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Introduction: Primary hyperoxaluria (PH) is a family of 3 rare genetic disorders of hepatic glyoxylate

metabolism that lead to overproduction and increased renal excretion of oxalate resulting in progressive

renal damage. LDHA inhibition of glyoxylate-to-oxalate conversion by RNA interference (RNAi) has

emerged as a potential therapeutic option for all types of PH. LDHA is mainly expressed in the liver and

muscles.

Methods: Nonclinical data in mice and nonhuman primates show that LDHA inhibition by RNAi reduces

urinary oxalate excretion and that its effects are liver-specific without an impact on off-target tissues, such

as the muscles. To confirm the lack of unintended effects in humans, we analyzed data from the phase I

randomized controlled trial of single-dose nedosiran, an RNAi therapy targeting hepatic LDHA. We con-

ducted a review of the literature on LDHA deficiency in humans, which we used as a baseline to assess the

effect of hepatic LDHA inhibition.

Results: Based on a literature review of human LDHA deficiency, we defined the phenotype as mainly

muscle-related with no liver manifestations. Healthy volunteers treated with nedosiran experienced no drug-

related musculoskeletal adverse events. There were no significant alterations in plasma lactate, pyruvate, or

creatine kinase levels in the nedosiran group compared with the placebo group, signaling the uninterrupted

interconversion of lactate and pyruvate and normal muscle function.

Conclusion: Phase I clinical data on nedosiran and published nonclinical data together provide substantial

evidence that LDHA inhibition is a safe therapeutic mechanism for the treatment of all known types of PH.
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P
rimary hyperoxaluria (PH) is a family of rare,
autosomal recessive genetic disorders of glyoxylate

metabolism resulting in overproduction of oxalate in
the liver.1,2 Three genetic types of PH (PH1, PH2, and
PH3) have been defined, each caused by mutations that
result in a deficiency, mislocalization, or loss-of-
function of key enzymes (Figure 1) involved in
glyoxylate metabolism.3–5

Common to all PH types is the accumulation of
glyoxylate, which is metabolized to oxalate in the liver.
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Glyoxylate is normally converted to either glycine (by
alanine:glyoxylate aminotransferase), glycolate (by
glyoxylate reductase/hydroxypyruvate reductase), or
oxalate (by lactate dehydrogenase [LDH]) in the liver. In
PH1 and PH2, reduced alanine:glyoxylate aminotrans-
ferase or glyoxylate reductase/hydroxypyruvate reduc-
tase activity leads to an increased buildup of glyoxylate
and a resultant overproduction of oxalate by LDH. In
PH3, 2 mechanisms for oxalate overproduction have
been proposed, both of which ultimately lead to the
accumulation of cytosolic glyoxylate and its subsequent
conversion to oxalate by LDH.2,6 Oxalate cannot be
metabolized further and is almost exclusively excreted
by the kidneys, where it exerts its hazardous effects
because of precipitation of its calcium salt (calcium ox-
alate or CaOx).2,7
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Figure 1. Glyoxylate metabolism in primary hyperoxaluria. Lactate dehydrogenase (LDH)–mediated conversion of glyoxylate to oxalate in the
liver is the ultimate step resulting in oxalate overproduction in primary hyperoxaluria types 1, 2, and 3. Nedosiran is an investigational RNA
interference therapy designed to inhibit hepatic LDH (encoded by LDHA). AGT, alanine:glyoxylate aminotransferase; GO, glycolate oxidase;
GRHPR, glyoxylate reductase/hydroxypyruvate reductase; HOG, 4-hydroxy-2-oxoglutarate; HOGA, 4-hydroxy-2-oxoglutarate aldolase.
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The earliest and most common clinical manifesta-
tions of all PH types are nephrolithiasis and progressive
nephrocalcinosis resulting from the deposition of
highly insoluble CaOx crystals throughout the kid-
ney.2,6 This may lead to progressive renal damage and
chronic kidney disease, which often culminates in renal
failure.2,8 PH1 is the most severe of all PH types. It is
estimated that 20% to 50% of patients with PH (mainly
in PH1) have advanced renal disease, and 27% have
renal failure at the time of or before PH diagnosis.6,9 As
kidney injury progresses, a second phase of insult oc-
curs when the kidneys are unable to excrete the load of
oxalate because of the declining filtration rate. This
causes oxalate buildup in the plasma and deposition of
CaOx crystals in virtually all tissues in a process called
systemic oxalosis, which can be life-threatening.2,6

Most current PH therapies are conservative measures
and are poorly effective. A liver-kidney transplant is
currently the only option to prevent systemic oxalosis
in patients progressing to renal failure in PH1.10 In
PH2, isolated kidney transplantation is the method of
choice, although a combined liver-kidney transplant
may be required in some severe cases.11

The lack of approved pharmacologic therapies for
PH1 poses a major unmet medical need. Therapies tar-
geted at glyoxylate metabolism to reduce hepatic oxa-
late burden have gained interest in the PH arena. One
such target is LDH, a tetrameric enzyme primarily
1Lumasiran, an RNAi therapy targeting hepatic GO, was recently

approved as a treatment for PH1.
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known for its function in the interconversion of py-
ruvate and lactate via the Cori cycle.12–14 In PH, LDH
plays a critical role in hepatic oxalate production. The 2
most common subunits of LDH are LDHA (or M sub-
unit) and LDHB (or H subunit), which are encoded by
the LDHA and LDHB genes, respectively. These 2
subunits can assemble into 5 different tetrameric
combinations or isozymes (LDH1–LDH5). The LDHA
subunit is predominantly expressed in the muscle and
liver, whereas LDHB is the predominant form in the
heart, spleen, kidney, brain, and erythrocytes.15 LDH
plays a central role in oxalate metabolism in the liver
(Figure 1) because it is the key enzyme responsible for
the conversion of glyoxylate to oxalate,16–19 thereby
controlling the ultimate step of oxalate production and
its subsequent urinary excretion. Liver-specific
knockdown of LDHA and the resultant reduction of
LDHA, therefore, offers the potential to reduce hepatic
oxalate production and urinary oxalate excretion in all
genetically defined types of PH.20

Nedosiran (formerly DCR-PHXC) is an investiga-
tional ribonucleic acid interference (RNAi) therapy21

being developed as a treatment for PH. Nedosiran is a
synthetic, double-stranded RNA oligonucleotide (i.e.,
small interfering RNA [siRNA]) designed to target the
mRNA encoding LDHA. It is being evaluated in clin-
ical trials for the treatment of all 3 genetically defined
types of PH (PH1, PH2, and PH3). The 2-part phase I
trial, PHYOX1 (ClinicalTrials.gov identifier
NCT03392896) has been completed. The first part of the
trial (group A; N ¼ 25) was a placebo-controlled, sin-
gle-blind trial in healthy volunteers (HVs), while the
1089
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second part (group B; N ¼ 18) was an open-label trial in
patients with genetically confirmed PH (PH1 and PH2).

Liver-specific targeting of nedosiran is achieved by
conjugating the RNA oligonucleotide to N-acetyl galac-
tosamine (GalNAc) aminosugar residues. This GalNAc
conjugation enables specific binding to the asialoglyco-
protein receptors (ASGPRs), which are predominantly
expressed on the surface of hepatocytes.22–25 Once
preferentially taken up by the liver, nedosiran engages
the natural endogenous RNAi machinery to selectively
reduce LDHA mRNA levels, thereby reducing the pro-
duction of LDHA protein and LDH enzyme in hepato-
cytes. Ultimately, the final step responsible for the
overproduction of hepatic oxalate is inhibited. The
proof-of-concept that LDHA-targeted siRNAs can
reduce oxalate production has been demonstrated using
animal models of PH1 and PH2.20,26

While selective inhibition of hepatic LDH enzyme
promises to be an elegant therapeutic target for all
genetically defined types of PH, it is prudent to prove
that inhibition of the hepatic isozyme does not produce
unintended consequences in off-target tissues, such as
muscles. Nonclinical testing of siRNAs that target he-
patic LDHA20,26 has provided evidence to support the
hypothesis that liver-specific LDHA inhibition using
GalNAc-conjugated siRNAs, such as nedosiran, pro-
duces no apparent adverse effects in off-target (non-
hepatic) tissues. Herein, we provide clinical data to
corroborate the safety of nedosiran-mediated hepatic
LDHA inhibition by 1) defining the human phenotype
of congenital LDHA deficiency (LDHAD) based on a
comprehensive review of cases published in the litera-
ture and 2) correlating the LDHAD phenotype with
clinical data in the form of biomarker levels and muscle-
related adverse events (AEs) in HVs (group A) ran-
domized to receive single-dose nedosiran or placebo in
the phase I trial. People with congenital LDHAD lack
LDHA expression in all tissues. They therefore repre-
sent the most extreme scenario, which we can use as a
baseline to assess the effect of hepatic LDHA inhibition.
METHODS

Literature Review

A comprehensive review of literature was performed
on PubMed with no time limits on publication date
using the following search terms: L-lactate dehydro-
genase/deficiency, L-lactate dehydrogenase contains:
dehydrogenase, L-lactate, L lactate dehydrogenase,
lactate dehydrogenase, dehydrogenase, lactate. English
language articles that reported human LDHAD cases
were included. Foreign language articles were included
if their abstracts were in English and provided relevant
patient information on LDHAD. The following types of
1090
articles were excluded from further review: articles
describing other subtype deficiencies (e.g., LDHB/H)
and articles reporting nonclinical data.

PHYOX1 Study Design

PHYOX1 (EudraCT No: 2017-003534-89; Clinicaltrials.
gov identifier NCT03392896) is a 2-part, phase I,
single-ascending dose study of subcutaneous nedosiran
in HVs (group A) and adult patients with PH1 or PH2
(group B) conducted between November 2017 and
November 2019. The primary objective of the group A
portion of the study was to evaluate the safety and
tolerability of nedosiran. Clinical laboratory data and
musculoskeletal AE data from group A will be dis-
cussed in this manuscript, and methods applying only
to that portion of the trial will be presented here. The
remainder of the PHYOX1 clinical trial will be
described in a separate article.

Group A was designed as a placebo-controlled,
participant-blind, single ascending-dose study
wherein participants were randomized into 5 sequen-
tial dose cohorts (0.3, 1.5, 3.0, 6.0, and 12.0 mg/kg
nedosiran or placebo) with 5 participants (3 active, 2
placebo) in each cohort (Supplementary Figure S1).
Male or female HVs between 18 and 55 years of age
(inclusive) with a body mass index of 19.0 to 32.0 kg/
m2 (inclusive) were eligible to take part in the study if
they met all eligibility criteria set forth in the study
protocol (Supplementary Table S1). Participants were
enrolled on day 0 and randomized on day 1 to receive a
single dose of nedosiran or placebo. Participants were
discharged from the study site on day 3 and returned
to the site at specified time points through day 29 (end
of study). The study protocol and amendments were
approved by an independent ethics committee, and the
study was conducted according to the International
Conference on Harmonization guidelines and relevant
country-specific laws and regulations.

PHYOX1 Safety Analyses

Safety analyses were performed at scheduled time
points throughout the study and included physical
examination, vital signs, electrocardiograms, standard
clinical laboratory testing, concomitant medications,
and AEs (coded using MedDRA version 21.0). Of these,
AEs classified under the “musculoskeletal and con-
nective tissue disorders” system organ class (SOC) were
discussed herein. Blood samples were collected from
participants on days 0 (baseline), 2, 8, 15, 22, and 29
(end of study) for lactate, pyruvate, and creatine kinase
(CK) analyses. Fasted samples were obtained at the
clinical site at approximately the same time of the day
on days 0, 2, 15, and 29. Samples on days 8 and 22 were
outpatient samples, so fasting was variable and not
Kidney International Reports (2021) 6, 1088–1098
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Figure 2. Patients with lactate dehydrogenase A (LDHA) deficiency: symptoms reported in the published literature. The symptoms of LDHA
deficiency reported for the 14 patients were primarily muscle-related (green bars). Multiple symptoms were reported in a single patient in some
cases.
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always as long as for samples obtained at the clinical
site. For lactate analysis, blood was collected into a 1.2-
mL fluoride/ethylenediamine tetraacetic acid monov-
ette and sent for analysis within 15 minutes of sample
collection. For pyruvate, blood was collected in a 1.2-
mL lithium heparin monovette and transported on
wet ice for immediate analysis. For CK, blood was
collected in a 4.5-mL plain monovette. Serum was
separated by centrifuging at 4 �C for 10 minutes using
centrifugal force equal to 2000 g, transferred into a 2.5-
mL false bottom propylene tube, and stored refriger-
ated at approximately 4 �C pending analysis. Lactate,
pyruvate, and CK levels in plasma/serum samples were
assessed by enzymatic assays using cobas c analyzers
(Roche Diagnostics, Indianapolis, Indiana, USA) ac-
cording to the manufacturer’s instructions and
methods reported in the literature.27

Statistical Analyses

Graphs were prepared using Prism software (version
8.4.3; GraphPad Software, San Diego, CA). All statisti-
cal analyses were performed using SAS software
(version 9.4; IBM Corp., Chicago, IL). The Wilcoxon
rank sum test was used to compare biomarker data
between nedosiran and placebo groups. Biomarker
changes from days 0 to 29 within each group were
compared using the Wilcoxon signed rank test. The
criterion for statistical significance was P < 0.05.

RESULTS

Literature Review: Patients With Congenital

LDHAD Do not Show Signs of Liver

Manifestations

The literature search yielded 137 articles (see Methods
for search criteria), of which 20 articles were relevant
to human LDHAD cases.28–47 Multiple articles reported
Kidney International Reports (2021) 6, 1088–1098
on the same patient(s) with LDHAD. To reduce dupli-
cation of patient numbers, unique cases were identified
and matched based on cross-referencing of citations
and family pedigree charts (to the extent possible in a
literature review setting). Based on this process, 14
unique patients (6 female and 8 male) with congenital
LDHAD were identified: 11 cases in 7 families in Japan,
1 case in an Italian family, and 2 cases in 2 U.S. families.

Figure 2 categorizes the symptoms reported in pa-
tients with LDHAD identified in the literature. Of the
23 symptoms reported, 74% (17/23) were related to
some form of muscular manifestation and the remaining
26% (6/23) were skin-related. There were no liver
manifestations reported among any patients. Exertional
muscle pain was the most common symptom followed
by skin lesions and exertional pigmenturia (myoglo-
binuria and hemoglobinuria). Three of the 6 female
patients (50%) reported uterine stiffness during preg-
nancy. Chest pain was reported in 1 patient but not
directly linked to LDHAD by the authors.42 In 3 pa-
tients, no symptoms were reported in these article(s).

Literature Review: Alterations in Lactate,

Pyruvate, and CK Levels in Patients With LDHAD

Symptoms were typically more common in patients
with LDHAD when they were engaged in various types
of exercise (e.g., judo wrestling, pole climbing, 100-
meter dash). In general, these patients did not report
symptoms under nonexercise conditions (Table 1).30,31

At rest, plasma levels of both lactate and pyruvate in
patients with LDHAD were found to be similar to those
in non-LDHAD control subjects. When subjected to
ischemic exercise testing of the forearm, plasma pyru-
vate was increased significantly in these patients
compared with control subjects. The expected increase
in lactate levels was reduced compared with control
1091



Table 1. Summary of lactate dehydrogenase A deficiency
phenotype defined by the literature
Key takeaways from the literature review of lactate dehydrogenase A deficiency

� No liver manifestations

� Patients largely asymptomatic except under exercise conditions

� Normal lactate levels at rest (range 0.4--0.6 mM)a

� Normal pyruvate levels at rest (range 0.07--0.09 mM)a,b

� Elevations in creatine kinase levels at rest noted in some cases
(range 48--26,290 U/L)c

� Marked elevation of plasma pyruvate (range 0.68--0.88 mM)d and creatine kinase
under exercise challenge

� Blunted elevation of plasma lactate (range 3.4--4.0 mM)d under exercise challenge

aBased on a single article33 reporting numerical values of plasma lactate and pyruvate
on 4 patients.
bSignificant pyruvate elevations were noted in a single patient during her third trimester
of pregnancy; her lactate levels were “almost within normal range” as described by the
authors.39
cElevation in creatine kinase levels at rest were noted in 3 articles.30,32,43
dBased on a single article33 reporting numerical values of plasma lactate and pyruvate
on 4 patients subjected to incremental exercise on a bicycle ergometer; creatine kinase
values were not reported.

CLINICAL RESEARCH Ariceta et al.: LDHA is an RNA Interference Target for PH
subjects.28,30,31,33 As further evidence of predominant
skeletal muscle involvement, a marked increase in
plasma CK relative to control subjects was also
observed when challenged under ischemic exercise
conditions.28
PHYOX1: HVs Treated With Single-Dose

Nedosiran Showed no Alterations in Plasma

Lactate, Pyruvate, or CK Levels

The first part (group A) of the PHYOX1 trial was a
placebo-controlled, participant-blind, single ascending
dose study. Group A enrolled 25 HVs at a single site, all
of whom completed the study. Five cohorts were dosed
at 0.3, 1.5, 3.0, 6.0, or 12.0 mg/kg of nedosiran or
placebo (3:2 randomization; Table 2). The mean
age of all participants was 33.2 years (range, 19–55
years). The mean body mass index of all participants
was 25.4 kg/m2.

Among HVs treated with a single dose of nedosiran
(0.3–12.0 mg/kg), there were no significant changes in
plasma lactate, pyruvate, or CK levels compared with
placebo at the end of study (day 29; Table 3). Within
the placebo group, changes from day 0 (baseline) to day
29 were significant for lactate and pyruvate, but not for
Table 2. Demographic characteristics of PHYOX1 group A (healthy volun

Characteristic Placebo (N [ 10)

Nedosir

0.3 (n [ 3) 1.5 (n [ 3) 3.0 (n [ 3)

Age (y)

Mean (SD) 35.5 (9.9) 28.7 (5.7) 28.0 (7.2) 37.3 (17.5)

Sex, n (%)

Male 8 (80.0) 2 (66.7) 1 (33.3) 1 (33.3)

Female 2 (20.0) 1 (33.3) 2 (66.7) 2 (66.7)

BMI (kg/m2)

Mean (SD) 26.47 (3.28) 26.37 (4.27) 24.36 (3.31) 26.93 (3.14)

BMI, body mass index; SD, standard deviation.
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CK. No significant changes were observed from day 0 to
day 29 for any of the 3 biomarkers within the nedo-
siran group (Figures 3–5). There were also no apparent
biomarker trends based on nedosiran dose levels
(Figures 3–5, insets). A low sample size (n ¼ 3 per
group) precludes meaningful statistical analysis at the
dose level. Both the nedosiran and placebo groups
showed similar lactate, pyruvate, and CK profiles dur-
ing the course of the study as seen from measurements
at timepoints between days 0 and 29 (Figure 6a–c).
Mean biomarker values in either group did not exceed
the upper limit of normal during the study timeframe
(upper limits of normal: lactate, 2.2 mmol/L; pyruvate,
0.13 mmol/L; CK, 469.5 U/L).
PHYOX1: No Drug-Related Musculoskeletal AEs

Were Observed in the Single-Dose Nedosiran

Group

Seven participants in group A (3 in placebo; 4 in
nedosiran) experienced $1 AE, all of which were of
mild or moderate severity. We were interested in
assessing the effect of nedosiran on off-target tissues,
specifically the muscles. Therefore, AEs classified un-
der musculoskeletal and connective tissue disorders
SOC were considered relevant (other AEs will be dis-
cussed in a separate article on the entire PHYOX1 trial).
Musculoskeletal AEs were experienced by 2 partici-
pants in the nedosiran group (Table 4), both of which
(back pain and myalgia) were considered by the
investigator to be unrelated to the study drug. Both
events resolved within 3 days of onset and appeared to
have no clinical sequelae.
DISCUSSION

PH is a family of rare, autosomal recessive genetic
disorders of glyoxylate metabolism that lead to hepatic
overproduction of oxalate and progressive renal dam-
age, which may culminate in renal failure and systemic
oxalosis.2,6 LDH is the final common enzyme respon-
sible for the conversion of glyoxylate to oxalate in all
genetically defined types of PH, which makes it an
teers)
an, mg/kg

All participants (N [ 25)6.0 (n [ 3) 12.0 (n [ 3) Overall (n [ 15)

35.3 (10.5) 29.3 (6.4) 31.7 (9.6) 33.2 (9.7)

2 (66.7) 0 6 (40.0) 14 (56.0)

1 (33.3) 3 (100) 9 (60.0) 11 (44.0)

21.96 (1.41) 23.81 (2.53) 24.69 (3.20) 25.40 (3.29)

Kidney International Reports (2021) 6, 1088–1098



Table 3. Biomarker values in healthy volunteers

Biomarker and timeline

Placebo (N [ 10) Nedosiran (N [ 15)

P valueMean (SD) Median (min, max) Mean (SD) Median (min, max)

Plasma lactate (mmol/L)

Baseline (day 0) 1.32 (0.66) 1.05 (0.60, 2.60) 0.87 (0.27) 0.90 (0.40, 1.50) .821a

End of study (day 29) 0.78 (0.32) 0.70 (0.40, 1.40) 0.75 (0.20) 0.70 (0.50, 1.30) .189b

.027c

Plasma pyruvate (mmol/L)

Baseline (day 0) 0.018 (0.012) 0.014 (0.005, 0.046) 0.013 (0.007) 0.012 (0.000, 0.029) .622a

End of study (day 29) 0.010 (0.009) 0.006 (0.001, 0.026) 0.012 (0.010) 0.008 (0.000, 0.031) .616b

.023c

Plasma creatine kinase (U/L)

Baseline (day 0) 164.10 (121.81) 125.00 (65.00, 405.00) 95.20 (41.00) 91.00 (24.00, 172.00) .398a

End of study (day 29) 172.60 (147.90) 103.00 (57.00, 510.00) 95.33 (33.38) 101.00 (38.00, 150.00) .689b

1.000c

SD, standard deviation.
aDay 29 nedosiran versus day 29 placebo.
bDay 0 nedosiran versus day 29 nedosiran.
cDay 0 placebo versus day 29 placebo.
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attractive therapeutic target for fulfilling an unmet
need in all known types of PH.20

Nedosiran is an investigational RNAi therapy
(administered monthly via subcutaneous injections)
designed to inhibit hepatic LDHA. It is intended to
reduce the expression of LDHA and the resultant LDH
activity in the liver by harnessing the natural RNAi
pathway. GalNAc conjugation achieves liver-specific
targeting of nedosiran by binding to ASGPRs.
Although ASGPRs have been detected in nonhepatic
tissues, their expression on hepatocytes far exceeds
that in other locations, and ASGPRs have no known
role elsewhere in the body.22–25 Therefore, in theory
and by design, it would be unlikely to see extrahepatic
delivery of these siRNAs. Nevertheless, it is imperative
to demonstrate the lack of RNAi effects in off-target
Figure 3. Plasma lactate distribution in healthy volunteers. Scatter plot sh
and at the end of the study (day 29) in placebo and nedosiran groups. Inset
SD, standard deviation

Kidney International Reports (2021) 6, 1088–1098
tissues, specifically the muscle (where LDHA is also
expressed, along with the liver). Animal studies by Lai
et al.20 and Wood et al.26 have demonstrated the lack of
such off-target effects; both studies found that GalNAc-
conjugated siRNAs achieved liver-specific knockdown
of LDHA in mice with no significant alterations to its
expression in other tissues, such as the muscle, skin,
kidneys, heart, or uterus. Lai et al.20 also noted liver-
specific knockdown of LDHA in nonhuman primates
and chimeric mice with humanized livers, which pro-
vides an additional level of evidence for liver-specific
RNAi delivery across species.

To further explore the lack of off-target effects with
siRNAs, we reviewed the data from animal studies
against the human phenotype of congenital LDHAD,
which represents the most extreme scenario of loss of
owing plasma lactate levels in healthy volunteers at baseline (day 0)
graph (in gray) shows plasma lactate distribution by nedosiran dose.
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Figure 4. Plasma pyruvate distribution in healthy volunteers. Scatter plot showing plasma pyruvate levels in healthy volunteers at baseline (day
0) and at the end of the study (day 29) in placebo and nedosiran groups. Inset graph (in gray) shows plasma pyruvate distribution by nedosiran
dose. SD, standard deviation.

CLINICAL RESEARCH Ariceta et al.: LDHA is an RNA Interference Target for PH
LDHA expression. The human LDHAD phenotype was
defined based on a comprehensive review of medical
literature spanning >35 years, which identified a total
of 14 such patients worldwide. This deficiency presents
with a predominantly muscle-related phenotype with
some reports of skin lesions. Interestingly, none of the
patients with LDHAD had liver manifestations. We
therefore deduced that evidence of any off-target ef-
fects would manifest in the skeletal muscles. Lai et al.20

ruled out such manifestations as they observed normal
muscle performance when Ldha-knockdown mice were
subjected to exercise in a treadmill endurance test. No
signs of exercise-induced myopathy were noted, unlike
Figure 5. Plasma creatine kinase (CK) distribution in healthy volunteers. Sc
(day 0) and at the end of the study (day 29) in placebo and nedosiran grou
dose. SD, standard deviation.
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the human counterparts with LDHAD. Emerging data
from repeat dose toxicity studies in nonhuman pri-
mates (monthly dosing of LDHA siRNA for#9 months)
also show no adverse skeletal muscle effects (unpub-
lished data). In keeping with the lack of liver mani-
festations noted in the human phenotype, animal data
also show no liver histopathology or acute liver
toxicity with siRNA-LDHA inhibition. No changes in
body composition or weight loss were noted, rein-
forcing the overall safety of this approach.20,26

Another aspect of LDHA inhibition is its potential
effect on the Cori cycle and related metabolic path-
ways, such as gluconeogenesis. Patients with LDHAD
atter plot showing plasma CK levels in healthy volunteers at baseline
ps. Inset graph (in gray) shows plasma CK distribution by nedosiran

Kidney International Reports (2021) 6, 1088–1098



Figure 6. Superimposed lactate, pyruvate, and creatine kinase (CK) distribution profiles in healthy volunteers. Superimposed scatter plots
showing (a) lactate, (b) pyruvate, and (c) CK profiles in the nedosiran (N ¼ 15) and placebo (N ¼ 10) groups at timepoints between days 0 and 29
(days 2, 8, 15, and 22). One participant had a missing lactate value, and another participant had a missing pyruvate value, both on day 2 within
the placebo group. SD, standard deviation.

Ariceta et al.: LDHA is an RNA Interference Target for PH CLINICAL RESEARCH
showed a marked elevation of plasma pyruvate and CK
because of impaired glycolysis under exercise challenge
conditions. Wood et al.26 noted a significant rise in
both liver and plasma pyruvate levels under non-
exercise conditions in a PH1 mouse model treated with
liver-specific siRNA targeted at LDHA. In contrast to
these findings, Lai et al.20 noted that liver-specific
siRNA-LDHA inhibition in mice did not result in sig-
nificant elevations of plasma pyruvate under non-
exercise conditions and during exercise. There were no
Kidney International Reports (2021) 6, 1088–1098
signs of lactic acidosis, as suggested by the absence of
plasma lactate elevations in mice. Similarly, liver-
specific LDHA inhibition did not result in an eleva-
tion of lactate in nonhuman primates. In addition, mice
showed normal muscle function during exercise,
implying an uninterrupted glucose resupply from liver
to muscles, indicating a properly functioning hepatic
gluconeogenesis pathway.20 The lack of significant in-
creases in plasma lactate and pyruvate after hepatic
LDHA inhibition was also corroborated by clinical data
1095



Table 4. Musculoskeletal adverse events in healthy volunteers

System organ class and preferred term Placebo (N [ 10)

Nedosiran, mg/kg

0.3 (n [ 3) 1. 5 (n [ 3) 3.0 (n [ 3) 6.0 (n [ 3) 12.0 (n [ 3) Overall (n [ 15)

Participants with $1 TEAE, n (%), no. of TEAEs 3 (30.0), 4 0 0 1 (33.3), 1 2 (66.7), 3 1 (33.3), 2 4 (26.7), 6

Musculoskeletal and connective tissue disorders 0 0 0 0 1 (33.3), 1 1 (33.3), 1 2 (13.3), 2

Back pain 0 0 0 0 1 (33.3), 1 0 1 (6.7), 1

Myalgia 0 0 0 0 0 1 (33.3), 1 1 (6.7), 1

TEAE, treatment-related adverse event.
Adverse events were coded using MedDRA version 21.0. TEAEs are events that occurred or worsened on or after the first dose of study drug. Participants are counted once for each
system organ class and once for each preferred term.

CLINICAL RESEARCH Ariceta et al.: LDHA is an RNA Interference Target for PH
obtained from group A of the PHYOX1 trial. HVs
treated with up to 12 mg/kg of nedosiran showed no
significant changes in plasma lactate, pyruvate, or CK
levels compared with placebo during the clinical trial
observation period. There were no significant changes
in lactate, pyruvate, or CK within the nedosiran
group between baseline and end of study (day 29),
further confirming the lack of any systemic effects of
hepatic LDHA inhibition in humans (especially its
role in the Cori cycle and other interconnected
metabolic pathways). The statistically significant
changes in lactate and pyruvate within the placebo
group could be attributed to the variability in the
baseline values within the group. These changes are
not thought to be clinically meaningful, which is
corroborated by the fact that the participants in the
placebo group were asymptomatic and did not
experience any adverse events that would be
attributable to such a reduction in either pyruvate or
lactate. Overall, an analysis of the existing nonclin-
ical data and the current phase I clinical trial data
show that RNAi-mediated LDHA inhibition in the
liver appears to be safe for disease targeting. Pre-
sumably, this inhibition has a predominant impact
on oxalate formation as opposed to the interconver-
sion of lactate and pyruvate. None of the HVs
experienced any drug-related musculoskeletal AEs
after treatment with nedosiran, which also supports
the specificity of RNAi action and the lack of unin-
tended consequences in off-target tissues.

We acknowledge that the biochemical findings and
lack of drug-related musculoskeletal AEs presented
here are based on a single dose of nedosiran in HVs
alone. The AE data on patients with PH are beyond the
scope of this article and will be discussed in a follow-on
article reporting the totality of results from the
PHYOX1 study. The biomarker data presented here
were collected under clinical trial conditions that were
not intended to replicate exercise challenge conditions.
The transient nature of the pyruvate and lactate alter-
ations after exercise made it impractical to capture in a
clinical setting. Animal models are an alternative, on
which we based our conclusions for exercise-related
1096
biochemical effects of LDHA inhibition. It is also
important to note that participants were able to
perform activities of daily living, without any drug-
related AEs after the administration of nedosiran. The
ongoing pivotal (PHYOX2)48 and open-label extension
(PHYOX3)49 trials are multidose trials evaluating
nedosiran. They are designed to capture safety,
including muscle-related AEs and CK elevations, and
efficacy assessments following chronic nedosiran
dosing. Thus, they are prospectively monitoring the
chronic effects of LDHA inhibition.

In summary, an analysis of the published nonclinical
and recent clinical evidence supports RNAi-mediated
LDHA inhibition as a potentially safe therapeutic
mechanism for all genetic variants of PH.
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