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Exploring Host-Microbiome 
Interactions using an in Silico 
Model of Biomimetic Robots and 
Engineered Living Cells
Keith C. Heyde1 & Warren C. Ruder2

The microbiome’s underlying dynamics play an important role in regulating the behavior and health 
of its host. In order to explore the details of these interactions, we created an in silico model of a 
living microbiome, engineered with synthetic biology, that interfaces with a biomimetic, robotic 
host. By analytically modeling and computationally simulating engineered gene networks in these 
commensal communities, we reproduced complex behaviors in the host. We observed that robot 
movements depended upon programmed biochemical network dynamics within the microbiome. 
These results illustrate the model’s potential utility as a tool for exploring inter-kingdom ecological 
relationships. These systems could impact fields ranging from synthetic biology and ecology to 
biophysics and medicine.

An organism’s evolutionary fitness is determined by how well it utilizes environmental metabolites. For 
constituents of the microbiome – the microorganisms associated with the animal body – their envi-
ronment is a product of their host’s physiology. Yet, these commensal microbes also play a critical role 
in governing the health and behavior of their hosts. The effects include impacting host metabolism1, 
perturbing host hormone regulation2 and changing the host’s affinity for disease3. These interactions can 
even regulate complex animal behavior. For example, recent studies found that commensal Lactobacillus 
plantarum can affect the mating behavior of their Drosophila melanogaster hosts4, and that microbiome 
density can directly influence anxiety, and by extension, motility5 in mice.

These correlations likely result from inter-kingdom communication through biochemical signaling6. 
Furthermore, these communication motifs are present as relationships between consortia of commen-
sal microbes and their host, not merely as interactions between a single microbial species and its host. 
Microbial consortia – consisting of multiple species and intertwined biochemical networks7 – allow for 
network complexity, as do spatial variations in the host ecosystem, rendering host-microbiome interac-
tions difficult to fully understand and model8.

Fortunately, a variety of scientific tools exist to help explore complicated biological systems. Synthetic 
biology has generated multiple tools that have been used to probe and program cellular behaviors9 over 
the past fifteen years. The field was launched in 2000 by reports of the first synthetic biological networks 
– or engineered gene circuits – that functioned as memory10 or oscillatory11 modules in cells. Inspired 
by electrical engineering, these circuits have expanded to include other modules such as logic gates12, 
timers13, counters14, and simple analog computers15. These behaviors are programmed into DNA and 
then uploaded into cells. The resulting synthetic networks can then interface with endogenous networks 
within the same cell, organism, or commensal host to reprogram behavior (Fig. 1).

1Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, 
Blacksburg, VA 24061. 2Department of Biological Systems Engineering, Virginia Polytechnic Institute and State 
University, Blacksburg, VA 24061. Correspondence and requests for materials should be addressed to W.C.R. 
(email: wruder@vt.edu)

received: 14 November 2014

accepted: 29 May 2015

Published: 16 July 2015

OPEN

mailto:wruder@vt.edu


www.nature.com/scientificreports/

2Scientific Reports | 5:11988 | DOI: 10.1038/srep11988

Progress in synthetic biology includes the creation of genetic component libraries as well as computa-
tional tools, giving researchers the ability to simulate analytical models of cellular response in silico prior 
to wet-lab assembly16,17. As a result, researchers now have an ability to rationally design, model, and build 
networks to probe and control specific cellular behaviors, leading to potential therapeutic interventions 
and broader scientific discovery.

Synthetic biology’s techniques are performed with increasing robustness using a number of individ-
ual model species including E. coli. However, most naturally occurring bacteria live in communities, 
or consortia18 of multiple species. Despite recent studies successfully demonstrating how engineered 

Figure 1.  Living Cells Interfaced with a Biomimetic Robot as a Model System for Host-Microbiome 
Interactions. (A) A synthetic gene network – also known as an engineered gene circuit. Uploading a gene 
circuit into living bacteria endows cells with a programmable biomolecular network. (B) Engineered bacteria 
and their circuits can be introduced into an organism’s microbiome. The networks of the host and microbiome 
combine to form a complete gene network. In the absence of the complete host-microbiome network, host 
behavior is erratic. A programmed microbiome drives new, and potentially rational, host behavior. (C) A 
robot with a microfluidic chemostat mimics the microbiome’s environment within an organism. The robot 
is conceptualized to include a miniature fluorescent microscope, along with the pumps necessary to deliver 
inducers to the onboard microfluidic chemostat. This microscope allows for modulations in the reporter 
protein levels to be interpreted by the robot electronically. In the absence of a living microbiome, robotic host 
behavior can be erratic. A programmed, living microbiome drives new host robotic behavior.
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consortia can behave as a predator-prey system19 or geospatially self-organize20, the genetic network 
complexity required for targeted consortia engineering is daunting21. Additional modeling and engineer-
ing approaches are needed to further explore the details of microbiome interactions.

While examining the physiology of commensal microbes is important, macro-scale host behaviors 
must also be better understood to elucidate host-microbiome interactions. Biomimetic approaches give 
us a robust toolset for analyzing animal behavior. For example, biomimetic robots have served as tools 
for exploring biomechanics ranging from snake locomotion22 to human balance23. These robots provide 
quantifiable, minimal systems representative of natural phenomenal and are useful for scientific inquiry. 
In addition to mechanics, robots can be used to study cognition. By programming robots with a mini-
mal set of algorithms and subjecting them to complex environmental challenges, researchers have used 
biomimetic robots to understand how primitive life forms solve a wide range of problems despite simple 
neural architectures24. 

Model System: A Robotic Host with a Living Microbiome.  In order to explore host-microbiome 
interactions, we created an in silico model system that combined the tools of synthetic biology and bio-
mimetic robotics to design, model and computationally simulate a hybrid robot-bacteria system (Figs. 1 
and 2). First, we conceptualized a physical system that could be built, consisting of a mobile robotic 
platform endowed with the capacity to harbor and communicate with a living microbiome. We envi-
sioned this system as consisting of three physical modules that could be built with existing technology 
(Figure S1). We then modeled and simulated these individual modules together to produce the complete 
system’s behavior. Our final in silico model system was able to replicate a range of different biological 
‘host’ behaviors. Specifically, when we increased the complexity of gene circuit topologies in the living 
microbiome, unique robot behaviors were captured by this in silico tool.

Figure 2.  Computational Simulation Approach for the Model System. (A) A basic gene circuit – the 
lac-inducible gene network – forms the core of all simulated gene network behavior. (B) Green fluorescent 
protein (GFP, shown as a green dot) from this circuit is conceptualized to be detected by an onboard 
miniature, epifluorescent microscope (EFM). (C) A computational simulation of microbiome GFP 
production based upon an analytical model for the circuit in (A). In a built-system, this protein fluorescence 
signal would be the light detected by the EFM. (D) The conceptualized robot uses onboard electronics 
to convert the measured light signals into electrical (voltage) signals. (E) Voltage signals meeting specific 
criteria activate pre-programmed robot motion subroutines. (F) The resulting emergent behavior potentially 
leads a robot to a carbon fuel depot. Here, robot behavior resulting from a simulation of the circuit in (A) is 
shown. The robot was programmed with motion subroutines that activate to seek arabinose (orange square) 
depots following receipt of lactose (cyan triangles).
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Model System: Physical Modules.  We envisioned our hybrid robot-microbiome system to be com-
prised of three physical subsystems, or modules. These modules would exchange information through 
chemical, optical, and electrical signals. The first module (Figure S1A) would be an engineered micro-
biome consisting of a living, synthetically engineered E. coli population. These bacteria would be engi-
neered with gene circuits that drive fluorescent reporter expression (i.e., increases in green fluorescent 
protein (GFP) or mCherry – a red fluorescent protein – as shown in Fig. 2C). This engineered microbi-
ome would be housed within the second module.

The second module would consist of a microfluidic chemostat25 (Figure S1B) that would be moni-
tored by a miniature epifluorescent microscope26 (Figs. 2B and S1B). Cells would be well mixed and in 
exponential phase, similar to previous studies19,27,28. Finally, this module would include electronics that 
sense and process the light signal from the epifluorescent microscope (EFM) into an electronic EFM 
signal (Supplementary Table 1, Fig. 2C). This signal, hereafter referred to as the EFM signal, would be 
sent to the third module.

The third module would be the biomimetic robot host (Fig. 2E and S1C). This third module would 
use the EFM signal to activate simple motion subroutines (Supplementary Table 2, Figs. 2F and S1C). The 
sum of these simple behaviors would then emerge as more complicated robot behaviors (Fig.  1B,C,F). 
Figure 2 illustrates how information would flow between the three modules. Here, we demonstrate the 
system with a simple synthetic circuit in the living microbiome, in which lactose drives GFP expression. 
All three modules are described in greater detail in Supplementary Text S1.

Model System: Computational Simulation of Proposed Physical Modules.  Next, we mod-
eled and computationally simulated all three physical modules of the proposed robot-bacteria system 
(Figure S2 and Supplementary Text S1). The resulting complete system behavior was then simulated in a 
two-dimensional, virtual testing environment – or arena. This environment included stationary carbon 
source depots, which were conceptualized to contain inducers such as lactose or arabinose. These depots 
were conceptualized as prey for the robotic system. When a robotic system docked with these depots, it 
would capture the depot’s inducer carbon source and a potential fitness advantaged would be conferred 
to the host. The details of this ‘docking’ are described in Supplementary Text S1.

The robot’s behavior in this simulated arena served as the output of our simulation. By analyzing the 
effects of variations in genetic circuit topologies and circuit parameter space, we observed a clear ability 
for the microbiome to cause distinct behavioral regimes in its host.

Results
Environment Simulation.  In order to observe emergent robotic behavior, we designed an environ-
mental simulation scenario. This scenario placed a robot in a 20 m × 20 m virtual, two-dimensional 
(2D) arena with an initial position at the center of this square. The simulated arena was initialized with 
one lactose and one arabinose carbon depot at different locations within the arena. These depots would 
remain in their position until the robot’s resulting movements led it to reach and dock at a depot, thereby 
acquiring all of the stored lactose or arabinose. This docking would cause the lactose or arabinose from 
the depot to enter the onboard microbiome at a constant concentration and rate. After a given carbon 
depot was depleted, a new source appeared of the same inducer (i.e., lactose or arabinose), but at a 
different location. In order for computational and analytical simplicity, we modeled the carbon sources 
to appear on the vertices of a 10 m ×  10 m square, centered on the robot’s initial position. Finally, we 
initialized the biochemical environment of the microbiome with a simulated injection of arabinose at 
time t =  0.

Simulation: Balanced Toggle Switching in Engineered Microbiome and Robot Behavior.  In 
order to test our hypothesis that programming commensal bacteria with engineered gene circuits can 
result in new emergent host behavior, we simulated different engineered gene circuits in our model 
system’s microbiome module. We started by simulating a bistable memory element – or balanced toggle 
switch – based on the circuit initially developed by Gardner et al.10 due to the relative abundance of 
literature and characterization29,30. This circuit would potentially allow us to confirm that our system 
could capture the ‘toggle’ behavior of the microbiome circuity in the robot’s behavior, thus serving as a 
proof-of-concept for our proposed tool. The complete details of our analytical modeling and computa-
tional simulation approach is described in Supplementary Text S2.

As expected, the results of these simulations (Fig. 3) show a robotic platform that alternates between 
seeking arabinose and lactose carbon depots. Upon initial activation with a transient pulse of an inducer, 
a balanced genetic toggle (Fig.  3A) drives sustained expression GFP or mCherry, and in the topology 
shown here, can be ‘flipped’ by the external addition of either lactose or arabinose. The resulting tempo-
ral, biochemical landscape (Fig. 3D) drives a spatiotemporal robot behavior (Fig.  3E) characterized by 
its bistability. Repeated simulations always showed that a balanced toggle switch caused the robot to seek 
out a balanced set of depots (i.e., two lactose and two arabinose) in our virtual environment.

In order to evaluate the robustness of this bistability, we simulated the balanced toggle and included 
stochasticity31,32 in the in silico system’s engineered living microbiome. These simulations (Figure S3) 
showed maintenance of the system’s bistable memory, accompanied by additional stalls along motion 
paths. We found the system’s behavior to be more sensitive to large degrees of stochasticity in translation 
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Figure 3.  Emergent Robotic Host Behavior Resulting from a Microbiome with a Bistable Memory 
Circuit. (A) A bistable switch – or balanced genetic toggle switch – was simulated. The gene topology 
is represented using systems biology network notation. (B) Simulation results for internal inducer 
concentrations of lactose (cyan) and arabinose (orange) - see Supplementary Figure 4 for more details. (C 
and D) Simulation results for internal fluorescent protein reporter concentrations of mCherry (red) and GFP 
(green) are shown in (D). These are parsed into the EFM electronic output shown in (C). (E) A simulation 
of resulting robot motion depicts movement at constant velocity through the arena with stops (larger red 
octagons) to dock at individual carbon depots.
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in comparison to transcription. However, these large degrees of translational stochasticity are unlikely to 
occur in a physical, built system as most stochastic variability in prokaryotic protein synthesis has been 
previously shown to result from noise in transcription33,34 rather than translation.

Finally, we tested the robotic platform’s toggling behavior at an environmental level by simulating 
carbon depots that appeared randomly, rather than at fixed vertices (Figure S4). This simulation upheld 
the bistability of the robotic behavior, continuing to result in a robot that alternated its motion between 
lactose and arabinose sources regardless of the inducer carbon depot location.

Simulation: Biased Toggle Switching in Engineered Microbiome and Robot Behavior.  How 
ever, attaining a truly balanced toggle switch is difficult in the laboratory35, and often wet-lab molecular 
bioengineering results in an unbalanced, or biased, toggle switch. This circuit lacks the stable equilib-
rium seen in the balanced toggle switch10, with a tendency to transcribe and translate one side of the 
circuit even when no inducers are present. This imbalance is driven by many factors including promoter 
strength, ribosome binding site (RBS) strength, and protein and mRNA degradation rates. A biased tog-
gle switch can provide timer-like behavior useful for cellular control of processes ranging from metabo-
lism to apoptosis. In order to discover how this genetic feature in the commensal microbiome alters host 
behavior, we simulated a biased toggle with an imbalance between the RBS strengths controlling LacI 
and TetR translation (See Supplementary Text S3).

The resulting robot path (Fig. 4D) suggests a behavioral ‘preference’ for lactose. This is attributed to 
the timer-like behavior of the genetic circuit demonstrated in the temporal reporter protein landscape 
(Fig. 4C), wherein a spike in GFP production caused from exposure to lactose depots is quickly atten-
uated by a genetic bias for LacI and thus, mCherry synthesis. This behavior is caused by a difference in 
the LacI and TetR RBS ratio creating a translational imbalance for the repression proteins.

Simulation: Toggle Switch Parameter Sensitivity.  The results shown in Fig. 4 also raise an impor-
tant question: without altering the genetic topology, what microbiome biochemical parameter(s) impact 
the emergent behavior of the robotic host? In order to explore this question, we performed a parameter 
sweep for the same RBSLacI and RBSTetR used to simulate Fig.  4. By evaluating quantitative metrics for 
behavior, such as simulation runtime and depots acquired, we were able to capture shifts in the robot’s 
behavioral regime (Fig. 5) driven exclusively by RBS strengths and the resulting toggle bias.

This parameter sweep also provided evidence of behavioral bifurcations seen in the yellow region to 
the upper right of Fig. 5C and in the intense black band in Fig. 5D. Although not immediately appar-
ent, these areas represent distinctly different emergent robotic behavior than surrounding regions. The 
yellow region (Fig.  5C) is characterized by a high percentage of time spent at zero velocity, which we 
defined as ‘stalling’, for the robot. The black regions (Fig. 5D) represent time efficient host behavior, with 
a minimum amount of time spent stalling with an EFM value =  0. In conjunction, these differences in 
parameter space suggest potential host performance optimization caused by microbiome physiology.

Simulation: Host Feedback to the Engineered Microbiome.  Having demonstrated different host 
behavior regimes that result from defined parameter spaces, we modified the genetic topology to include 
feedback from the robotic platform. This created a robotic simulation that included two way commu-
nication between the microbiome and the robotic platform. The resulting robotic behavior was more 
nuanced than the toggle switch, and was analogous to predation habits found in nature. By adding an 
orthogonal operon consisting of a Plux-λ promoter36 that simultaneously drives GFP and mCherry expres-
sion (Fig.  6A), we created a mechanism by which the microbiome can interpret an acyl-homoserine 
lactone (AHL) pulse delivered by the host robotic platform (i.e., through the execution of subroutine 6 
shown in Supplementary Table 2). Thus, although we previously observed microbiome-to-host informa-
tion flow, this additional circuitry allowed us to study host-to-microbiome feedback as well.

Figure 6 details the results from simulating this additional engineered gene circuit within the micro-
biome. The simulation shows an interesting nuance in robot behavior. Rather than seeking out carbon 
depots directly, the robotic platform pauses, and then travels at twice the previous, base velocity as it 
nears the depot. This behavior - reminiscent of predation - is a natural analogy to what is known as a 
stalk-pause-strike37 response in vertebrates.

Simulation: Feedback Parameter Sensitivity.  Finally, we demonstrated tunability in the 
host-microbiome feedback by adding an additional cI gene driven by the Plux-λ promoter (Fig. 7A) and 
modifying the corresponding RBS strength (RBScI). Our results show a number of distinct robotic 
behavioral regimes (Fig. 7) including both toggling and stalk-pause-strike behaviors previously noted.

The results from this RBScI parameter sweep capture four distinct robot behavioral regimes when 
varying RBScI from 0 to 1 (i.e., over the extremes of a relative range). When the RBScI value is close to 
zero (Fig. 7B), we observe the stalk-pause-strike behavior seen in Fig. 5. This regime is expected as a low 
RBScI value (<0.0007) would imply that a negligible amount of cI is translated. As we increase the RBScI 
value (0.0007–0.001), we observed a regime of stalk-pause-strike-pause-stalk previously unseen (Fig. 7C). 
Within this regime, the robot moves towards a depot (EFM ±  1) and then stops motion (EFM =  0). After 
a brief pause, it begins traveling at twice the base velocity (EFM ±  2) before pausing again (EFM =  0) and 
finally finishing its approach of the depot at base velocity (EFM ±  1). Further raising the RBScI value 
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(0.001–0.8) caused the robotic host to enter a regime of permanent stall (Fig.  7D), wherein the robot 
acquires no carbon sources. Finally, as the RBScI value approaches 1 (Fig. 7E), the robot behaves in the 
same bistable manner seen in Fig.  3. This bistability is the result of quickly appearing, large [cI] that 
auto-represses its further transcription from the Plux-λ promoter. These different regimes demonstrate 
our ability to tune robotic behavior by altering only a single genetic parameter within the microbiome.

Figure 4.  Emergent Robotic Host Behavior Resulting from a Microbiome with an Unstable Memory 
Circuit. A biased switch – or unbalanced genetic toggle switch - with the topology shown in Fig. 3A was 
created by increasing the ribosome binding site (RBS) for LacI to be 2.4 times the strength of the RBS for 
TetR. (A) Simulation results for internal inducer concentrations of lactose (cyan) and arabinose (orange) 
(B and C) Simulation results for internal fluorescent protein reporter concentrations of mCherry (red) 
and GFP (green) are shown in (C). These are parsed into the EFM electronic output shown in (B). (D) A 
simulation of resulting robot motion depicts the robot behaving in a manner different from Fig. 3E, with a 
clear preference for lactose carbon depots. Specifically, the robot briefly seeks arabinose depots after a lactose 
depot is acquired, however this period is quickly overwhelmed by the biased toggle switch behavior and the 
robot changes course to seek out a lactose depot.
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Discussion
Although interconnectivity between commensal bacterial physiology and host behavior has been exper-
imentally observed5, the underlying biochemical interactions38 have yet to be fully understood. Here, we 
have created a unique in silico tool that enables us to explore this relationship with synthetic biology. 
Much in the way that synthetic gene circuits allows the exploration of genetic pathways and relationships 
in a single organism39, this tool could be used to augment and examine the interconnected networks that 
drive host-microbiome interactions.

Crucially, we explored two different topologies of information flow critical for host-microbiome inter-
actions.

First, by simulating the toggle switch, we examined information flow from the environment to the 
microbiome, and then to the robotic platform. This system design (Fig. 3) allowed us to establish an ini-
tial behavior theme: host alternation between nutrient sources (i.e., lactose and arabinose carbon depots) 
resulting from a repeatedly toggled, bistable gene network. We then demonstrated that a translational 
parameter, RBS strength, could serve as a tunable component for modifying the robot’s affinity for these 
nutrient sources. Thus, we were able to use both genetic topology and parameter strength to prescribe a 
range of robot behaviors (Figs 4 and 5).

However, host-microbiome systems in nature are not limited solely to microbiome-to-host commu-
nication. They also include mechanisms for host-to-microbiome information flow40. By adding the addi-
tional Plux-λ driven circuit and subroutine 6, we included this feature in our robotic system. In doing so, 
we simulated a system capable of mimicking host-microbiome interactions found in nature (Fig. 6). The 
addition of this circuit resulted in robot behavior analogous to stalk-pause-strike vertebrate predation37. 
Furthermore, performing a one-dimensional parameter walk (i.e., varying the RBS strength driving cI 
expression) within this genetic topology showed that multiple distinct robot behaviors could be modu-
lated by this single parameter (Fig. 7). In addition to predation-like movement, these behaviors ranged 
from alternating between carbon source depots to permanently stalling. Our results demonstrate that 
small changes in biochemical parameters can result in the emergence of very different host robotic 
behaviors.

Our model system provides a useful system for exploring host-microbiome interactions with synthetic 
biology. By integrating an engineered microbiome, a microfluidic chemostat mimicking the microbiome’s 
environment within an organism, and a robotic conveyance, we have designed, modeled, and simulated 
a biomimetic system that allows us to explore natural phenomena through both synthetic biological 
and robotic programming. We expect this model system will have implications in fields ranging from 
synthetic biology and ecology to mobile robotics.

Methods
All numerical simulations were programmed in MATLAB®  2014a using the Simulink™  software pack-
age. Our simulations relied upon a combination of continuous and discrete functions, interacting in a 
block-based model (see Supplementary Information for additional details). In order to facilitate accurate 
updating of state conditions, all integrations were calculated using MATLAB’s ode5 numerical method 
approach with a fixed time step. Ode5 is an implementation of the Dormand-Prince41 algorithm based 
off of Runge-Kutta approaches.

For every test cycle, all initial conditions were set at zero with the exception of internal arabinose 
concentration which had an initial condition of [50]. Each simulation ran through four iteration cycles 
corresponding to the four available carbon depots.

Figure 5.  Exploration of Toggle Switch Parameter Space. This figure presents how changing RBS strengths 
driving LacI and TetR expression can change the robotic platform’s behavior without altering the genetic 
topology. (A) The total number of lactose depots acquired by the robot. (B) The total acquired arabinose 
depots acquired by the robot. (C) The percentage time the robotic platform spends in stall (i.e., EFM =  0). 
(D) The total time steps of the simulation. These figures demonstrate behavioral bifurcations driven 
exclusively by RBS strength.
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Figure 6.  Addition of Orthogonal Operon Yields Nuanced Predation Habits. (A) The toggle switch 
topology modified with an additional, orthogonal operon containing the Plux-λ promoter driving 
polycistronic expression of GFP and mCherry was simulated. This promoter is induced by AHL, which 
the robot is programmed to inject into the living, onboard microbiome when it nears any carbon depot. 
(B) Simulation results for internal inducer concentrations of lactose (cyan), arabinose (orange), and AHL 
(yellow). (C and D) Simulation results for internal fluorescent protein reporter concentrations of mCherry 
(red) and GFP (green) are shown in (D). These are parsed into the EFM electronic output shown in (C). 
Note the addition of EFM values of 2 and -2 indicating the robot is moving at two times the base velocity. 
(E) A simulation of resulting robot motion depicts the robot moving towards a depot, pausing, and then 
moving at twice the speed when close to the depot. This behavior appears to be qualitatively similar to stalk-
pause-strike predation, an identifiable trait in higher level organisms.
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Figure 7.  Distinct Behavioral Regimes Emerge from RBS Modification. (A) The gene circuit topology 
from Fig. 6A was further modified with an additional, orthogonal operon containing the Plux-λ promoter 
driving polycistronic expression of GFP, mCherry, and critically, cI, the repressor from λ  bacteriophage. 
In addition to being activated by AHL, this promoter is also repressed by cI, thus the new operon is auto-
repressing. Furthermore, the robot is programmed to inject AHL into the living, onboard microbiome 
when it nears any carbon depot. (B) When the simulated RBS strength for cI (RBScI) is close to 0.0, the 
robotic platform behaves in the stalk-pause-strike manner described in Fig. 6. (C) With the RBScI value 
at 0.0007, there is a decrease in the length of the ‘strike’ period of the predation pattern leading to a stalk-
pause-strike-pause-stalk behavioral regime. (D) Increasing the RBScI value to close to 0.01 leads to a regime 
of inactivity whereby the robotic platform is unable to acquire even one carbon depot. (E) Finally, as the 
RBScI value approaches 1, the system behaves similarly to the initial balanced toggle switch seen in Fig. 3. 
These multiple, and strikingly different, host behavioral regimes indicate how biochemical networks of the 
microbiome may have drastic impacts on host behavior.
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Data analysis and plotting of simulation results were performed using MATLAB and Python, respec-
tively. Python libraries numpy, scipy and matplotlib were leveraged for the creation of graphics. Graphics 
were formatted as .SVG files and edited in InkScape®  as vector images. Non-data graphics were created 
and edited exclusively in InkScape.

All Simulink and MATLAB files are made available upto request.
All simulations were run on an ASUS Zenbook UX32VD running with an Intel®  Core™  i7-3517U 

processor at 1.90 GHZ and 2.40 GHZ with 10 GB of RAM on a 64-bit Windows 8.1 operating system. 
Average runtime for each simulation trial was 2.78 minutes for the basic toggle switch (Fig. 3) and incre-
mentally more (<0.1 minute) for other circuits.
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