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Glycosphingolipids (GSLs) are ubiquitous components of the cell membranes, 

found across several kingdoms of life, from bacteria to mammals, including 

humans. GSLs are a subclass of major glycolipids occurring in animal lipid 

membranes in clusters named “lipid rafts.” The most crucial functions of 

GSLs include signal transduction and regulation as well as participation 

in cell proliferation. Despite the mainstream view that pathogens rely on 

protein–protein interactions to survive and thrive in their hosts, many also 

target the host lipids. In particular, multiple pathogens produce adhesion 

molecules or toxins that bind GSLs. Attachment of pathogens to cell surface 

receptors is the initial step in infections. Many mammalian pathogens have 

evolved to recognize GSL-derived receptors. Animal glycosphingolipidomes 

consist of multiple types of GSLs differing in terminal glycan and ceramide 

structures in a cell or tissue-specific manner. Interspecies differences in 

GSLs dictate host specificity as well as cell and tissue tropisms. Evolutionary 

pressure exerted by pathogens on their hosts drives changes in cell surface 

glycoconjugates, including GSLs, and has produced a vast number of 

molecules and interaction mechanisms. Despite that abundance, the role 

of GSLs as pathogen receptors has been largely overlooked or only cursorily 

discussed. In this review, we take a closer look at GSLs and their role in the 

recognition, cellular entry, and toxicity of multiple bacterial, viral and fungal 

pathogens.
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Introduction

Glycosphingolipids (GSLs) are amphipathic lipids consisting of hydrophilic glycan 
and hydrophobic ceramide (N-acylsphingosine) moieties. Ceramides comprise a 
sphingoid base (aminoalcohol) linked to a fatty acid through an amide bond 
(Figure 1A). Due to the variety of sugar structures (ranging from monosaccharide 
residues to branched glycan moieties), sphingoid and acyl chains, GSLs represent the 
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largest group of sphingolipids (Merrill et al., 2007; Gault et al., 
2010). These molecules sort with specific microdomains in the 
plasma membrane called lipid rafts. GSLs are classified into 
broad types based on carbohydrate composition. In animals, 
glucosylceramide is the cornerstone for the synthesis of all 
complex GSLs, with the largest containing over 20 sugar 
residues (found in the human placenta; Ladisch et al., 1995; 
Merrill et al., 2007; Ishibashi et al., 2009). Step-wise extension 
of these glycan moieties generates a series of neutral root 
structures that are commonly found in different species and 

tissues, including globo, isoglobo, lacto, neolacto, ganglio, 
gala, muco, arthro, and mollu (Figure  1B). These root 
structures serve as the basis for a widely used nomenclature 
system (in addition to traditional names). For example, a GSL 
blood group antigen historically called Forssman, which 
belongs to the globo series, is a globotetraosylceramide with 
α1,3-linked N-acetylgalactosamine or IV3-α-GalNAc-Gb4Cer 
(with the roman numeral indicating which sugar in the root 
structure, counting from the ceramide end, carries the 
substituent and the superscript indicating the linkage position 
on that sugar, in this case, C-3; Chester, 1997; Merrill et al., 
2007). Traditionally, all acidic GSLs containing one or more 
sialic acid residues are called gangliosides, including the 
compounds based on other than ganglio root structures 
(Chester, 1997; Yu et  al., 2009; Giussani et  al., 2014). 
Lactosylceramide may also be  directly mono-, di- or 
trisialylated, whence elongation of the ganglio root structure 
continues in the same way as for the unsialylated 

A

B

FIGURE 1

(A) Schematic representation of a GSL structure. Ceramide moiety comprises sphingoid backbone (based on sphingosine d18:1Δ4) and N-acyl 
chain. (B) A backbone relational depiction of major GSL synthesis pathways and an overview of glycan root structures. Names and symbols are 
presented on figure according to IUPAC (Merrill et al., 2007), while monosaccharide symbols are consistent with Varki and Sharon 
recommendations (Varki et al., 2017); Cer: ceramide.

Abbreviations: FUT, Fucosyltransferase; GalCer, Galactosylceramide; Gb3, 
Globotriaosylceramide;  Gb4,  Globotetraosylceramide;  GgO 3, 
Gangliotriaosylceramide; GgO4, Gangliotetraosylceramide; GlcCer, 
Glucosylceramide; GM1, Monosialotetrahexosylganglioside; HBGAs, Human 
Blood Group Associated Antigens; LPS, Lipopolysaccharide; SGGLs, Sulfated 
Glucuronyl Glycosphingolipids;  SGLPG, Sulfated Glucuronyl 
Lactosaminylparagloboside; SGPG, Sulfated Glucuronyl Paragloboside; CTH, 
Ceramide Trihexoside.
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lactosylceramide, generating the 0-, a-, b- and c-series 
pathways of ganglioside synthesis, respectively (Merrill et al., 
2007; Giussani et al., 2014).

Many viruses, bacteria and fungi produce adhesins or 
toxins that recognize GSLs. Cell surface GSLs provide 
pathogens with unique opportunities to invade and thrive in 
the host. Adhesins and toxins specifically recognize 
oligosaccharide chains of GSLs, which protrude beyond the 
cell membrane, but subsequent events and the fate of the 
microbe or toxin may depend on additional factors, such as 
density of GSL packaging in the host cell membrane, the cell 
membrane microenvironment, and other membrane 
components, including proteins, mostly transmembrane or 
GPI-anchored (Duncan et al., 2002; Taïeb et al., 2004). High-
affinity binding of pathogens to GSL receptors involved in 
crucial functions in host cells such as signal transduction 
pathways or intracellular transport have not been thoroughly 
studied to date. The affinity linkage between microbial toxins 
or adhesins to host GSL receptors may affect the mechanism 
of toxicity or adhesion and the intracellular transport of 
pathogens or their virulence factors. The hydrophobic part of 
GSLs affects the conformation of the glycone part, and hence, 
it may affect the receptor functions of GSLs (Smith et al., 2004; 
D’Angelo et  al., 2013). Recent studies have shown that the 
molecular ‘spacer’ function of cholesterol in lipid membranes 
could also affect the conformation and binding properties of 
GSLs. Some bacterial virulence factors (e.g., cholera toxins) 
bind to receptors located in condensed complexes with 
cholesterol in lipid membranes in vitro (Radhakrishnan 
et al., 2000).

Many pathogens recognize sugar antigens (Unione et al., 2017; 
Thompson et al., 2019), which has driven modifications of cell 
surface sugars by hosts as a means of defense. To hinder 
recognition of cell surface sugars by pathogens, hosts use 
three strategies:

 1. The sugar antigen recognized by the pathogen is modified 
so that it is no longer recognized by the pathogen (Cserti 
and Dzik, 2007);

 2. The sugar antigen recognized by the pathogen ceases to 
be  produced altogether, e.g., via pseudogenization. One 
example is the disappearance of the Galα1 → 3Gal antigen, 
which, additionally, increases resistance to pathogens 
carrying that structure (Koike et al., 2002);

 3. The sugar antigen becomes a decoy receptor that binds the 
pathogen but prevents it from entering. Examples include 
the A and B blood group antigens and the cholera toxin or 
sugar antigens from the human milk (A/B, Lewis) and 
rotaviruses (Anstee, 2010; El-Hawiet et al., 2015; Orczyk-
Pawiłowicz and Lis-Kuberka, 2020).

Many GSL blood group antigens may act as a pathogen or toxin 
receptors or co-receptors. Here, we review bacterial, viral, and fungal 
pathogens or toxins, and the mechanisms whereby they hijack cell 

surface GSLs to invade, evade or incapacitate the host cells 
(summarized in Figures 2, 3; Table 1).

Interaction between bacteria and 
host GSLs

Acinetobacter baumannii

Acinetobacter baumannii is a nosocomial pathogen typically 
causing pneumonia, but also urinary tract infections, skin infections 
and meningitis, mostly in hospitalized patients (Madar Johansson 
et al., 2020). Multiresistant strains of A. baumannii are a growing 
public health issue and they are on WHO’s high priority list of 
pathogens demanding urgency in development of new antimicrobial 
compounds. The outer membrane protein A (OmpA), the biofilm-
associated protein (BAP), the Acinetobacter trimeric autotransporter 
adhesin (Ata) and the BAP-like proteins 1 and 2 (BLP-1 and BLP-2) 
were shown to take part in adhesion of bacterial cells to human 
epithelial cells and biofilm formation (Giannouli et al., 2013). Mass 
spectroscopy analysis of human small intestine glycosphingolipids 
recognized by A. baumannii proteins revealed lactotetraosylceramide 
(Galβ3GlcNAcβ3Galβ4Glcβ1Cer) and neolactotetraosylceramide 
(Galβ4GlcNAcβ3Galβ4Glcβ1Cer). The bacteria are also bound to 
lactotriaosylceramide (GlcNAcβ3Galβ4Glcβ1Cer), isoglobotriaosy 
lceramide, gangliotriaosylceramide, gangliotetraosylceramide, 
galactosylceramide, lactosylceramide with phytosphingosine and/or 
hydroxy-fatty acids, indicating a N-acetylglucosamine moiety as a 
basic structure recognized by A. baumannii (Madar Johansson et al., 
2020). Despite the high degree of homology with P. aeruginosa, LecA 
protein (PA-IL), LecA of A. baumannii does not bind to 
glycoconjugates with terminal Galα1 → 4Gal or Galα1 → 3Gal 
moieties (besides iGb3; Blanchard et al., 2008; Madar Johansson 
et al., 2020).

Campylobacter jejuni enteritis

Neurons of human peripheral nerves produce large amounts 
of gangliosides GM1 and GD1a. Strikingly the high level of 
expression of GM1 on the nodal membranes of human motor 
nerves has substantial implications for the persistence and 
severity of post-infectious complications (Yanaka et al., 2019). 
Most of the described strains of C. jejuni can also produce 
glycoconjugates (GM1-like or GD1a-like lipooligosaccharides) 
on the bacterial cell surface. Anti-GM1 IgG1 autoantibodies 
arising in response to C. jejuni infections may lead to 
complement-mediated motor nerve injury. The binding of 
anti-GM1 autoantibodies to peripheral motor nerves underlies 
Guillain–Barré syndrome (GBS), which is defined as a post-
infectious autoimmune neuropathy with characteristic acute limb 
weakness (Lee et al., 2004; Prendergast et al., 2004). GBS follows 
C. jejuni infections in one-third of patients (Yamana et al., 2019). 
Moreover, GBS was identified in patients previously infected 
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with: Mycoplasma pneumoniae, herpes simplex virus type 1 
(HSV-1), and Epstein–Barr virus (Yuki, 1997; Sheikh et al., 1998; 
Tse et al., 2012).

Clostridium sp.

Clostridium botulinum produces seven serotypes of Botulinum 
neurotoxin (A-G), each of which is a single polypeptide of 
approximately 150 kDa consisting of two heavy and light chains 
linked by a disulfide bond. The carboxy part of the heavy chain 
participates in adhesion, while the N-terminal part mediates entry 
of the light chain (zinc endoprotease) into the host cell (Orrell 
et  al., 2017). The toxin binds to its receptors on the terminal 

neurons of neuromuscular junctions. A number of studies 
indicate that the 16S and 19S complexes of the hemagglutinin 
complex may bind to specific GSLs. Thus, the C-type progenitor 
binds sialoparagloboside, ganglioside GM3 and paragloboside. 
The Type A progenitor recognizes GSLs with terminal galactose, 
particularly paragloboside and Gb3 and LacCer. Many studies 
indicate that a large number of BoNT serotypes require the 
presence of 1b-series gangliosides for the most effective binding 
to the target cell. The only exception is serotype G, which binds in 
the absence of gangliosides. Detailed studies have shown that 
ganglioside binding occurs through the C-terminus of a heavy 
chain, and removal of ten amino acid residues from its sequence 
abolishes the binding (Barth et  al., 2004; Yowler and 
Schengrund, 2004).

FIGURE 2

Schematic representation of major glycosphingolipid biosynthesis pathways, highlighting GSLs participating in pathogen binding. Biosynthesis of 
GSLs proceeds in the endomembrane system, beginning in the endoplasmic reticulum by ceramide synthesis from sphingoid base and acyl-CoA, 
and continues in the Golgi apparatus. Ceramide may be galactosylated in the ER (producing GalCer) or transported to the cis-Golgi to produce 
GlcCer and LacCer. LacCer is used for the production of more complex GSLs by specific Golgi-resident glycosyltransferases, creating several GSL 
series pathways. LacCer is utilized by (1) β1,4-N-acetylgalactosylaminyltransferase (B4GALNT1) initiating the asialo series; (2) β1,3-N-
acetylglucosaminyltransferase (B3GNT5), producing Lc3, which is converted to Lc4, the precursor for the lacto and neolacto series GSLs; (3) α1,4-
galactosyltransferase (A4GALT), producing Gb3, thus initiating the globo series pathway; (4) α2,3-sialyltransferase (ST3GAL5), producing GM3, 
which belongs to the ganglio series. The ABO histo-blood group antigens are subsequently formed from the H antigen (it is also the precursor of 
the Leb antigen, belonging to the Lewis blood group system) by specific GTs; α1,3-N-acetylgalactosyltransferase (A transferase) synthesizes the A 
antigen, while α1,3-galactosyltransferase (B transferase) synthesizes the B antigen. The Lea and Lex blood group antigens are created by 
fucosyltransferase 3. More complex glycan structures of ganglio-series GSLs are formed by a sequential action of different GTs, such as N-acetylg
alactosaminyltransferases, galactosyltransferases and sialyltransferases, producing the GM2, GM1a and GD1a gangliosides. GM3 may be further 
processed by α2,8-sialyltransferase 1, forming GD3. GSLs in green play roles in interactions with pathogens. Glycosyltransferases involved in GSL 
synthesis are shown in red [Figure was created with BioRender.com].
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Another strain of Clostridium sp., C. tetani produces the 
tetanus neurotoxin (TeNT). The toxin binds to vesicle-associated 
membrane protein-2 (VAMP-2), which inhibits neurotransmitter 
release in the central nervous system, and thus causes spastic 
paralysis and death. The molecular mechanism of TeNT entry into 
neurons is still unclear. Receptor binding occurs on presynaptic 
membrane of human α-motor neurons and involves gangliosides 
(Montecucco, 1986; Mocchetti, 2005). Interactions between TeNT 
and gangliosides have been well described in structural and 
biochemical studies in vitro and in vivo. Such interactions on the 
host cell surface required two molecules of gangliosides: an 
a-series ganglioside (GD1a, involving its lactose moiety and the 
TeNT W carbohydrate-binding pocket) and a b-series ganglioside 
(GT2, GD3, involving their sialic acids moieties and the TeNT R 
carbohydrate-binding pocket; Chen et  al., 2009). TeNT 
cytotoxicity requires both receptors (Rummel et al., 2003; Chen 
et al., 2008, 2009).

Clostridium difficile toxin (CDT) consists of an enzymatic 
component with ADP-ribosyltransferase activity and a 
translocation/binding component. This binary actin-ADP-
ribosylating toxin can depolymerize the actin cytoskeleton and 
induce formation of microtubule-based membrane protrusions 

(Barbieri et al., 2002). These activities enhance bacterial adhesion 
and colonization by virulent strains of C. difficile. The main 
glycosphingolipid receptor for this toxin is the ganglioside GM1 
localized in lipid microdomains. Numerous studies have shown 
that composition of the lipid bilayer microenvironment, especially 
the presence of cholesterol, can favor membrane protrusions. 
Indeed, depletion of cholesterol from lipid microdomains 
abolishes the effects of the toxin and reduces membrane 
protrusions. The microenvironment of plasma membrane and 
composition of lipid bilayer are the main players in ligand-
receptor interactions (Barth et al., 2004; Schwan et al., 2011).

Escherichia coli

Uropathogenic E.coli (UPEC) strains produce two types of 
adhesive surface organelles named Chaperone-usher (CU) 
fimbriae 1 and P, found in many Gram-negative bacteria 
(Wurpel et al., 2013). FimH, the adhesive subunit of type 1 
fimbriae, binds uroplakins, which are mannosylated 
glycoproteins present on the bladder epithelial cells 
(urothelium). This is a key step in the invasion of urothelium 

FIGURE 3

Schematic representation of selected GSLs involved in host-pathogen interactions. Fungi, bacteria and viruses may bind various types of GSLs 
residing in the human membranes. These GSLs belong to different GSL-series, such as asialo, lacto, neolacto, ganglio [Figure was created with 
BioRender.com].
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TABLE 1 Summary of described pathogen ligands, host receptors and relevance of these interactions in infectious diseases epidemiology.

Pathogen Pathogen ligand (s) GSLs receptor(s) Possible implication/
Epidemiology

References

BACTERIA

Acinetobacter baumannii OmpA, Bap, BLP-1 and 

BLP-2

GalCer, GlcCer, GgO3, GgO4, 

Lc3, nLc4, iGb3
 − no binding to glycoconjugates with 

terminal Galα1 → 4Gal or Galα1 → 3Gal 

moieties (besides iGb3); resistant to 

almost all available antimicrobials

 − approximately 1 million cases annually

Logan et al., 2018; Madar 

Johansson et al., 2020

Campylobacter jejuni 

enteritis

LPS GM1, GD1a  − bacteria produce antibodies against host 

GM1 and GD1a resulting in Guillain-

Barré syndrome development.

Yuki, 1997; Cawthraw et al., 

2002

Clostridium botulinum;

Clostridium tetani;

Clostridium difficile

Botulinum neurotoxin;

tetanus neurotoxin (TeNT);

Clostridium difficile toxin 

(CDT)

C-type: sialoparagloboside, GM3 

and Lc3Cer;

Type A: Lc3Cer, Gb3 and LacCer

GM1a, GD1a, GT2, GD3;

GM1

 − 25% of an average of 110 reported cases 

of botulism annually in the US are 

foodborne botulism

 − 500–600 cases annually before a vaccine

 − at present, 8 tetanus toxoid-containing 

vaccines are administrated. 

Recommended in a different range of age

 − epidemiologic surveillance efforts have 

been directed toward mitigating 

hospital-acquired C. difficile (most of the 

diagnosed infection), over 450,000 cases 

per year (the USA, 2017)

Montecucco, 1986; Yowler 

and Schengrund, 2004; 

CDC Botulism | 

Epidemiological Overview 

for Clinicians, 2019

Chen et al., 2008, 2009; 

Pinkbook: Tetanus | CDC, 

2021

Orrell et al., 2017; Fu et al., 

2021

Shiga toxin-producing 

Escherichia coli (STEC) 

strains

Uropathogenic E.coli 

(UPEC) strains

Enterotoxigenic Escherichia 

coli (ETEC) strains

Shiga toxins (subunits B);

PapG subunits,

SfaH and FocH

Fimbrial structures are 

referred to as colonization 

factors

Gb3 (main receptor), Gb4, 

Forssman (mostly Stx2e in 

piglets, also identified in 

pigeons);

P antigen

 − sialylα2 → 3lactose, 

GalNAcβ1 → 4Galβ 

disaccharide 

in asialoceramides

iGb3, nLc4, GgO3, GgO4, LacCer, 

HBGAS

 − Gb3-depleted cells (A4GALT gene 

knock-out) become insensitive to 

Shiga toxins;

 − p phenotype individuals resistant to 

Shiga toxins toxicity; over 63, 000 cases 

(USA); huge economic losses 

during outbreaks

 − 11, 000, 000 cases/year in the USA, 

approximately 150, 000, 000 worldwide. 

Several factors are related with develop a 

UTI phenotype: dysfunctions of the 

urinary tract and/or genetic mechanisms 

involved in the innate immune 

response control

 − 220, 000, 000 cases and over 50, 000 

deaths annually (in developing countries 

among children aged <5 years)

Okuda et al., 2006; Bruyand 

et al., 2018; Fatima and 

Aziz, 2022

Söderhäll et al., 1997; Khan 

et al., 2000a; Kaczmarek 

et al., 2014; Terlizzi et al., 

2017

Jansson et al., 2006; Buuck 

et al., 2016–2017

Helicobacter pylori BabA Lewis antigens (Leb), LacCer  − individuals are more susceptible to the 

binding of bacterial adhesin;

 − in the mouse model Leb plays a crucial 

role in H. pylori mucosal attachment, in 

man, no relationship between H. pylori 

and host Lewis status has been found;

 − the most common gastrointestinal tract 

bacterial infection worldwide (it was 

estimated that half of the human 

population is infected by H. pylori)

Angström et al., 1998; 

Benktander et al., 2012; 

Epidemiology of 

Helicobacter pylori - 

Sonnenberg - 2022 - 

Alimentary Pharmacology 

& Therapeutics - Wiley 

Online Library

(Continued)
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Pathogen Pathogen ligand (s) GSLs receptor(s) Possible implication/
Epidemiology

References

Pseudomonas aeruginosa LecA Gb3
 − interaction with hosts receptor as 

“lipid zipper”

 − Lec-A/Gb3 ligand suppression results in 

a reduced invasion of Pseudomonas 

aeruginosa and is a promising strategy 

for drug development

 − P. aeruginosa was the most common 

cause of ventilator-associated  

pneumonia globally, accounting  

for 26% of cases

Blanchard et al., 2008; 

Kuhaudomlarp et al., 2020; 

Reynolds and Kollef, 2021

Vibro cholerae Cholera toxin (CT) GM1  − cholera affects impoverished populations 

without proper access to adequate water 

and sanitation (mostly in 

Asian countries)

 − The global oral cholera vaccine was 

created in 2011 for a rapid response to 

cholera outbreaks and protects 

against cholera

Ramamurthy et al., 2019; 

Deen et al., 2020

VIRUSES

HCMV N/A SGGLs, especially SGLPG  − lactosamine repeats could also play a 

role in the preferential binding 

of HCMV;

 − SGLPG had a stronger inhibitory effect;

 − 68.7% among HCMV positive children 

are aged <6 months, and children aged 

above 6 months result in 31.3%

Ogawa-Goto et al., 1998; Li 

et al., 2020

HIV gp120 Gb3, GM3, GD3  − soluble Gb3 (adamantylGb3) analogue 

may bind gp120 and thus inhibit viral 

infection in vitro

 − gp120 binding to GalCer triggers events 

that allow infecting CD4-negative cells. 

Modification of the lipid moiety in 

GalCer affects binding of the virus to 

CD4 +/− cells with varying degrees 

of inhibition

 − the inducible modulation of GSL content 

on the host cell surface, especially under 

proinflammatory conditions, can have a 

significant impact on HIV interacts with 

the host cell (influencing the 

composition of the plasma membrane 

from which de novo virions will bud)

 − approximately 37.7 million people living 

with HIV (data from 2020), over 

two-thirds of whom (25.4 million) are in 

the WHO African Region

Rawat et al., 2005; Puryear 

and Gummuluru, 2012; 

Aigal et al., 2015; HIV/

AIDS, 2021

(Continued)

TABLE 1 Continued
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Pathogen Pathogen ligand (s) GSLs receptor(s) Possible implication/
Epidemiology

References

Human Parvovirus B19 Interaction with VP1u, but 

direct ligand unknown

P antigen

(additional receptor α5β1 

integrin and Ku80 autoantigen)

 − presence of Gb4 on the host cell surface 

is required, but not sufficient for 

productive infection

 − most common in school-aged children; 

transmission of the virus occurs through 

respiratory secretions and blood  

products

Norja et al., 2012; Bieri 

et al., 2021; Macri and 

Crane, 2022

Noroviruses VLPs, receptor binding site 

lies at the outermost end of 

the P domain of capsid

HBGAS (ABH, Lewis)  − P domain dimer plays a crucial role in 

the formation of the receptor 

binding interaction

 − noroviruses can bind to non-HBGAS 

receptors, e.g.: heparan sulfate, histon 1, 

or breast milk glycans

 − HMO can inhibit noroviruses infections

 − noroviruses infections are the most 

common foodborne illnesses 

(according to CDC)

 − 21 million cases of gastrointestinal 

illness in the USA each year

Almand et al., 2017; 

Koromyslova et al., 2017; 

Chassaing et al., 2020; 

Capece and Gignac, 2022; 

Norovirus Worldwide | 

CDC, 2022

Polyomaviruses BKV and JCV 

polyomaviruses

Merkel Cell Polyomavirus 

(VP1 protein)

SV40 virus

NeuAcα2→3Gal and 

NeuAcα2→6Gal on gangliosides;

GT1b

GM1 (with Neu5Gc)

 − pseudoreceptors are O-l-linked 

glycoproteins α4β1 integrin may serve as 

co-receptor

 − virus entering the host cell by clathrin-

dependent endocytosis

 − HIV/AIDS patients have been reported 

more susceptible to polyomaviruses 

infections

Ahsan, 2006; Erickson 

et al., 2009; Hurdiss et al., 

2018; Zhou et al., 2020

Rotaviruses VP8 (spike protein) HBGAS (A, H, Leb)  − RTs infections cause significant 

economic losses in agriculture

 − over 500,000 deaths in developing 

countries could possess a frequent cause 

of childhood morbidity in 

industrialized countries

 − more than 600,000 young children die 

from RTS infections

 − approximately 2.4 million children are 

hospitalized annually from rotavirus 

disease (mostly in South-East Asia and 

sub-Saharan Africa)

Delorme et al., 2001; 

Mukherjee and Chawla-

Sarkar, 2011; Barbé et al., 

2018; Thompson et al., 2019
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Pathogen Pathogen ligand (s) GSLs receptor(s) Possible implication/
Epidemiology

References

FUNGI
Candida spp.

(C. albicans

C. glabrata

C. parapsilosis

C. tropicalis

C. krusei)

β-(1,3)-glucan, β-(1,6)-side 

chain branched glucan, 

fucose-binding lectins

Lactosylceramide, asialo-GM1, 

Lea, Lex and H-active glycans 1

 − cause candidiasis, including vaginal 

(only for C. albicans), 700,000 cases 

annually worldwide

 − Le(a-b-) phenotype was connected with 

recurrent vaginitis in women

 − nonsecretors are more prone to 

C. albicans

 − FUT2-null mice showed a threefold 

increased sensitivity for infections with 

C. albicans

 − C. albicans most frequently colonized 

patients with the O blood group, with a 

higher incidence of nonsecretor status 

among the patients with peptic ulcer

Critchley and Douglas, 

1987; Jimenez-Lucho et al., 

1990; Brassart et al., 1991; 

Tosh and Douglas, 1992; 

Burford-Mason et al., 1993; 

Cameron and Douglas, 

1996; Johansson et al., 2000; 

Sato et al., 2006; Bryan 

et al., 2015; Tafesse et al., 

2015; Bongomin et al., 2017

Cryptococcus neoformans Hyaluronic acid (HBMEC 

cells)

Lactosylceramide  − cause cryptococcosis, 220,000 cases 

annually worldwide (for people living 

with HIV/AIDS)

 − liposomes containing LacCer inhibit the 

binding of this fungi

 − the binding of C. neoformans to LacCer 

is affected by the structure of 

ceramide moiety

 − terminal galactose residue of LacCer is 

essential for binding and its removal 

abolishes binding

Jimenez-Lucho et al., 1990; 

Jong et al., 2007, 2012; May 

et al., 2016; Florek et al., 

2021

Histoplasma capsulatum HSP60, β-(1,3)-glucan Lactosylceramide, GM1  − caused histoplasmosis, 500,000 cases 

every year in the U.S.

 − the interaction between H. capsulatum 

and macrophages required LacCer and 

GM1, and lipid rafts mediated in 

pathogen internalization

 − GM1 may be a co-receptor in the initial 

steps of H. capsulatum binding

Jimenez-Lucho et al., 1990; 

Lin et al., 2010; Benedict 

and Mody, 2016; Guimarães 

et al., 2019

Paracoccidioides brasiliensis N/A GalCer, LacCer, CTH, GD3, 

GD1a GM1, GM3, 

N-acetylneuraminic acid 2

 − responsible for paracoccidioidomycosis, 

15,000 cases detected since 1930, mostly 

in Brazil

 − GM1 localized in lipid rafts of epithelial 

cells and lung fibroblasts may serve as 

receptor for P. brasiliensis

 − removal of N-acetylneuraminic acid 

from human alveolar cells resulted in 

decreased adhesion of 

P. brasiliensis conidia

Jimenez-Lucho et al., 1990; 

González et al., 2005; Maza 

et al., 2008; Ywazaki et al., 

2011

(Continued)
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during chronic E. coli cystitis (Mulvey et al., 1998). Type P 
fimbriae contain PapG subunits, which recognize 
Galα1 → 4Galβ residues in the globo-series GSLs on kidney 
epithelium. Some of these GSLs are histo-blood group antigens 
belonging to the P1PK blood group system formerly known as 
P, which is why the P fimbriae were so named (Söderhäll et al., 
1997; Kaczmarek et al., 2014; Terlizzi et al., 2017). Pili F1C and 
S adhesins: SfaH and FocH bind sialylα2 → 3lactose and 
GalNAcβ1 → 4Galβ disaccharide in asialoceramides (Khan 
et  al., 2000a,b). The Fm1H is an adhesin of F9 and binds 
Galβ1 → 3GalNAc (the TF antigen). Studies have shown that 
replacing 3 amino acids in 3 loops forming FimH and Fm1H 
caused a change in binding specificity of these adhesins from 
terminal α-D mannose to terminal β-D galactose or β-D 
GalNAc (Moonens and Remaut, 2017).

Enterotoxigenic Escherichia coli (ETEC) strains are the main 
cause of diarrhea in young children from developing countries. 
Adhesion and colonization of host intestinal epithelium depend 
on heat-stable and/or heat-labile enterotoxins. Fimbrial structures 
on bacterial cells’ surfaces are referred to as colonization factors 
(CFs) that mediate the adhesion of ETEC. Recently published 
studies indicate that ETEC can bind to numerous GSLs structures 
on host intestinal epithelium, e.g.: iGb3, nLc4, GgO3, GgO4, 
lactosylceramide with phytosphingosine and/or hydroxy fatty 
acids and glycosphingolipids with terminal HBGA determinants 
(Lea, Lex, and Ley; Jansson et al., 2006; Roussel et al., 2017).

Shiga toxin-producing Escherichia coli strains (STEC) can 
cause enterocolitis, bloody diarrhea, and, sometimes, a severe 
complication called hemolytic-uremic syndrome (HUS). 
Worldwide, STEC infects several million individuals annually, 
posing a growing threat to public health (Majowicz et al., 2014).

Shiga (Stx) toxins belong to the AB5 class of protein toxins 
(Fan et al., 2000). This group also includes pertussis toxin (Ptx), 
cholera toxin (Ctx), thermolabile enterotoxins produced by E.coli 
(LT-I and LT-II) and subtilase (SubAB; Paton et al., 2004; Johannes 
and Römer, 2010). The enzymatic activity responsible for 
cytotoxicity is located in the A subunit, which is often classified as 
a type II ribosome-inactivating protein (RIP) or ER-driven protein 
toxin (ERT, ER-routing protein toxin). The A subunit consists of 
the A1 and A2 fragments linked by a disulfide bridge. The 
pentamer of the B subunits forms a pore, containing the 
C-terminal fragment of the A subunit (Silva et al., 2017).

The pentamers of Shiga toxin B subunits bind GSLs of the 
globo series, showing a strong preference for the trisaccharide 
Galα1 → 4Galβ1 → 4Glc. Stx2e (a subtype pathogenic for pigs) 
also uses Gb4Cer (GalNAcβ1 → 3Galα1 → 4Galβ1 → 4Glc) as a 
receptor as well as Gb5Cer with the structure 
Galβ1 → 3GalNAcβ1 → 3Galα1 → 4Galβ1 → 4Glc and 
GalNAcα1 → 3GalNAcβ1 → 3Galα1 → 4Galβ1 → 4Glcβ1 → 1Cer 
also known as the Forssman antigen (Gallegos et al., 2012; Detzner 
et al., 2021). Recently, it was shown that Shiga toxin can also bind 
Galα1 → 4Gal structures on N-glycans and use them as functional 

Pathogen Pathogen ligand (s) GSLs receptor(s) Possible implication/
Epidemiology

References

Pneumocystis jiroveci β-(1,3)-glucan Lactosylceramide
 − responsible for pneumonia in 

immunocompromised patients

 − current global estimates are as high as 

500,000 annual cases, with a mortality of 

10 to 30%

 − LacCer of host cells involves in binding 

and internalization of P. jirovici

Bongomin et al., 2017; 

Chan et al., 2021; Kolbrink 

et al., 2022

Saccharomyces cerevisiae β-(1,3)-glucan Lactosylceramide  − commensal, although may cause 

opportunistic infections in patients with 

chronic disease, cancer, and 

immunosuppression

Jimenez-Lucho et al., 1990; 

Zimmerman et al., 1998

Sporothrix schenckii N/A Lactosylceramide  − responsible for sporotrichosis

 − in the state of Rio de Janeiro, Brazil, 

more than 2,200 cases were reported 

during 1998–2009

 − another study suggested a rate of 48 to 

60 sporotrichosis cases per 100,000 

population in the south-central 

highlands of Peru

Jimenez-Lucho et al., 1990; 

Pappas et al., 2000; Barros 

et al., 2011

N/A, no data, HBMEC: Human brain microvascular endothelial cells, HBGASs: Human blood group antigens.1The administration of H-active glycans in the case of C. albicans vaginitis 
infection, could decrease the sensitivity for this pathogen.
2Examined only for P. brasiliensis conidia.
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receptors (Szymczak-Kulus et al., 2021). Severe complications of 
STEC infection in humans result from Shiga toxin-mediated 
damage to the endothelium. This triggers release of 
proinflammatory cytokines, including tumor necrosis factor alpha 
(TNF-α), which inadvertently exacerbates the cytotoxicity by 
enhancing the synthesis of Gb3 in the endothelium, creating a 
vicious circle (Foster et al., 2000).

Helicobacter pylori

Helicobacter pylori is the best-known pathogen of the 
human gastrointestinal tract, with half of the human 
population being infected. Helicobacter pylori colonizes the 
gastric mucosa. Prolonged infection may increase the risk of 
gastric cancer (Díaz et al., 2018). One of the H. pylori adhesins 
BabA binds Leb from group O individuals fivefold greater than 
Leb from group A individuals (Anstee, 2010; Benktander et al., 
2012). In A and B blood type individuals, these glycotopes are 
hidden under the α1,3-linked residues of GalNAc or Gal, 
respectively, and BabA binds A and B antigens only weakly. 
Gastric mucosa of type O individuals is more susceptible to 
the binding of adhesin (Lingwood, 1999). During chronic 
infections, H. pylori upregulates the host β3GnT5 gene 
expression, which leads to increased synthesis of the Lex 
structure. In addition, the pathogen produces SabA, which is 
an adhesin that binds Lex and Lea glycoproteins (Kościelak, 
2012; Jin et al., 2018). Both adhesins belong to the Helicobacter 
Outer Membrane Proteins family (HOPs), which also includes 
LabA. LabA recognizes the GalNAcβ1 → 4GlcNac structure, 
which is characteristic of the gastric mucosa glycoproteins. 
The HOP protein family have autotransporter-like 
architecture. The BabA and SabA adhesion ectodomains have 
similar topologies: 7 α-helices (4 + 3 system). In addition, 
BabA has a four-twisted β-sheet structure that comprises the 
binding site for the Leb antigen (Moonens and Remaut, 2017). 
Results published by Teneberg and co-workers show that 
lactotetraosylceramide and lactosylceramide may also act as 
receptors for H. pylori (Teneberg et al., 1997, 2002; Angström 
et al., 1998; Roche et al., 2007).

Pseudomonas aeruginosa

Pseudomonas aeruginosa is a pathogen that can attack the cell 
in a variety of ways. Factors contributing to bacterial invasion 
include GSLs, which affect the adhesion of P. aeruginosa to 
non-phagocytic cells. LecA, a homotetrameric galactophilic lectin 
located on the outer bacterial membrane binds GSLs 
(Kuhaudomlarp et  al., 2020). Interaction of LecA with Gb3 
produces large monolayer vesicles in the membrane enabling 
bacteria to enter the host cell (Blanchard et  al., 2008; 
Kuhaudomlarp et al., 2020). This mechanism has been termed the 
“lipid zipper” and it depends on the composition of the lipid 

bilayer (Siukstaite et al., 2021). Cholesterol in lipid rafts stabilizes 
the Lec-A induced domains, and, with a sufficiently high density 
of Gb3, triggers a lipid zipper resulting in cell invasion. Blocking 
Lec-A/Gb3 interaction results in reduced invasion of Pseudomonas 
aeruginosa, and is a promising strategy for drug development 
(Eierhoff et al., 2014).

Vibrio cholerae

Vibrio cholerae is the causative agent of cholera, a life-
threatening diarrhoeal disease. The bacteria colonize the human 
small intestine and secrete their major virulence factor called 
cholera toxin (CT; Ali et al., 2016; Deen et al., 2020). CT is a 
member of the AB5 group of bacterial toxins, composed of one 
catalytically active A subunit (responsible for the cytotoxicity) 
and a homopentamer of the receptor-binding B subunits (Bharati 
and Ganguly, 2011). Originally, it was believed that the B subunit 
binds GM1 on the apical surface of intestinal epithelial cells. 
However, the role of GM1 is controversial because GM1 is rare 
in the human gastrointestinal tract (Holmgren et  al., 1975; 
Wands et  al., 2015). Recent studies suggest that fucosylated 
blood group antigens (e.g., Lex) may function as secondary 
receptors important for cellular uptake of the toxin and toxicity, 
but the mechanism remains unclear (Heim et al., 2019; Patry 
et al., 2019).

Interaction between viruses and 
host GSLs

HCMV

Human cytomegalovirus (HCMV) is a double-stranded linear 
DNA β-herpesvirus that typically causes a mild respiratory illness. 
The mechanism by which the virus infects cells is not fully 
understood. The infection consists of many stages and involves 
glycoconjugates. Heparin sulfate on the cell membrane was 
proposed to initiate binding of the virus. Most molecules reported 
in the literature as HCMV receptors are glycoproteins (Fernández-
Moreno et al., 2021). However, HCMV shows a binding reactivity 
to SGGLs (sulfated glucuronyl glycosphingolipids), especially to 
SGLPG (sulfated glucuronyl lactosaminylparagloboside). 
Inhibition of SGGLs affects both the expression of the IE gene and 
the plaque formation by HCMV, indicating that the binding of 
HCMV to the sulfated carbohydrate epitope in SGGL plays an 
important role in the initial stages of infection. Notably, HCMV 
binds more strongly to SGLPG than to SGPG. Also, SGLPG had 
a stronger inhibitory effect than SGPG on HCMV infection. The 
lactosamine repeats (-3Galβ1 → 4GlcNAc1-)2 of SGLPG, in 
addition to the 3-sulfated glucuronyl moiety, may be important 
for recognition by HCMV. Lactosamine repeats could also play a 
role in preferential binding of HCMV to nLc6Cer compared to 
nLc4Cer (Ogawa-Goto et al., 1998).
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HIV

The genome of HIV comprises two plus (+) sense single RNA 
strands (Frankel and Young, 1998). The virus contains viral p17 
matrix protein (MA), integrase (IN), and the viral protein R (Vpr) 
helping with viral RNA reverse transcription into double-
stranded complementary DNA (cDNA) in the host cell cytoplasm 
following transport to the cell nucleus where it is integrated into 
the host cell genome; an envelope as well as a protein core 
(Lingwood, 2011).

The role of GSLs as receptors in HIV infection is complex. 
The viral adhesive protein gp120 forms a highly glycosylated 
trimeric complex on the viral membrane. The first GSL 
identified as a receptor for the gp120 protein was 
galactosylceramide and its sulfatide. Other receptors include 
GM3, GD3, and Gb3. Notably, gp120 shows binding 
preferences for different GSLs depending on the strain (GM3 
for R5X4 HIV, Gb3 for HIV X4; Viard et al., 2003; Puryear 
and Gummuluru, 2012). The GSL binding site and the 
chemokine receptor are in the same loop (V3). The 
cholesterol/GSL ratio in lipid rafts may play a role in HIV 
infection. Densely packed lipids hinder the initial interaction 
of the viral protein with the receptor on the host cell (Liao 
et al., 2001). One of the viral proteins, called Nef, leads to 
downregulation of CD4 by directing it to a degradation 
pathway associated with the endoplasmic reticulum (Binette 
et al., 2007). Gp120 binding to GalCer triggers events leading 
to infection of CD4-negative cells. Modification of the lipid 
moiety in GalCer affects binding of the virus to CD4 +/− cells 
with varying degrees of inhibition. Gp120-GSL interactions 
may be influenced by the octamer of a conservative peptide 
from the V3 loop. The GSL binding site is at the center of the 
chemokine receptor binding in the gp120 protein (Liao et al., 
2001). Lund and co-workers showed that a soluble Gb3 
(adamantylGb3) analogue may bind gp120 and thus inhibit 
viral infection in vitro. These inhibition properties were 
tested for HIV X4, R5 strains, and resistant HIV-1 strains. A 
similar effect was demonstrated for other Gb3 analogues. 
Inhibition of infection may be  due to blockage of the 
chemokine receptor binding site(Lund et al., 2006; Lingwood, 
2011). An inverse relationship between the amount of Gb3 
and HIV infection was shown for individuals with different 
genotypes in the P1PK blood group system. Lymphocytes 
lacking Gb3 (the null genotype called p) were the most 
sensitive, while T cells from the P1k individuals were the most 
resistant (Lund et al., 2009).

Human Parvovirus B19

The Parvoviridae is a single-stranded DNA small icosahedral 
viral family divided into Parvovirinae and Densovirinae 
subfamilies which can infect mammalian and invertebrate hosts, 
respectively. These subfamilies are further divided into five genera. 

Parvovirus B19 is classified as Erythrovirus (Thompson 
et al., 2019).

Human Parvovirus B19 was identified in the serum of an 
infected patient in 1975 (Brown and Young, 1995). Infection with 
the B19 parvovirus can cause erythema infectiosum (the Fifth 
disease), but also arthropathy (joint disease), fetal loss, and 
anemia. The main cause of anemia following B19 infection is 
binding of viral particles to erythroid precursors which leads to 
their destruction. Globoside (Gb4) was identified as the main 
receptor necessary for parvovirus B19 binding, but not competent 
for viral particles entry into host cells. For this, B19 requires 
another receptor: α5β1 integrin. However, this protein 
co-receptor is not present on mature red blood cells, which highly 
express Gb4, so B19 can bind but not enter mature red cells 
(Weigel-Kelley et al., 2003; Bieri and Ros, 2019; Thompson et al., 
2019; Bieri et  al., 2021). In addition to erythrocytes, B19 can 
infect several immune cells, including macrophages, B cells, T 
cells and follicular dendritic cells (Takahashi et al., 1998). Ku80 
may play a role as a co-receptor, which mediates binding and 
entry of the virus (Munakata et al., 2005). Extensive studies on 
the role of Gb4 and other P1PK blood group system antigens in 
parvovirus B19 entry revealed that only cells from individuals 
with p phenotype are not susceptible to the virus. That finding 
gave rise to the hypothesis that the minimum glycan moiety for 
virus binding is GluNAc/GalNAcβ1→3Gal structure (Taube 
et al., 2010).

Noroviruses

Caliciviruses are family of a small, single-stranded positive-
sense RNA, non-enveloped and icosahedral viruses. The family 
consists of five major genera: Norovirus (humans, pigs and mice; 
Cao et al., 2007; Caddy et al., 2014), Sapovirus (human and pigs), 
Vesivirus (cats), Lagovirus (rabbits) and Nebovirus (cattle; Stuart 
and Brown, 2007; Kim et al., 2014). This viral family requires 
glycans for attachment and host cell entry.

Noroviruses infect human, bovine, and canine gastrointestinal 
epithelia, as well as RHDV (Rabbit Hemorrhagic Disease Virus), 
which target hepatocytes. All utilize human blood group-
associated antigens (HBGAs) as cell-surface receptors (Huang 
et al., 2003; Hutson et al., 2003). On the other hand, GI-specific 
murine norovirus (MNV) and porcine sapovirus bind sialic acids 
mostly on O-glycans and some gangliosides (Ossiboff et al., 2007; 
Taube et al., 2010; Haga et al., 2016).

The activity of FUT genes in relation to expression of 
HBGA (secretor-type Fucα1→2Gal modifications) and levels 
of Lewis antigens (Fucα1→3/4GlcNAc) are associated with 
norovirus infection (Nasir et al., 2012; Almand et al., 2017; 
Someya, 2022). Localization of P2 (the most variable region of 
the P protein containing the carbohydrate-binding motif) 
dimers on the viral particle surface has prompted intensive 
research because of potential interactions with branches of 
glycans. The universality of these epitopes among mammalian 
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species and the potential for emergence of new P2 variants 
raise concerns about interspecies transmission (Chassaing 
et al., 2020).

Polyomaviruses

Polyomaviruses constitute a small family of double-stranded 
DNA, non-enveloped icosahedral viruses. The family of 
Polyomaviridae is divided into four genera: α-polyomavirus, 
β-polyomavirus, γ-polyomavirus, and δ-polyomavirus.

In humans, polyomavirus infections are common but mostly 
asymptomatic. They can be dangerous for immuno-compromised 
patients, in whom the infection symptoms may be severe and 
possibly lead to neoplasms and cancer (Neu et al., 2009; Maginnis 
et al., 2015).

The outer capsid of polyomavirus consists of pentamers of the 
VP1 coat protein with the glycan (particularly sialoglycan)-
binding domain in most species (O’Hara et al., 2014).

Terminal NeuAcα2→3Galβ1→3GalNAc moiety is 
recognized by mouse polyomavirus (MPyV) and can be found 
in both gangliosides (e.g., GD1a) and glycoproteins 
(O-linked), although the contribution of these receptors in 
natural infections is still being examined (Tsai et al., 2003). 
Site-specific mutation at position 91 in VP1 allows binding 
the receptors with an additional NeuAc in the structure 
NeuAcα2→3Galβ1→3(NeuAcα2→6)GalNAc, which in some 
studies is associated with a decreased tumorigenic phenotype 
(O’Hara et  al., 2014). BKV and JCV are well-recognized 
human polyomaviruses, identified in the same year. Their 
names were created from the initials of the patients from 
whom they were isolated (Gardner et al., 1971; Padgett et al., 
1971). Both BKV and JCV polyomaviruses (HPyV-1 and 
HPyV-2, respectively) bind NeuAcα2→3Gal and 
NeuAcβ2→6Gal structures present in glycans of various 
ganglioside and glycoproteins from cells and tissues infected 
by these viruses (urogenital tissue, lymphocytes, renal cells, 
and astrocytes; Ströh et al., 2015). Merkel Cell Polyomavirus 
(MCPyV) is a new polyomavirus isolated from aggressive skin 
cancer, Merkel cell carcinoma (MCC; Gaynor et al., 2007). In 
recent reports, it was shown that only GT1b, but not GD1a or 
GD1b bind to MCPyV VP1 protein, suggesting that both 
α2,3-linked terminal and α2,8-linked internal sialic acids of 
GT1b are crucial for the interaction (Erickson et al., 2009). 
Another member of the family, SV40 virus is highly specific 
for the GM1 ganglioside, with NeuGc instead of NeuAc, but 
the interaction is relatively weak. Studies have shown that 
during the attachment viral molecules interact not only with 
GM1 but also with co-receptor the class I  major 
histocompatibility complex (MHC-I) proteins and entering 
to cells in a caveolin-dependent or -independent manner 
(Pelkmans et al., 2001; Damm et al., 2005). Recognition of 
terminal NeuGc prevents SV40 infection of the human host 
(Neu et al., 2008).

Rotaviruses

The Reoviridae (divided into two subfamilies: Sedoreovirinae 
and Spinareovirinae) are double-stranded RNA viruses, with 
complex, multilayered and icosahedral capsids. The most studied 
genera are Rotavirus (Sedoreovirinae subfamily) and 
Orthoreovirus (also named ‘reovirus,’ Spinareovirinae subfamily), 
which consist of large spike proteins projecting fivefold from the 
icosahedral (Settembre et  al., 2011). The terminal domains of 
those spike proteins VP8 in rotavirus (Taube et al., 2010) and δ1 
(Reiter et al., 2011) bind glycans (Sun et al., 2016).

Infections with rotaviruses (family Reoviridae) are the 
main cause of diarrhoea in young mammals. Rotaviral 
infections cause over 500,000 deaths in developing countries 
and are a frequent cause of childhood morbidity in 
industrialized countries. Moreover, infections result in 
significant losses in agriculture (diarrhoea in calf, pig, and 
poultry production). The infection involves two steps: viral 
recognition of and binding to the villus tip cells of the small 
intestine. Receptor analogs may inhibit the binding to host 
cells (Arias et al., 2008; Mukherjee and Chawla-Sarkar, 2011; 
Thompson et al., 2019). Human rotavirus (RV) infections are 
mostly caused by groups A and, to a lesser extent, C of RVs. 
Group A includes two types of strains: neuraminidase (NA) - 
sensitive and NA – insensitive, which is determined by the 
binding affinity of VP8* domain to terminal sialic acid 
moieties on the host cell surface carbohydrates (Delorme 
et al., 2001; Haselhorst et al., 2009; Kim et al., 2017). HBGAs, 
in particular A, H, and Lewis (Leb) antigens, appear to be the 
main receptors. Some studies suggest that secretor individuals 
are more susceptible to RV infections than nonsecretors. In 
the case of some RV strains (P[4], P[8]), nonsecretors develop 
neutralizing antibodies. Suggesting that they may be affected 
by those strains (Ayouni et al., 2015; Rodríguez-Díaz et al., 
2017). It has been hypothesized that the higher frequency of 
infections among individuals with blood group A may signify 
evolution of RV in response to receptor changes in the host. 
These changes (e.g., αGal-to-GalNAc binding switch) have 
occurred under selection pressure in many animal species 
(Zhao et al., 2020).

Fungal ligands binding GSLs

Fungal infections are a global health problem, with 
increasing incidence worldwide, particularly in patients with 
immune dysfunctions. It is estimated that over 1 billion 
people may be affected by fungal infections, including the 
most commonly detected aspergillosis (caused by Aspergillus 
spp.) and candidiasis (as a result of Candida spp. invasion), 
with an estimated mortality of 1 million annually (Lass-Flörl 
et  al., 2021). Fungal pathogens bind many receptors, 
including glycosphingolipids. The most significant and the 
best described GSL receptor is lactosylceramide 
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(Galβ1 → 4Glcβ-Cer) which is bound by the most ubiquitous 
fungi, such as Cryptococcus neoformans, Candida albicans, 
Saccharomyces cerevisiae and yeast phase of Histoplasma 
capsulatum and Sporothrix schenckii (Jimenez-Lucho et al., 
1990). It was demonstrated that a clinically relevant fungus 
C. neoformans, responsible for cryptococcosis (May et al., 
2016), strongly binds to LacCer-rich brain cells and cultured 
human glioma cells. Moreover, liposomes containing LacCer 
inhibited the fungi binding, while glucosylceramide and free 
lactose did not, confirming the involvement of LacCer in 
pathogen binding (Jimenez-Lucho et al., 1990). The binding 
of C. neoformans to LacCer is affected by the structure of the 
ceramide moiety. Semisynthetic lactosylceramide (named 
DL-dihydrolactocerebroside) with a short-chain fatty acid is 
not recognized by the fungal ligands. In addition, the 
terminal galactose residue of LacCer is essential for binding. 
Gal-terminated LacCer is crucial for C. neoformans binding 
because the LacCer precursor (glucosylceramide) and other 
lactosyl residue-containing neutral and acidic GSLs were not 
recognized by this pathogen (Jimenez-Lucho et al., 1990).

Candida spp.

Candida spp. are a type of yeast that belong to 
Saccharomycetaceae family, which causes an array of 
infectious diseases collectively called candidiasis (Gow et al., 
2011; Hani et al., 2015). Over 90% of infections are caused by 
five fungi: C. albicans (the major pathogen), C. glabrata, 
C. tropicalis, C. parapsilosis and C. krusei (Bongomin et al., 
2017). These yeasts can recognize both non-GSL (stratherin, 
hydroxyapatite, fibrinogen and fibronectin; Johansson et al., 
2000) and GSL receptors (LacCer, asialo-GM1, Lea and 
H-active glycans; May et al., 1989; Jimenez-Lucho et al., 1990; 
Brassart et al., 1991; Yu et al., 1994; Johansson et al., 2000; 
Miyauchi et al., 2007). According to Jemeneza-Lucho LacCer 
is recognized by C. albicans, but these results were not 
confirmed in other studies (Yu et  al., 1994). LacCer may 
be bound by Candida spp. or serve as a pattern recognition 
receptor to neutrophils in response to β-glucan, a component 
of Candida spp. cell wall (Sato et al., 2006). Generally, GSLs 
are recognized by lectin-like adhesins, whose specificity 
differs between strains and the recognition is influenced by 
growth conditions (Tosh and Douglas, 1992; Cameron and 
Douglas, 1996). Fucose-binding lectin is the best-studied 
Candida spp. adhesin. Oligosaccharides with terminal 
Fucα1 → 2Gal (O/H blood group antigen) were able to 
decrease Candida spp. adhesion to the epithelial cells, in 
contrast to internally fucosylated Lewis blood group antigens 
that did not show an inhibitory effect (Critchley and Douglas, 
1987; Tosh and Douglas, 1992; Cameron and Douglas, 1996; 
Johansson et al., 2000). Other studies shed new light on the 
role of GSL-derived compounds in host membrane. Notably, 
GSLs in lipid rafts significantly influence the clearance of 

fungal pathogens by affecting interactions between Candida 
spp. and immune cells (in particular macrophages and 
neutrophils). Neutrophils are crucial immune cells involved in 
Candida spp. pathogenesis, because they are responsible for 
clearance of the pathogen. Moreover, macrophages contain 
LacCer in their own plasma membrane, raising the possibility 
of interaction with Candida spp. (Bryan et al., 2015; Tafesse 
et al., 2015).

It was demonstrated in several studies, that Lewis and 
ABO blood group phenotypes may be  associated with 
susceptibility to Candida spp. The secretor/nonsecretor status 
(Lewis phenotypes) can influence vaginal candidiasis caused 
by C. albicans (Hilton et al., 1995; Kulkarni and Venkatesh, 
2004). It was shown that Le(a-b-) phenotype was linked to 
recurrent vaginitis in women (Hilton et al., 1995), but when 
comparing Le(a + b-) with Le(a-b+) individuals there is no 
significant difference. Kulkarni and Venkatesh (2004) found 
correlation between Candida spp. and ABO phenotype and 
demonstrated that vaginal candidiasis occurs predominating 
in nonsecretors. It may be  explained by the lack of ABO 
antigens in the body fluids of nonsecretors, which facilitates 
the attachment of C. albicans to the epithelial cells. Animal 
model studies support that secretor status may be protective 
against C. albicans vaginitis (Hurd and Domino, 2004; 
Domino et al., 2009), which may be also related to modulation 
of host–microbe interactions by estrogen, a key hormone 
upregulating FUT2 expression (responsible for secretor status; 
Fidel et al., 2000; Domino et al., 2009). Data on the role of 
ABO and Lewis secretor/nonsecretor status in oral candidiasis 
are conflicting (Aly et al., 1991; Ben-Aryeh et al., 1995). The 
proportion of nonsecretor status was significantly higher in 
patients with chronic hyperplastic candidiasis compared to the 
control subjects (Lamey et al., 1988). A small Indian study 
comparing ABO type and Candida spp. incidence in patients 
with duodenal ulcers (Singh et  al., 1990) showed that 
C. albicans most frequently colonized patients with the O 
blood group, with higher incidence of nonsecretor status 
among the patients with peptic ulcers (Burford-Mason 
et al., 1993).

Histoplasma capsulatum

Histoplasma capsulatum is a dimorphic fungus responsible 
for histoplasmosis, one of the most frequently occurring 
invasive fungal pulmonary infections (Gnat et al., 2021; Souza 
et al., 2021). This pathogen produces a cell surface 60 kDa heat 
shock protein (HSP60) which recognizes complement receptor 
3 (CR3) on macrophages, leading to H. capsulatum HSP60 
internalization. The interactions between immune cells and 
H. capsulatum depend on lipid microdomains on the cell 
surface, and the presence of sialylated GSLs, such as GM1, 
which is required for recruitment of CR3 into the cell 
membrane (Lin et al., 2010). Impaired adhesion in the absence 
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of GM1 may be  caused by two proposed mechanisms: (1) 
disorganization of lipid microdomains results in decreased 
association between macrophages and H. capsulatum or (2) 
GM1 may be  a co-receptor in the initial steps of 
host-H. capsulatum interactions (Guimarães et al., 2019; Souza 
et  al., 2021). In addition, LacCer, a key GSL in Src family 
tyrosine kinase Lyn-dependent signaling pathway, plays a 
crucial role in H. capsulatum pathogenesis by regulating 
cytoskeleton remodeling (Nakayama et al., 2013).

Paracoccidioides brasiliensis

Paracoccidioides brasiliensis is a pathogenic dimorphic 
fungus that may cause paracoccidioidomycosis. According to 
Ywazaki et al. (2011) P. brasiliensis may bind GalCer, LacCer, 
CTH (Galα1 → 4Galα1 → 4Glcα1 → 1Cer), GD3, GM1 and 
GD1a. Another study showed that ganglioside GM1 localizes 
in lipid rafts of epithelial cells and may serve as receptor for 
this fungus (Maza et al., 2008). Also, GM3 occurring in lung 
fibroblast is involved in P. brasiliensis binding and/or 
infection (Ywazaki et  al., 2011). Removal of 
N-acetylneuraminic acid from human alveolar cells resulted 
in decreased adhesion of P. brasiliensis conidia to these cells, 
suggesting that sialic acids may play a significant role in 
pathomechanism (González et  al., 2008). Moreover, 
disruption of lipid rafts using cholesterol-sequestering agents 
(methyl-β-cyclodextrin, MβCD, or nystatin) hindered 
P. brasiliensis interaction with the cells (Maza et al., 2008). In 
addition, malate synthase can mediate P. brasiliensis 
interaction with mammalian cells because it acts as an 
adhesin (da Silva Neto et al., 2009).

Pneumocystis jirovecii

Pneumocystis jirovecii is a pathogen responsible for 
opportunistic pneumonia in immunocompromised patients 
(Dellière et al., 2020) and children (Zakrzewska et al., 2021), 
with a relatively high mortality rate (Hahn et al., 2003). The 
main cell surface protein involved in host cell binding and 
internalization is β-glucan, a cell wall component containing 
1,3-linked β-d-glucopyranosyl residues and variable amounts 
of 1,6-linked β-d-pyranosyl side chains, which may 
be recognized by LacCer in S. cerevisiae (Zimmerman et al., 
1998). Hahn et al. (2003) found that blocking LacCer using a 
specific anti-LacCer antibody markedly decreased the release 
of macrophage inflammatory protein (MIP-2). Similar results 
were obtained using GSLs inhibitors (N-butyldeoxyno jirimycin 
and d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-
propanol-HCl), suggesting that LacCer may also play a 
significant role in inducing β-glucan-induced inflammatory 
signaling of P. jirovecii pathogenesis (Hahn et al., 2003; Souza 
et al., 2021).

Discussion and future perspectives

Glycosphingolipids play several important roles in cell–
cell interactions and communication in complex, multicellular 
organisms. The role of GSLs in mammals was studied by 
knock-outs of specific glycosyltransferases, mostly 
participating in initial steps of GSL biosynthesis (Yamashita 
et  al., 1999, 2003; Kumagai et  al., 2010; Wu et  al., 2011; 
Allende and Proia, 2014). On the single-cell level, GSLs are 
involved in proliferation, apoptosis, endocytosis and cell 
migration, and thus they play a role in cancer progression 
(including breast, lung, colorectal and melanoma; Zhuo et al., 
2018). This makes GSLs attractive targets for anti-tumor 
therapies (Kroll et al., 2020), including immunotherapy (Yu 
et al., 2020).

Autoimmunity induced by antigen mimicry, best described 
in Campylobacter jejuni infections, presents a unique challenge. 
Autoantibody responses against GM1 destroy host peripheral 
nerve components, leading to acute motor axonal neuropathy 
(AMAN) or acute motor-sensory axonal neuropathy (an axonal 
form of GBS, based on the absence/presence of sensory 
involvement). One GBS variant, Miller Fisher syndrome, is 
characterized by gait ataxia, areflexia, and acute ophthalmoplegia 
(Lee et al., 2004; Brezovska et al., 2011; Koike and Katsuno, 
2021). Molecular mechanisms driving the development of 
autoantibodies and host complement activation remain 
incompletely understood.

The importance of GSLs as receptors is linked to their 
localization in lipid rafts in the plasma membrane. Networks 
of lipid rafts and other membrane elements (mainly 
membrane-associated proteins) influence host-pathogen 
interactions by affecting pathogen or toxin sequestration and 
cell entry. Shiga and cholera toxins enter the host cells via 
GSL receptors, but successful entry and cytotoxicity depend 
on multiple factors, including the composition of plasma 
membrane, organization of lipid and protein components, 
clustering of GSL receptors, and actin remodeling. Membrane 
microdomains called lipid rafts contain a special subset of 
proteins (e.g., G proteins) and lipids (cholesterol, 
GPI-anchored proteins, and glycolipids in the outer leaflet, 
and unsaturated phospholipids and caveolin in the inner 
leaflet). Many studies suggested that entry through lipid raft 
components helps pathogens evade host immune responses 
and lysosomal fusion. Disruption of lipid rafts (e.g., depletion 
of cholesterol) inhibits or stimulates signaling pathways. The 
ceramide moiety of GSLs also impacts their receptor 
functions. For example, Shiga toxins bind more strongly to 
Gb3 with long-chain fatty acid (C20-C24) compared to 
shorter ones (C12-C14). Additionally, Gb3 isoforms with 
saturated fatty acid chains show lower affinity to Stx 
compared to unsaturated chains. These elements of the 
receptor chemistry, distribution of receptors in the cell 
membrane as well as the configuration and number of 
receptor binding sites on the ligands determine whether 
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the toxin can induce negative membrane curvature and 
tubular plasma membrane intussusception necessary for 
cellular uptake (Römer et  al., 2007, 2010; Johannes and 
Römer, 2010; Pezeshkian et  al., 2016; Johannes and 
Verhelst, 2021).

The mechanisms whereby pathogens and toxins engage GSLs 
to thrive in the host or induce cytotoxicity are more challenging 
to understand than the traditional protein–protein interaction 
paradigm (Kulkarni et  al., 2021). The multiple examples of 
infections or pathologies involving GSLs point to untapped 
potential and call for unorthodox approaches in search of 
new treatments.
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