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The obese phenotype is characterized by a state of chronic low-grade systemic inflammation that contributes to the development of
comorbidities, including nonalcoholic fatty liver disease (NAFLD). In fact, NAFLD is often associated with adipocyte enlargement
and consequentmacrophage recruitment and inflammation.Macrophage polarization is often associatedwith the proinflammatory
state in adipose tissue. In particular, an increase ofM1macrophages number or ofM1/M2 ratio triggers the production and secretion
of various proinflammatory signals (i.e., adipocytokines). Next, these inflammatory factors may reach the liver leading to local
M1/M2 macrophage polarization and consequent onset of the histological damage characteristic of NAFLD. Thus, the role of
macrophage polarization and inflammatory signals appears to be central for pathogenesis and progression of NAFLD, even if the
heterogeneity of macrophages and molecular mechanisms that govern their phenotype switch remain incompletely understood. In
this review, we discuss the role of adipose and liver tissuemacrophage-mediated inflammation in experimental and humanNAFLD.
This focus is relevant because it may help researchers that approach clinical and experimental studies on this disease advancing the
knowledge of mechanisms that could be targeted in order to revert NAFLD-related fibrosis.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) comprises more
than one hepatic spectrum. It is a benign condition charac-
terized by simple intrahepatic triglyceride accumulation (i.e.,
steatosis), which in turn may progress to a more severe form
exhibiting steatosis, hepatocellular damage (i.e., ballooning),
and tissue inflammation, collectively known as nonalcoholic
steatohepatitis (NASH) [1]. However, this old paradigm has
been challenged by several studies suggesting that patients
with simple steatosis might not constitute a homogenous
population. While some of these patients may progress
unequivocally towards NASH, others may develop fibrosis
directly, bypassing NASH as intermediate step [2].

Currently considered the most common liver disease
worldwide, NAFLD is characterized by a rising prevalence in

all age groups [3, 4]. It is widely accepted that the increased
prevalence of NAFLD is strongly associated with the increas-
ing prevalence of obesity. Development and progression
of NAFLD are the result of a complex interplay between
different organs and cell types. Indeed, the expansion of
visceral adipose tissue and gut-derived endotoxins are key
factors in NAFLD and its progression to fibrosis [5–10].

During obesity, adipocyte size may dramatically increase.
This hypertrophy promotes the rupture of adipocytes leading
to a local inflammatory phenotype marked by the recruit-
ment and activation of immune cells, such as macrophages
and T cells, and by production of adipose tissue proin-
flammatory molecules (i.e., adipocytokines) that are released
into circulation and can reach target organs, including the
liver and skeletal muscle [5]. This aberrant activation of
the immune response triggers harmful inflammation, which
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Figure 1: The crosstalk between adipose tissue macrophages and the liver cells in NAFLD.

impairs the ability of insulin to inhibit free fatty acids
(FFA) release causing their accumulation in the liver and
consequent lipotoxicity, induces hepatic insulin resistance,
and drives the low-grade inflammatory pattern of NASH and,
later, liver fibrosis (Figure 1) [6].

Gut is now emerging as initiator of the events that
contribute to obesity-associated systemic inflammation [7].
More specifically, obesity prone subjects exhibit alterations in
gut microbiota balance (i.e., dysbiosis). A major compound
of gut bacteria, lipopolysaccharide (LPS), plays a key role in
hepatic inflammation and inmacrophage polarization during
NAFLD. Clinical evidence demonstrates that, in NAFLD
subjects, LPS does not remain confined in the intestinal
lumenbut reaches the liverwhen the colonicmucosa immune
function is impaired by gut dysbiosis [8, 9]. Toll-like receptor
4 (TLR-4) on the plasma membrane of liver-resident cells
recognizes LPS as a ligand that prompts receptor dimeriza-
tion and consequent activation of a signalling cascade. Next,
the LPS/TLR-4 cascade causes the production of classical
inflammatory cytokines, including tumour necrosis factor-
(TNF-) 𝛼, interleukin- (IL-) 1𝛽, and IL-6, exacerbating the
hepatic inflammatory state and promoting fibrogenesis [10].

Despite what triggers the obesity-dependent proinflam-
matory response, advances in obesity research have led to
the recognition of a primary role of the immune cells,
such as macrophages and T-lymphocytes, in metabolic tis-
sues. In particular, the crosstalk between tissue resident
macrophages and adipocytes or hepatocytes appears to
be for NAFLD development and progression. Therefore,
macrophage-driven inflammation in NAFLD pathogenesis
involves two different primary components that should be
considered: one occurring in the adipose tissue and the other
in the liver [11]. The identification of the pivotal molecules
associated with the dynamic changes of macrophages and
understanding their interactions could be crucial for design-
ing novel therapeutic approaches against NAFLD.

Here, we review the role ofmacrophage-mediated inflam-
mation in adipose tissue and the liver inNAFLDdevelopment
and progression, highlighting the clinical implications of
triggers and targets of macrophage activation towards a
“maladaptive” phenotype.

2. Tissue Macrophage Polarization and
Related Inflammation

Macrophages display high degrees of plasticity and het-
erogeneity. Functionally, macrophages can be divided into
M1 to M2 subtypes that can be generated under different
conditions [12, 13]. However, it is currently recognized that
M1 and M2 phenotypes describe only extreme states towards
which macrophages can be activated, because of several
additional states that are distinct from both M1 and M2 or
that simultaneously exhibit characteristics of M1 and M2
polarization [14, 15]. Even this implies that the pathogenesis
of an inflammatory disease, such as NAFLD, could be char-
acterized by a more complex pattern of shapes and functions
that mark macrophages; we limited our literature review to
the current characterization of M1 and M2 in general and
NAFLD.

It has been reported that in vitro treatment with inter-
feron- (IFN-) 𝛾, TNF-𝛼, and LPS induces M1 macrophage
polarization. These M1 macrophages are considered proin-
flammatory or “classically activated” because they produce
proinflammatory cytokines such as IL-1𝛽, IL-6, IL-8, IL-12,
and TNF-𝛼 and play a pivotal role in the triggering of tissue
injury. By contrast,M2macrophages differentiate in response
to IL-4, IL-13, and IL-10 and are involved in tissue repair and
efficient phagocytosis of cellular debris (efferocytosis).There-
fore, they are considered tissue-repairing or “non-classically
activated” macrophages [13]. Interestingly, wound healing is
promoted by M2 macrophages through extracellular matrix
(ECM) remodelling and recruitment of fibroblasts [16]. Fur-
thermore, M2-secreted cytokines may support the function
of T helper 2 cells. Finally, M2 macrophages may secrete a
variety of matrix metalloproteases (MMPs), promoting the
clearance of apoptotic cells and cellular debris [13]. This
evidence highlights that M2 macrophages are versatile cells
sharing several subtypes with different functions that appear
to be dual. However, in physiological conditions, the main
role of M2 macrophages is to create an anti-inflammatory
milieu and promote tissue repair in the case of injury such
as in the liver [17, 18]. During this process, the balance
between TGF-𝛽-dependent deposition of new ECM and its
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Figure 2: Schematic summary of macrophage polarization. Monocytes from peripheral blood differentiate in response to mediators in
tissues, giving rise to different subsets: classically (M1) or alternatively (M2) activated macrophages that, respectively, lead to “bad” or “good”
proinflammatory response.

MMPs-mediated degradation promotes tissue repair but not
pathological fibrosis. However, when the lesion persists M2
macrophages take an important profibrotic role and this cell
population starts to secrete a very large amount of profibrotic
factors such as TGF-𝛽 and galectin-3, as already reported in
renal fibrosis [19].

The differentiation of tissue macrophages in M1 and M2
subsets is summarized in Figure 2.

In general, M1 and M2 macrophages exhibit different
cell surface markers. M1 macrophages express high levels of
CD80, CD86, CD68, and major histocompatibility complex
class II [20], whereasM2macrophages display an overexpres-
sion of other markers, including CD206, CD163, arginase-
1 (Arg-1), dectin-1, scavenger receptors A and B-1, and C–
C motif chemokine receptor-2 (CCR2) [15]. These and other
markers of M1 and M2 macrophages are reported in Table 1.

Several inflammatory signals and transcription fac-
tors are involved in regulating macrophage polarization,
including activation of the canonical interferon regula-
tory factor/signal transducer and activator of transcrip-
tion (IRF/STAT) signalling, TLR-4/nuclear factor (NF)-𝜅B
signalling, and transcription factors such as proliferator-
activated receptors (PPARs) [21].

Understanding the above-mentioned mechanisms that
drive monocyte recruitment, resident macrophage polariza-
tion, and the dissection of signalling pathways targeted by
macrophage polarization may be critical to elucidate the
precise role of adipose tissue macrophages (ATMs) and liver
macrophage polarization during tissue necroinflammation
in NASH. Therefore, in the next paragraphs we will dis-
cuss the general concepts and current evidence concerning
inflammation and macrophage polarization in adipose and
liver tissue in both human and experimental models of
NAFLD.

3. Adipose Tissue Inflammation

3.1. General Characteristics. Adipose tissue is a complex
immune organ composed of stromal-vascular cells (adipo-
cytes and preadipocytes) and immune resident cells, includ-
ing ATMs, T helper cells, cytotoxic T cells, B regulatory cells,
and T regulatory cells, all of which play a role in maintaining
immune balance [22].

In adipose tissue, M1 and M2 macrophages are pheno-
typically different. M1 macrophages express CD11b, CD11c,
and F4/80 and secrete TNF-𝛼, IL-1𝛽, IL-6, nitric oxide
(NO), and leukotriene B4, while M2 macrophages express
CD11b, F4/80, CD301, and CD206 and produce anti-inflam-
matory cytokines such as IL-10 [23, 24]. Further markers
for M1 and M2 ATMs are extensively reviewed by Hill et al.
[25].

ATMs dispersed throughout lean adipose tissue have a
predominant M2-like phenotype that helps to maintain local
homeostasis [26]. Murine models of diet-induced obesity
exhibit remodelling of the epididymal fat depot characterized
by adipocyte death, ATM accumulation, and increase of
depot weight [26]. In this context, the M1 phenotype appears
to be primarily involved in tissue damage, proinflammatory
cytokine secretion, leukocyte recruitment, and adipocyte
expansion [27]. In obesity, high numbers of macrophages,
mainly expressing M1 markers, accumulate in white adipose
tissue (WAT) [28]. Over 90% of these macrophages surround
dead adipocytes and form crown-like structures (CLS) [29].
Necrotic-like adipocytes are pathologic hallmarks of obe-
sity and probably regulate macrophage homing in inflamed
adipose tissue. In fact, necrotic-like adipocytes closed to
multinucleate giant ATMs that secrete TNF-𝛼 and drive M1
macrophage response [28]. In contrast, apoptotic adipocytes
induce M2 macrophage infiltration [29].
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Table 1: Typical surface markers and functions in M1 and M2 macrophages.

M1 markers Major function Ref.
CD80 (B7-1) T cell activation and survival [15]
CD86 (B7-2) T cell activation and survival [15]
MHC-II Exogenous antigen presentation [15]
CD11c Phagocytosis [17]
TLR4 Pathogen recognition [18]
Mincle Phagocytosis and proinflammatory cytokines [18]
M2 markers Major function
CD206 Phagocytosis, antigen presentation, and resolution of inflammation [19]
CD163 Tolerance induction and tissue regeneration [15]
Dectin-1 Chemotaxis [15]
CD301 Cell adhesion, cell-cell signalling, and glycoprotein turnover [21]
Arginase-1 Suppression of clearance of intracellular pathogens [15]

M1 accumulation macrophages in CLS are observed in
fibrotic adipose tissue and M2 macrophages colocalization is
associated with collagen VI, suggesting that M2 towards M1
polarization is a potential hallmark of inflammation/fibrosis
in the adipose tissue [30].

It has been reported that macrophage-inducible C-type
lectin (Mincle) is activated by endogenous ligands secreted by
dead adipocytes and drives ATM migration in the course of
CLS organization [31]. Mincle has previously been described
as a proinflammatory marker of M1 polarization stimulated
by TLR-4/nuclear factor- (NF-) 𝜅B signalling, which is the
main pathway involved in ATM activation [32, 33]. Another
gene that may play a regulatory role during adipose tissue
resident macrophage differentiation is Tribbles homolog 1
(Trib1). In fact, Trib-1-deficient mice exhibited more adipose
tissue mass and fewer M2 macrophages [34].

Although the exact mechanism by which adipocytes con-
trol M1/M2 polarization in obese subjects is poorly known,
it is evident that ATMs are crucial for immune-metabolism
and their activation is associated with insulin resistance
and consequent hepatometabolic effects, including NAFLD.
The role of obesity-related inflammation in the development
of insulin resistance was first suggested by experimental
studies revealing that TNF-𝛼 increase/blocking was able to
induce/decrease insulin resistance in in vitro and in vivo
models [35–37]. However, during the last two decades, a
significant advance in this field was recognition of the pivotal
role of ATMs in the insulin resistance pathogenesis [38–40].
In particular, these series of studies showed the role of PPAR-
𝛾 in the switch of macrophage phenotype from M1 to M2
and its consequences on insulin resistance [38, 39].Moreover,
very recently, Lee et al. [41] demonstrated that epididymal
natural killer cells have a critical role in controlling local
ATM recruitment and adipose tissue inflammation, thereby
regulating systemic insulin resistance in obesity.

3.2. Adipose Tissue Inflammation in RodentModels of NAFLD.
It has become increasingly evident that chemokines may play
a key role in chronic subacute adipose tissue inflammation
that is the common underlying condition of obesity, insulin

resistance, and NAFLD [42]. Chemokines are small proteins
that are expressed in different cells and tissues and control
the trafficking of immune cells to sites of inflammation in a
variety of conditions or diseases [43].

In an inflammatory condition, such as that occurring
in obese WAT, chemokine (C-C motif) ligand (CCL2)
binds its receptor CCR2 on a specific-subtype of circulating
Ly6C+monocytes activating their transmigration and dif-
ferentiation into M1 macrophages. While, in steady state,
Ly6C+ monocytes differentiate into Ly6C− monocytes that
are prone to differentiate into M2 macrophages with an
anti-inflammatory cytokine profile and involved in tissue
repair [44, 45]. In high-fat diet (HFD) mice, which exhibit
NAFLD features, adipose tissue is characterized by significant
macrophage infiltration, inflammation, and tissue remod-
elling [46]. Moreover, HFD mice exhibit necrotic adipocytes
that control Ly6C+ monocyte recruitment and subsequent
differentiation into M1 macrophages [47]. Paradoxically,
the CCR2 is classified as M2 macrophage marker in the
current literature, but CCR2+ ATMs express prevalently M1
genes to the detriment of M2 genes during adipose tissue
inflammatory response [47]. The overexpression of CCR2 by
M1 macrophages in visceral WAT is associated with insulin
resistance and consequently with NAFLD [48, 49]. Indeed,
pharmacological antagonist of CCR2 reduced liver steatosis
in obese and diabetic mice (db/db), and CCL2 deficiency
reduced the accumulation of hepatic triglycerides in HFD
and db/db mice [48, 50].

Another chemokine that may play a role in insulin
resistance is CCL5.This chemokine has been found primarily
involved in the migration of several immune cells by bind-
ing to its cognate receptors CCR1, CCR3, and CCR5 [51].
Kitade et al. [52] demonstrated that CCR5 regulated ATM
recruitment and polarization and subsequent development
of insulin resistance in WAT of genetically (ob/ob) and HFD
obese mice.

In experimental NASH models, visceral adipose tissue
of mice is enriched by clusters of CD11b+ macrophages
producing IL-6 and TNF-𝛼 [53]. Consistently, the develop-
ment of NASH in apolipoprotein E2 (APOE2) knock-in mice
was attributed to activated CD68+ macrophages expressing
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proinflammatory genes in the liver [54]. ApoE regulates
hepatic clearance of diet-derived chylomicrons and liver-
derived low density lipoproteins remnants. In parallel, ApoE-
deficient mice develop hyperlipidemia and atherosclerosis
[55]. Moreover, M1 macrophage infiltration is frequently
related to earlier events during spontaneous insulin resistance
in mice [56].

In macrophage migration inhibitory factor- (Mif-) defi-
cient obese mice, F4/80+Arg-1+IL-13+M2macrophages were
predominant in the liver and strictly correlated with 70%
reduction in F4/80+ ATMs and hepatoprotection [57]. Mif is
a cytokine that may inhibit the migration of macrophages.
In fact, Mif-deficiency did not affect obesity and lipid risk
factors but did reduce inflammation inWAT and liver; it also
reduced macrophage accumulation in WAT and blunted the
expression of ICAM-1 and CD44 that regulate macrophage
infiltration [58]. In this context, Mif is considered a potential
therapeutic target for reducing the inflammatory compo-
nent of metabolic and cardiovascular disorders. Consistently,
hepatic triglycerides, type I collagen, and TGF-𝛽 mRNA
expression as well as the size of adipocytes in visceral
adipose tissue were substantially reduced after suppression of
macrophage recruitment [59].

In summary, experimental models in rodents indicate
that the kinetics of ATMmobilization seems to be important
to establish an inflammatory response that shifts from adi-
pose tissue to the liver, leading to NASH and other related
metabolic diseases [60, 61].

3.3. Adipose Tissue Inflammation in Human NAFLD. The
shift from M2 to M1 occurs also in adipose tissue of human
obese subjects. Indeed, the genes encoding for CCL2, CCL8,
CCL7, RANTES, CCL3, and CCL11 chemokines, as well as
those encoding for CCR1, CCR2, CCR3, and CCR5, were
found upregulated in the adipose tissue of morbidly obese
compared with lean subjects [62]. Moreover, CD11c+ M1
macrophages expressing the inflammatory cytokines IL-
6 and TNF-𝛼 increased in the adipose tissues of insulin
resistant patients [28, 63].

Histological disturbances in the adipose tissue have been
described with significant association between inflammation
and ECM deposition. Obese patients with NASH showed
high expression of tenascin-C by stromal-vascular fraction
cells in a TNF-𝛼-dependent manner [64]. Tenascin-C is a
glycoprotein member of a damage associated molecular pat-
tern rarely produced in healthy adipose tissue, but intensively
synthesized during inflammation [65]. In human adipose
tissue, tenascin-C is highly expressed by preadipocytes after
macrophage stimulation bymechanisms involving LPS/TLR-
4 signalling [66]. In parallel, TLR-4−/− obese mice showed
attenuated adipose tissue inflammation associated with pref-
erential M2 macrophage polarization [67]. Based on these
findings, it is plausible that tenascin-C deposition and LPS-
dependent ATMpolarization are critical to inflammation and
ECM remodelling in visceral adipose tissue.

Recently, Du Plessis et al. [68] have analysed the tran-
scriptional profile of subcutaneous and visceral adipose tissue
of obese patients undergoing bariatric surgery. The authors

found that the expression of proinflammatory genes was sig-
nificantly increased in NAFLD and NASH patients in direct
association with accumulation of CCR2+M1macrophages in
visceral adipose tissue. These findings newly highlight that
the role of CCR2 as amarker of a specificmacrophage subtype
is often controversial.

3.4. Possible Targets in ATM Inflammation. Among sever-
al potential targets that have been investigated as thera-
peutic applications in adipose tissue inflammation asso-
ciated with NAFLD, chemokine/chemokine receptor sys-
tem, adiponectin, leptin, and galectin-3 have attracted most
attention due to their regulatory capacity on adipocyte and
macrophage differentiation [42, 69–71].

As mentioned above, several lines of evidence demon-
strated that CCR2 is crucial even if not exclusively responsible
for ATM recruitment, thus suggesting the CCL2/CCR2 axis
as a main target for therapy. Indeed, dampening ATM
accumulation and consequent inflammation, via monocyte
chemoattractant CCL2/CCR2 pharmacological inhibition,
Tamura et al. [50] showed an improvement of obesity and
related metabolic disorders, such as insulin resistance and
hepatic steatosis in db/db mice. Moreover, recently it has
been reported that macrophage-targeted delivery of small
interference RNA against CCR2 inhibited ATM recruitment
and accumulation in adipose tissue, thus reducing the down-
stream effects of obesity-induced inflammation [72].

Adiponectin has been described as an adipocyte-specific
protein playing a positive role in the development of insulin
resistance and atherosclerosis. It is negatively correlated with
adiposity and its level is substantially reduced during obese-
related inflammation [73]. Accordingly, adiponectin protein
and mRNA levels are inversely correlated to TNF-𝛼 levels
[74]. In humans, adiponectin induced M2 polarization and
attenuated the expression of M1 markers by ATMs and
stromal-vascular cells of adipose tissue [75]. Recently, it
has been reported that macrophage polarization is crucial
for the regulation of adiponectin receptor expression and
differential adiponectin-mediatedmacrophage inflammatory
responses [76]. Adiponectin reduces lipolysis in murine
adipocytes [77]. The protective role of adiponectin was
demonstrated in nSREBP-1c/adiponectin double-transgenic
mice.ThenSREBP-1c transgenicmice overexpress the nuclear
sterol regulatory element-binding protein 1c (nSREBP-1c)
in adipose tissue and develop hypoadiponectinemia and
spontaneous liver disorders consistent with human NASH.
The nSREBP-1c/adiponectin double-transgenic mice showed
normal liver functions associated with the restoration of
hepatic adiponectin production and circulating adiponectin
levels [78]. Moreover, adiponectin-deficient mice exposed
to HFD develop NASH-related fibrosis [79]. Previously,
Nawrocki and colleagues demonstrated that adiponectin-
deficient mice lost hepatic insulin sensitivity and response to
PPAR-𝛾, indicating that adiponectin contributes to PPAR-𝛾-
mediated improvements in glucose tolerance [80]. A recent
metabolomic profiling of adiponectin-deficient mice indi-
cated that lysophospholipid metabolism and 𝜔-oxidation
of fatty acids are directly regulated by adiponectin [81].
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These findings suggest that adiponectin can be an anti-
inflammatory protein with therapeutic potential to amelio-
rate symptoms of metabolic syndrome and NASH. However,
it has been demonstrated that adiponectin should be used
with caution because in M1 macrophages it may induce
proinflammatory cytokines, whereas, in M2 macrophages, it
may induce the anti-inflammatory cytokines [82].

Leptin is another important crucial adipokine involved
in the pathogenesis of hepatometabolic effects of obesity.
Indeed, it is known as a potent regulator of feeding behaviour
and bodyweight, which has emerged by some seminal studies
carried out in different mouse models of obesity [6, 83].

Noteworthily, the leptin receptor was found also on
most immune cells including monocytes and macrophages.
Moreover, as mentioned in previous paragraphs, ob/ob and
db/db obese mice, respectively, deficient for leptin and leptin
receptor, display a reduced ATM infiltration and inflamma-
tion [37]. Acedo et al. [71] showed that macrophages exposed
to leptin treatment may promote a M2-like phenotype but
induced proinflammatory cytokines release, such as TNF-𝛼
and IL-6. Luan et al. [84] demonstrated that the injection
of leptin into ob/ob mice caused upregulation of circulating
norepinephrine, increase of the cAMP content in epididymal
fat pads, and HDAC4 dephosphorylation in WAT, triggering
anti-inflammatory signals in ATMs.

Galectin-3 is a multifunctional 𝛽-galactoside binding
protein firstly described on the macrophage surface [85]
and widely associated with fibrosis in distinct tissues [86].
Galectin-3 interactswith distinct types of ECMglycoproteins,
including tenascin-C [87]. As described above, tenascin-C is
widely correlated with proinflammatory events during adi-
pose tissue inflammation, but the interaction with galectin-
3 during this process is poorly understood. In human
adipose tissue, galectin-3 is synthesized predominantly by
preadipocytes and activated macrophages [88]. Obese sub-
jects are characterized by increased serum levels of galectin-
3 that are directly correlated to growing body mass and age,
as well as upregulation of circulating levels of leptin, resistin,
and IL-6 [89].

In mice, recombinant galectin-3 induces preadipocyte
proliferation [88]. Obese galectin-3 deficientmice aremarked
by increased visceral adipose tissue mass followed by accu-
mulation of M1 macrophages. In contrast, in the same mice
CD4+CD25+FoxP3+ T regulatory cell and M2 macrophage
numbers decreased [90]. In macrophages, galectin-3 exhibits
a high-affinity binding for advanced glycosylation end prod-
ucts (AGE), interfering with the pathogenesis of diabetic
complications and other metabolic disorders [91]. Deficiency
of galectin-3 corroborates with the pancreatic and renal dam-
age associated with AGE accumulation and M1 polarization
[92]. However, it is not clear if galectin-3 acts as a receptor for
AGE (RAGE) in the course of adipose tissue inflammation
and ATM differentiation.

The adipose tissue is able to modulate the expression of
galectin-3 on macrophages. In vitro, preadipocytes inhibited
the expression of galectin-3 by a specific subpopulation
of macrophages, known as peritoneal-C2D macrophages,
which retains plasticity in response to different microen-
vironments. Peritoneal-C2D macrophages that migrated to

WAT expressed higher levels of galectin-3 than macrophages
that moved to brown adipose tissue [93]. Moreover, in the
course of monocyte-to-macrophage differentiation, galectin-
3 mRNA and protein levels are substantially upregulated by
M2macrophageswhen comparedwithM1macrophages [94].

Galectin-3 role on NAFLD pathogenesis has given mixed
results [95, 96]. Recent studies highlight that galectin-3
targeting drugs may improve NAFLD-related liver damage,
including intraportal and intralobular inflammatory tissue
infiltrate, in mouse models [97]. Very recently, Li et al. [98]
have demonstrated that galectin-3 knockout mice are pro-
tected from inflammation and insulin resistance.The authors
showed that a small inhibitor of galectin-3 reduced insulin
resistance in HFD mice by improving insulin sensitivity in
myocytes and hepatocytes. This last study strongly supports
the use of galectin-3 inhibitors as a new approach to treat
obesity-related insulin resistance and its comorbidities.

However, to date, it is not clear if galectin-3 is crucial for
M1/M2 polarization in both adipose tissue and liver during
NAFLD and if the use of specific inhibitors against this
protein may rescue M2/M1 ratio in these tissues.

4. Liver Tissue Inflammation

4.1. General Characteristics. Representing 80–90% of all tis-
sue macrophages in the body, Kupffer cells (KCs) are located
in the hepatic sinusoids and are central to innate immunity
[99]. In normal conditions, this cell population can self-
renew during adult life without the contribution of circu-
lating monocytes [100]. Functionally, two subgroups of KCs
can be recognized based on their phagocytic capabilities and
cytokine production [101]. KCs in normal conditions exhibit
an M2-like phenotype and express several receptors such as
TLRs [102]. In the presence of TLR ligands, KCs become
immunogenic and can induce T cell activation and the gener-
ation of an efficient cytotoxic T-lymphocytes response [102].
Furthermore, KCs are involved in the clearance of apop-
totic cell debris and iron homeostasis via the expression of
scavenger receptors. KCs can interact with multiple immune
cells within the sinusoids, including T cells, dendritic cells,
hepatic stellate cells (HSCs), and innate lymphocytes [102].
In inflammatory processes, KCs primarily drive the influx
of inflammatory leukocytes such as neutrophils and mono-
cytes.

Interestingly, KCs participate in the constitution of fac-
ultative stem cell niches in rodent and human liver; in
adult liver, bipotential stem/progenitor cells (HPCs) are
present and located in the finer branches of the biliary tree.
HPCs minimally contribute to the normal turnover of liver
parenchymal cells but are activated in the context of liver
injuries [103]. The activation of HPCs is sustained by a
specialized niche that furnishes several key signals driving
HPC activity [104]. In normal conditions, HPCs are sur-
rounded by endothelial cells, HSCs, and KCs, which release
paracrine signals for themaintenance of the stem/progenitors
in a quiescent state. In diseased livers, activated HSCs and
inflammatory macrophages can produce distinct paracrine
signals determining HPC activation and proliferation [104].
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Moreover, in chronic liver diseases, macrophages are able to
activate the canonical Wnt pathway in HPCs triggering their
differentiation towards hepatocyte [105]. In particular, the
efficient phagocytosis of the debris determines the secretion
ofWNT3a byKCs, thus activating the canonicalWnt pathway
in nearby HPCs and triggering their differentiation towards
hepatocyte [106].

Therefore, KCs are key orchestrators of cellular processes
in healthy and injured liver. As discussed in the next para-
graphs, several studies have indicated that KCs are central
in numerous molecular and cellular frameworks and have a
pivotal role in NAFLD-related inflammatory processes and
fibrosis [106–116].

4.2. KCs and Liver Tissue Inflammation in NAFLD Animal
Models. Experimental models have demonstrated that the
activation of KCs represents a central event in the initiation
and progression of liver injury [107, 108]. The central role
of KCs in the pathogenesis of NAFLD has been suggested
by several studies in mouse models where the ablation of
KCs determined the marked reduction of hepatic insulin
resistance and inflammation in diet-induced steatosis [109,
110]. In experimental NASH, macrophages are characterized
by the accumulation of large amounts of toxic lipids [99, 111]
and cholesterol crystals [112]; fat-laden KCs exhibit a switch
to a proinflammatory (M1) phenotype, which is reversible by
inhibition of lipogenesis [99, 113]. Moreover, data obtained
by different research groups showed that chemical depletion
of KCs was able to prevent the release of proinflammatory
cytokines and to alleviate liver damage [114].

In the pathogenesis of NAFLD, the hepatic macrophage
pool orchestrates several interactions and crosstalk among
resident or recruited cells, thus driving inflammatory pro-
cesses. In this context, several cellular signalling pathways
trigger macrophage activation.

TLRs are able to induce KC activation towards the M1
phenotype; TLR-4 ablation determines the reduction of liver
damage and the depletion of KCs in mice with NASH [115].
Similarly, leptin exerts proinflammatory effects triggering KC
activation by a peroxynitrite-dependent mechanism [116].
Leptin can also stimulate inducible nitric oxide synthases
(iNOS) and the resultant nitric oxide (NO) can react to
produce peroxynitrite, a strong physiological oxidant, and
can activate KCs towards a M1 phenotype [116]. In the
context of NAFLD and metabolic syndrome, the conversion
of arginine to NO and citrulline by NOS and its conversion
to ornithine and urea by arginases have been of special
interest. Induction of iNOS is a hallmark of M1 macrophages
with the consequent production of oxidative stress [117].
Arg-1 is a key marker of M2 macrophages and confers
anti-inflammatory properties by substrate competition with
iNOS and through other mechanisms; M2 KCs can promote
apoptosis of M1 KCs by an arginase-dependent mechanism,
limiting liver injury and NASH progression [108]. Similarly,
arginase-2 competes with iNOS for NO substrate and the
balance between these two enzymes plays a crucial role in
regulating immune responses and macrophage activation;
arginase 2-knockout mice fed with a HFD showed profound

changes in their livers, characterized by significant steato-
sis, inflammation, and marked M1 macrophage infiltration
[118].

In general, signals leading to macrophage activation
converge on twomain downstream pathways, nuclear factor-
(NF-) 𝜅B and C-Jun N-terminal kinase (JNK) [119]. The JNK
pathway is activated by reactive oxygen species, saturated free
fatty acid, and cholesterol crystallization [119, 120]. Moreover,
NF-𝜅B is a transcription factor that acts as a key regulator
of inflammation and cell death and is activated by various
stimuli, such as TLRs, IL-1𝛽, and TNF-𝛼 [111]. Interestingly,
in mice with NASH, hepatocytes with large lipid droplets and
cholesterol crystals are surrounded by activated KCs aggre-
gated in hepatic CLS [121].The administration of cholesterol-
lowering drugs causes the dissolution of cholesterol crystals
and disperses CLS in obese mice [122]. All of these effects are
associated with reduction of JNK activation and reversal of
NASH [120].

Once activated towards the M1 phenotype, KCs secrete a
variety of factors influencing inflammation and fibrosis. IL-
1𝛽 is mainly produced by TLR-activated macrophages and
has potent inflammatory effects; the lack of IL-1𝛼 or IL-
1𝛽 inhibits transformation of steatosis to steatohepatitis and
liver fibrosis in hypercholesterolemic ApoE-deficient mice
[123]. Stienstra et al. [124] demonstrated that IL-1𝛽 was
released by M1-polarized KCs and that this cytokine may
promote triglyceride synthesis in hepatocytes by decreasing
PPAR-𝛼 transactivating activity, which, in turn, inhibited
fatty acid oxidation. Furthermore, selective deficiency of IL-
1𝛼 in KCs reduces liver inflammation and expression of
inflammatory cytokines [125]. In NASH, activated KCs also
produce CCL2 that contributes to the recruitment of circulat-
ing monocytes and macrophages into the inflamed liver [7].
Indeed, choline-deficient amino acid-defined diet-induced
steatosis, inflammatory cell infiltration, and liver fibrosis with
increased hepatic expression of CCR2 and CCL2, while the
KC depletion improved NASH with a decrease of CCL2
expression and recruitment of Ly6C− monocytes that exhibit
a typical M2 anti-inflammatory phenotype [126].

The importance of macrophage recruitment in NASH
is further confirmed in macrophage migration inhibitory
factor-knockout mice, which show higher fatty degeneration,
liver inflammation, and macrophage recruitment [57].

Activated KCs can secrete TNF superfamily ligands
such as TNF-𝛼 and TNF-related apoptosis-inducing ligand
(TRAIL), thus inducing inflammation and apoptosis of
adjacent hepatocytes [127]. The production of TNF-𝛼 by
KCs contributes to hepatocyte apoptosis, increases monocyte
recruitment, and is crucial for triggering NASH development
[99]. Interestingly, the engulfment of KCs with apoptotic
bodies can further stimulate the generation of ligands of the
death receptor-signalling pathway, including TNF-𝛼 [128].
Experimentally, gadolinium chloride (a KC toxicant) atten-
uated the phagocytosis of apoptotic body and the production
of ligands for death receptors by KCs; similar results were
obtained by the inhibition of hepatocyte apoptosis [128].This
approach results in the attenuation of neutrophil infiltration
and in the reduction of HSC activation, confirming the
role of KCs and TNF-𝛼 in liver inflammation and fibrosis.
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Recently, the role of TRAIL signalling in obesity-associated
inflammation has been further defined; genetic deletion
of TRAIL receptor in obese mice suppressed NASH and
reduced KC activation and accumulation of inflammatory
macrophages in liver [129].

4.3. KCs and Liver Fibrosis:Molecular andCellular Crosstalk in
MurineModels. Thespectrumof livermacrophage activation
is also relevant for fibrosis progression in NAFLD. Recent
studies have demonstrated the antifibrotic properties of KCs,
which acting as M2 macrophages can produce a variety of
MMPs, enhancing ECMdegradation [130]. On the other side,
M1 macrophages trigger fibrogenesis mainly by stimulating
HSCs [111]. In normal conditions, HSCs are quiescent cells
[131]. However, as a consequence of liver injuries, HSCs
transdifferentiate into activatedmyofibroblast-like cells [132].
Activated HSCs begin to secrete ECM components and
produce tissue inhibitors ofmetalloproteinases (TIMPs), thus
altering the balance between ECM synthesis and degradation
and leading to fibrosis [131].

Several molecular mechanisms form the basis for cross-
talk between KCs and HSCs. M1 macrophages can acti-
vate HSCs by releasing TGF-𝛽 and other profibrogenetic
cytokines, thus promoting collagen deposition and stimu-
lating the production of TIMP-1 [133]. Moreover, KCs can
promote HSC survival, inducing NF-𝜅B signalling via TNF-
𝛼 and IL-1 secretion [131, 133]; furthermore, the secretion of
several chemokines (i.e., CCL2, CCL3-5, CCL7 and CCL8)
by macrophages can promote HSC migration [111]. As a
consequence, KC depletion in mice models attenuates the
progression of liver fibrosis [131].

On the other hand, KCs could be also implicated in pro-
moting fibrosis resolution. In this context, specific subtypes of
macrophages (M2) can secrete MMPs and TRAIL contribut-
ing to ECM degradation and HSC apoptosis, respectively
[134].

Recent evidence indicates that HPC activation has a
prominent role in the progression of liver fibrosis. Under
pathological conditions, the activation of HPCs determines
the appearance of the so-called ductular reaction (DR), which
was recently found to be a main driver of liver fibrogenesis
[131, 135]. In this context, the hepatic macrophage pool can
influence the HPC response [131, 135]. Among the variety of
macrophage cytokines, TNF-like weak inducer of apoptosis
(TWEAK) has a key role in the expansion of undifferentiated
HPCs [135]. Moreover, the capability of macrophages to
remodel ECM influences the composition of the HPC niche
and sustains HPC response and DR [105, 131, 135]. In turn,
activatedHPCs secrete a variety of substances such as TGF-𝛽,
Hedgehog (Hh) ligands, Osteopontin (OPN), and adipokines
that are able to stimulate KCs and HSC, thus influencing
inflammation and fibrogenesis [135].

4.4. Role of KCs in Liver Tissue Inflammation and Fibro-
sis in Human NAFLD. The role of KC activation in liver
inflammation and fibrosis has been also elucidated in patients
with NAFLD. Like adipose tissue in obesity, livers with
NASH are characterized by the appearance of hepatic CLS

[136]. These unique histological structures are correlated
with hepatic inflammation and fibrosis [121]. Interestingly, in
obese children withNAFLD, subcutaneous adipose tissue has
CLS strictly correlated with liver fibrosis scores and diabetes
risks [137].

The polarization of liver-resident macrophages is a key
feature in NASH development. As previously indicated,
CD163 is a surface scavenger receptor for haptoglobin-
hemoglobin complexes expressed almost exclusively on M2
macrophages and monocytes. However, upon macrophage
activation, CD163 is shed as its soluble form (sCD163) that
can bemeasured in the circulation and serve as a biochemical
marker of macrophageM1 activation [138]. sCD163 was asso-
ciated with changes in NAFLD and metabolic profile during
lifestyle intervention in obese children and inmorbidly obese
patients after bariatric surgery [139]. sCD163 increases in
parallel with the severity ofNAFLD and is reduced by lifestyle
or surgical intervention, thus suggesting that macrophage
M1 activation is reversible [139]. In this context, M2 KC
polarizationmight protect against fatty liver diseasemorbidly
injury [108].

Although NAFLD is conventionally assessed histologi-
cally for lobular features of inflammation, development of
portal inflammation and fibrosis appears to be associated
with disease progression in human patients [140]. The portal
infiltrate is mostly constituted of macrophages and portal
macrophage infiltration was the first change detected in
patients with early NASH, even before elevated expres-
sion of proinflammatory cytokines. The presence of portal
inflammation in NAFLD patients provides a link between
macrophages and HPC activation. In both adult and paedi-
atric patients, NASH development and fibrosis are associated
with HPC activation and DR [131, 140, 141]. In parallel with
animal studies, the portal macrophage infiltrate in human
NAFLD may contribute directly to fibrogenesis as well as
influence the fate of HPCs, regulating the balance between
liver repair and fibrosis.

4.5. Possible Targets in Liver Tissue Inflammation. As dis-
cussed thus far, the recruitment of liver-residentmacrophages
(mainly KCs) and their polarization is a pivotal factor in
obesity-associated insulin resistance and NAFLD/NASH.
Therefore, even if there are not currently established therapies
to revert NASH, several promising treatments targeting the
hepatic activation and polarization of KCs inNASH are being
developed [142].

The fact that KC recruitment and activation may be
driven by chemokine/chemokine receptor system has
prompted several experimental studies with pharmacological
inhibitors of these pathways [136, 143]. In fact, Baeck et al.
[136] found that mNOX-E36, which inhibited CCL2 by
binding, reduced the amount of intrahepatic macrophages
and proinflammatory cytokines and ameliorated hepatic
steatosis in methionine-choline-deficient diet mice with
NASH. Moreover, recently, cenicriviroc, a dual CCR2/CCR5
antagonist, was reported to be able to significantly reduce
fibrosis and the NAFLD activity score in a NASH model
[143]. On this basis, a phase 2 clinical trial addressing the
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effect of cenicriviroc in NASH patients with fibrosis is cur-
rently ongoing [144].

Macrophage activation can be influenced by the G
protein-coupled receptor (GPR) 120. The protein GPR120
may modulate macrophage response by decreasing M1
proinflammatory and increasing M2 anti-inflammatory gene
expression [108]. GPR120 exerts robust and broad anti-
inflammatory effects, acting as a negative feedback signal
on NF-𝜅B phosphorylation induced by TLRs and the TNF𝛼
cascade [145, 146]. Similarly, human KCs express GPR120
[147] and this expression in NAFLD patients can be mod-
ulated by the treatment with docosahexaenoic acid (DHA),
the major dietary N-3 long-chain polyunsaturated fatty acid
(LC-PUFA) [148–150]. Unfortunately, the effect of LC-PUFA
alone seems to be restricted to early NAFLD stages. However,
Carpino et al. [151] have recently reported that treatment with
DHA determined a macrophage polarization towards a M2
phenotype in correlation with reduction of proinflammatory
cytokines levels, increasedmacrophage apoptosis, and upreg-
ulation of macrophage Wnt3a expression in children with
NASH.

Although the role of galectin-3 in NASH appears to be
controversial, the antifibrotic effect of its absence is a cer-
tainty [95, 152]. Preliminary results of a randomized clinical
trial with GR-MD-02, a galactoarabino-rhamnogalacturonan
polysaccharide that is able to block the galectin-3 receptor,
have been recently reported, thus supporting the planning of
a phase 2 clinical trial in advanced fibrosis due toNASH [153].

Moreover, OPN represents an interesting molecular tool
linking the crosstalk among KCs, HSCs, and HPCs. In the
liver, OPN is produced by several cell types including T cells,
macrophages, and HPCs [131, 154]. Upregulation of hepatic
OPN was found in both humans and rodents with advanced
NASH, while OPN-deficient mice were protected against
NASH and fibrosis [131, 135, 154]. OPN may stimulate colla-
gen synthesis in HSCs and exert an autocrine effect on HPCs
[135, 154]. Furthermore, the ablation of OPN reduced HPC
response, prevented fibrogenesis, and improved liver regen-
eration [155]. Interestingly, Kwon et al. [156] reported that
Hh signalling can promote liver inflammation throughOPN-
mediated macrophage activation contributing to NAFLD
progression, while the inhibition ofHh signalling can amelio-
rate hepatic inflammation in mice with NAFLD, highlighting
the therapeutic propensity of Hh inhibitors [156].

5. Conclusion

ATM and hepatic macrophage polarizationmay be histologi-
cal hallmarks of future preventive diagnoses, considering the
earlier events on adipose tissue in comparison with those
occurring in the liver of NAFLD patients. In order to confirm
this hypothesis, further clinical studies on the expression of
specific markers of M1 and M2 polarization are required.
Several markers may differentiate M1 from the M2 subset,
but to date only a few of them have been investigated in
NAFLD and correlated with disease progression or with
response to therapy. In this regard, it is also important to
point out that functional heterogeneity of macrophages in

NAFLD, such as in other diseases, is associated with a similar
heterogeneity of the expression of specific markers that we
overviewed here. A tissue array of the expression of M1/M2
populations in adipose tissue and liver could elucidate the
dynamic changes of macrophage polarization and molecular
networks orchestrating the switch of macrophage phenotype
during NAFLD pathogenesis.

In addition, in both adipose tissue and liver tissue, it
is necessary to investigate (i) the potential triggers that
induce macrophage polarization towards a M1 “dark side”
phenotype; (ii) the role of common molecular pathways; (iii)
the link between triggers and liver necroinflammation and
fibrosis; and (iv) the real role of M2macrophages in NAFLD-
related fibrogenesis. The dissection of these mechanisms
could help in the identification of potential new therapeutic
targets, improving the pharmacological therapy for patho-
physiologic events of necroinflammation, ballooning, and
fibrosis.
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