp is
derived as follows. Exploiting the fact that the Laplace density is a scale mixture of normals
with an exponential mixing density [22]:

p(δp
∣∣·) ∝ p(αp

∣∣τp)p(τp
∣∣δp)p(δp)

∝
δp

2
exp

{
−δp|αp|

}
×
(
δp
)aδ−1 exp

{
−δpbp

}
∝
(
δp
)a∗δp−1

exp
{
−δp(b∗δp

)
}

,

where a∗δp
= aδ + 1 and b∗δp

= bδ + |αp|. Recognizing this as the kernel of a Gamma density,
we find that

δp
∣∣· ∼ Gamma(a∗δp

, b∗δp
), for p = 1, . . . , P− 1.

We turn our attention to the random effects and derive the full conditional for the
subject-specific random effects, γ0 = (γ01, . . . , γ0N)

T , where N is the number of participants
in this study. Let h0 = (h0

1, . . . , h0
N)

T where h0
i := hi − Miη− Xiα − 1ni γ1k(i), and let

Z0 = diag(1n1 , . . . , 1nN ), where ni is the number of observations from the ith individual,
i = 1, . . . , N.

p(γ0
∣∣·) ∝ p(Y , w

∣∣ν)p(γ0
∣∣σ2

0 )

∝ exp
{
−1

2

(
h0 − Z0γ0

)T
W
(

h0 − Z0γ0

)}
× exp

{
−1

2
γT

0

(
σ−2

0 In

)
γ0

}
∝ exp

{
−1

2
(γ0 − µ0)

T(Σ0)
−1(γ0 − µ0)

}
,

where Σ0 =
(

ZT
0 WZ0 + σ−2

0 In

)−1
and µ0 = Σ0ZT

0 Wh0. Recognizing this as the kernel of a
normal density, we find that

γ0
∣∣· ∼ N(µ0, Σ0).

The full conditional distribution for the variance component of the subject-specific
random effects, σ2

0 , is derived as follows.

p(σ2
0
∣∣·) ∝ p(γ0

∣∣σ2
0 )p(σ2

0 )(
σ−2

0

)n/2
exp

{
−

σ−2
0
2

γT
0 γ0

}
×
(

σ−2
0

)a0−1
exp

{
−σ−2

0 b0

}
∝
(

σ−2
0

)a∗0−1
exp

{
−σ−2

0 (b∗0)
}

,

where a∗0 = a0 + N/2 and b∗0 = b0 + 0.5 · γT
0 γ0. Recognizing this as the kernel of a Gamma

density, we find that
σ2

0 ∼ Inv-Gamma(a∗0 , b∗0).

Next, we derive the full conditional for the trial-specific random effects γ1 = (γ11, . . . , γ1K)
T ,

where K is the number of trials in this study. Let h1 = h − Mη− Xα − Z0γ0, and let
Z1 = diag(1m1 , . . . , 1mK )

T where mk is the number of observations coming from trial k,
k = 1, . . . , K. Then,

p(γ1
∣∣·) ∝ p(Y , w

∣∣ν)p(γ1
∣∣σ2

1 )

∝ exp
{
−1

2

(
h1 − Z1γ1

)T
W
(

h1 − Z1γ1

)}
× exp

{
−1

2
γT

1

(
σ−2

1 IK

)
γ1

}
∝ exp

{
−1

2
(γ1 − µ1)

T(Σ1)
−1(γ1 − µ1)

}
,
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where Σ1 =
(

ZT
1 WZ1 + σ−2

1 IK

)−1
and µ1 = Σ1ZT

1 Wh1. Recognizing this as the kernel of
a normal density, we find that

γ1
∣∣· ∼ N(µ1, Σ1).

The full conditional distribution for the variance component of the trial-specific ran-
dom effects, σ2

1 , is derived as follows.

p(σ2
1
∣∣·) ∝ p(γ1

∣∣σ2
1 )p(σ2

1 )(
σ−2

1

)K/2
exp

{
−

σ−2
1
2

γT
1 γ1

}
×
(

σ−2
1

)a1−1
exp

{
−σ−2

1 b1

}
∝
(

σ−2
1

)a∗1−1
exp

{
−σ−2

1 (b∗1)
}

,

where a∗1 = a1 + K/2 and b∗1 = b1 + 0.5 · γT
1 γ1. Recognizing this as the kernel of a Gamma

density, we find that
σ2

1 ∼ Inv-Gamma(a∗1 , b∗1).

These full conditionals were used to construct an MCMC algorithm in the usual
manner. To validate the proposed model and MCMC algorithm, an in-depth numerical
study was conducted. This study was designed to emulate the primary features of the
opioid data under study. The results (not shown) of this numerical study suggest that our
proposed approach performs well and is appropriate for analyzing the motivating data.

Appendix B. Efficacy and Safety Clinical Trials of Buprenorphine
Maintenance Treatment

Table A1. Studies with Individual Patient Data Analyzed.

Division (Study ID) Title Investigators Release Date

DTMC
(CSP-999)

A Multicenter Clinical Trial of Buprenorphine in
Treatment of Opiate Dependence

Walter Ling, M.D., Donald R.
Wesson, M.D., C. James Klett, Ph.D. 2 September 2015

DTMC
(CSP-1008A)

A Multicenter Efficacy/Safety Trial of
Buprenorphine/Naloxone for the Treatment of Opiate
Dependence

Peter Bridge, M.D., Paul J. Fudala,
Ph.D. 4 December 2014

DTMC
(CSP-1008B)

A Multicenter Safety Trial of Buprenorphine/Naloxone
for the Treatment of Opiate Dependence Peter Bridge, M.D. 4 December 2014

DTMC
(CSP-1018)

A Multicenter Safety Trial of Buprenorphine/Naloxone
for the Treatment of Opiate Dependence

Walter Ling, M.D., Paul J. Fudala,
Ph.D., Paul Casadonte, M.D. 2 September 2015

CTN
(CTN-0027)

Starting Treatment with Agonist Replacement Therapies
(START) Walter Ling, M.D. 30 July 2009

CTN
(CTN-0030)

A Two-Phase Randomized Controlled Clinical Trial of
Buprenorphine/Naloxone Treatment Plus Individual
Drug Counseling for Opioid Analgesic Dependence

Walter Ling, M.D., Roger Weiss,
M.D. 22 June 2011

Appendix C. Model Analysis for CSP-999 Trial

Appendix C.1. Patient Characteristics

The data consist of 15,983 urinalysis results from 654 subjects who participated in
the CSP-999 trial. The number of urinalyses per subject ranged from 1 to 59, while the
mean number of urinalyses per subject was 24.44 and the median was 17. Summaries of
the demographic, sociodemographic, and substance use variables are given in Table A5.
Several of the variables summarized in Table 1 are no longer available when only examining
CSP-999 trial In particular, CSP-999 trial patients are either white, Hispanic, black, American
Indian, or Asian and hence, the race categorized as “Other” was removed. None of the
patients work for the military, so the work type category “Military” was removed. All of the
patients have a stable living arrangement, so the “No Stable” living arrangement category
was removed. All CSP-999 trial patients use heroine, so the “Heroine Use” categorical
variable was removed. Finally, none of the patients’ chosen mode of opioid abuse was
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sublingual, so the “Sublingual” category for the mode of opiate abuse variable was removed.
For ease of comparison, the reference group is the same as the one used for the full analysis.
The mean age, income, and years of opioid use are 36.16 years, $19,454 per year and
11.56 years, respectively (presented in Table A5), while the mean dose is 7.49 mg/day
(presented in Table A4).

Appendix C.2. Functional Generalized Linear Mixed Model

Through the model in (1), we relate the daily dose patterns leading up to the clinic visit
with urinalysis, while controlling for the 17 demographic, sociodemographic, and substance
use variables detailed in Table A5. Note that, because all of our data comes from the CSP-999
trial, the trial-specific random effects γ1k(i) are removed from the model.

Figure A1 summarizes the estimated coefficient function β̂(t) (solid black line), which
represents the buprenorphine daily dose effect for the 15 days leading up to a clinic
visit with urinalysis. For comparison purposes, the coefficient function estimated from
the full (all trials) analysis is also plotted (solid red line). The 95% credible intervals
estimated from the full and reduced analyses are also plotted (red and black dashed line,
respectively). Table A6 reports the demographic and substance use variables that were
found to be significant. Of the 49 variable fixed effects, 5 were deemed to be important by
the model (i.e., their estimated credible intervals did not contain zero). Table A6 summarizes
these significant factors by reporting the estimated posterior mean (point estimate of the
effect), estimated standard deviation of the posterior (measure of uncertainty), and 95%
equal-tailed credible interval for each parameter. The analogous results for the full set of
demographic and substance use variables are provided in Tables A2 and A3.
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Figure A1. Estimated buprenorphine dose effect for the 15 days leading up to a urinalysis test,
with 95% equal-tailed credible interval limits.
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Table A2. Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95).

All Trials CSP-999

Variable Est ESE CI95 Est ESE CI95

Intercept 2.05 0.27 (1.54, 2.61) 1.49 0.77 (−0.07, 2.96)

Age −0.02 0.01 (−0.03, −0.01) −0.02 0.02 (−0.05, 0.03)

Gender (Ref: Male)
Female 0.13 0.08 (−0.03, 0.30) 0.43 0.26 (−0.03, 0.94)

Race (Ref: White)

Black −0.16 0.14 (−0.43, 0.12) −1.27 0.32 (−1.89,
−0.64)

American Indian 0.14 0.27 (−0.39, 0.68) −0.62 0.88 (−2.83, 0.83)
Asian −0.14 0.27 (−0.72, 0.35) −1.31 1.44 (−4.83, 0.67)
Hispanic −0.22 0.12 (−0.46, 0.02) 0.02 0.24 (−0.47, 0.52)
Other −0.32 0.67 (−1.79, 0.93)

Education (Ref: High School)
Graduate School −0.34 0.24 (−0.81, 0.11) −1.27 0.86 (−2.98, 0.21)
Standard College 0.05 0.16 (−0.25, 0.37) −0.11 0.34 (−0.79, 0.59)
Partial College −0.18 0.10 (−0.39, 0.02) −0.04 0.21 (−0.47, 0.37)
Partial High School −0.27 0.15 (−0.58, 0.01) −0.03 0.27 (−0.63, 0.44)
Junior High School −0.20 0.21 (−0.63, 0.18) −0.18 0.34 (−0.98, 0.44)
Less than 7th Grade −0.35 0.47 (−1.39, 0.47) −0.48 0.84 (−2.53, 0.88)

Emp. History (Ref: Skilled)
Never Gainfully 0.07 0.14 (−0.20, 0.34) 0.02 0.32 (−0.62, 0.70)
Unskilled −0.20 0.16 (−0.52, 0.09) −0.22 0.36 (−0.97, 0.44)
Machine Operator −0.01 0.13 (−0.26, 0.24) −0.18 0.28 (−0.76, 0.34)
Clerical/Sales 0.11 0.12 (−0.14, 0.35) 0.07 0.28 (−0.51, 0.64)
Administrative −0.04 0.15 (−0.35, 0.24) 0.04 0.32 (−0.55, 0.73)
Business Manager −0.24 0.24 (−0.72, 0.22) −0.93 0.93 (−3.03, 0.48)
Executive −0.18 0.26 (−0.71, 0.29) 0.05 1.04 (−2.03, 2.47)

Work Type (Ref: Full time)
Regular PT −0.10 0.15 (−0.39, 0.18) −0.42 0.34 (−1.13, 0.21)
Irregular PT 0.07 0.13 (−0.19, 0.35) 0.29 0.30 (−0.25, 0.91)
Student 0.06 0.26 (−0.44, 0.61) 0.17 0.72 (−1.38, 1.67)
Military −0.28 1.22 (−3.25, 2.02)
Retired 0.23 0.24 (−0.19, 0.71) 0.21 0.79 (−1.13, 2.08)
Unemployed 0.33 0.14 (0.05, 0.59) 0.35 0.34 (−0.27, 1.05)
Controlled 0.84 0.59 (−0.2, 2.11) 1.18 0.97 (−0.30, 3.30)

Income 0.00 0.00 (0.00, 0.00) 0.00 0.00 (0.00, 0.00)

Marital Status (Ref: Married)
Remarried −0.17 0.39 (−1.01, 0.59) 0.56 0.93 (−1.07, 2.67)
Widowed 0.19 0.25 (−0.25, 0.73) 0.30 0.52 (−0.61, 1.38)
Separated 0.19 0.17 (−0.10, 0.55) 0.15 0.33 (−0.46, 0.81)
Divorced 0.04 0.12 (−0.20, 0.28) 0.09 0.28 (−0.44, 0.66)
Never Married 0.19 0.12 (−0.05, 0.42) 0.35 0.26 (−0.08, 0.89)

Living Arr (Ref: Partner and
Child)
Partner Only 0.24 0.13 (−0.02, 0.49) 0.79 0.30 (0.17, 1.38)
Child Only −0.03 0.16 (−0.36, 0.29) −0.19 0.31 (−0.82, 0.42)
Parents 0.21 0.17 (−0.10, 0.53) 0.28 0.29 (−0.23, 0.87)
Family 0.05 0.16 (−0.27, 0.36) −0.22 0.34 (−0.96, 0.38)
Friends −0.14 0.16 (−0.44, 0.17) −0.07 0.30 (−0.74, 0.50)
Alone −0.03 0.18 (−0.42, 0.31) 0.10 0.70 (−1.40, 1.60)
Controlled −0.01 0.37 (−0.77, 0.75) 0.98 1.02 (−0.63, 3.24)
No Stable −0.15 0.36 (−0.93, 0.52)
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Table A3. Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95).

All Trials CSP−999

Variable Est ESE CI95 Est ESE CI95

Heroine Use (Ref: YES)
NO −0.57 0.21 (−1.00, −0.16)

Years of Opiate Use 0.01 0.01 (−0.01, 0.02) 0.01 0.02 (−0.02, 0.04)

Mode of Opioid Abuse
(Ref: IV)
Oral −1.32 0.23 (−1.78, −0.88) −1.21 0.48 (−2.11, −0.21)
Snorting −0.14 0.10 (−0.35, 0.06) −0.15 0.23 (−0.60, 0.29)
Smoking −0.40 0.28 (−0.94, 0.09) −0.57 0.78 (−2.37, 0.69)
Sublingual −1.34 0.97 (−3.42, 0.16)
Other 0.02 0.41 (−0.82, 0.89) −0.42 0.72 (−2.08, 0.74)

Cocaine Use (Ref: YES)
NO −0.04 0.09 (−0.22, 0.12) −0.17 0.28 (−0.69, 0.37)

Meth Use (Ref: NO)
YES 0.13 0.09 (−0.05, 0.31) 0.77 0.28 (0.24, 1.31)

Alcohol Use (Ref: YES)
NO −0.12 0.10 (−0.33, 0.07) −0.49 0.23 (−0.97, −0.04)

Tranquilizer Use (Ref:
NO)
YES 0.07 0.10 (−0.14, 0.25) 0.38 0.24 (−0.06, 0.85)
Marijuana Use (Ref:
YES)
NO 0.05 0.10 (−0.16, 0.25) 0.20 0.23 (−0.27, 0.64)

PCP Use (Ref: NO)
YES −0.01 0.11 (−0.22, 0.21) −0.07 0.28 (−0.60, 0.54)

Table A4. Treatment and outcome characteristics of individuals used in the trial CSP-999 analysis.

Mean Median Range

Daily Dose 7.49 4 0–64
Time in Trial 148.76 133 3–527

Urinalysis (Yes = 1) 0.51 1 0–1
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Table A5. Sociodemographic characteristics and drug use history for the individuals used in the
CSP-999 trial analysis.

Demographics Sociodemographics

Age Mean SD Income Mean SD
36.16 7.78 19,454 21,365

Gender N % Employment History N %
Male 453 69 Skilled Manual 151 23

Female 201 31 Never Gainfully 168 26

Race N % Machine Operator 83 13
White 309 47 Clerical/Sales 124 19

Hispanic 184 28 Administrative 54 8
Black 152 23 Unskilled 64 10

American Indian 5 1 Business Manager 7 1
Asian 4 1 Executive 3 <1

Other 0 0 Work Type N %
Full time 294 45

Drug Use History Unemployed 198 30

Years of Opiate
Abuse Mean SD Irregular PT 81 12

11.56 8.70 Regular PT 58 9

Heroin Use N % Retired 7 1
YES 654 100 Student 7 1
NO 0 0 Controlled 9 1

Mode of Opiate
Abuse N % Military 0 0

IV 406 62 Education N %
Snort 194 30 High School 213 33
Oral 37 6 Partial College 201 31

Smoking 9 1 Partial High School 119 18
Other 8 1 Standard College 48 7

Sublingual 0 0 Junior High School 56 8

Cocaine Use N % Complete Graduate School 11 2
YES 540 83 Less than 7th Grade 6 1

NO 114 17 Marital Status N %

Meth Use N % Married 170 26
NO 436 67 Never Married 256 39
YES 218 33 Divorced 142 22

Alcohol Use N % Separated 64 10
YES 446 68 Widowed 18 3
NO 208 32 Remarried 4 <1

Tranquilizer Use N % Living Arr N %
NO 353 54 Partner and Child 163 25
YES 301 46 Partner Only 126 19

Marijuana Use N % Parents 116 18
YES 482 74 Family 55 8
NO 172 26 Friends 97 15

PCP Use N % Alone 8 1
NO 533 82 Child Only 82 13
YES 121 18 Controlled 7 1

No Stable 0 0
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Table A6. Sensitivity analysis results for CSP-999: Summary includes the posterior mean estimates
(Est), the estimated posterior standard deviations (ESE), and the estimated 95% equal-tailed credible
intervals (CI95) for the significant fixed effects.

Variable Est ESE CI95

Race (Ref: White)
Black −11.27 0.32 (−11.89, −10.64)
Living Arr (Ref: Partner and Child)
Partner Only 0.79 0.30 (0.17, 1.38)
Mode of Opioid Abuse (Ref: IV)
Oral −11.21 0.48 (−12.11, −10.21)
Meth Use (Ref: NO)
YES 0.77 0.28 (0.24, 1.31)
Alcohol Use (Ref: YES)
NO −10.49 0.23 (−10.97, −10.04)
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