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Differential network analysis 
reveals the genome-wide landscape 
of estrogen receptor modulation in 
hormonal cancers
Tzu-Hung Hsiao1,2,*, Yu-Chiao Chiu1,3,*, Pei-Yin Hsu4, Tzu-Pin Lu5, Liang-Chuan Lai6,7,  
Mong-Hsun Tsai7,8, Tim H.-M. Huang4, Eric Y. Chuang3,7 & Yidong Chen1,9

Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene 
and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive 
computation, however, these methods rely heavily on prior knowledge and are limited in genome-
wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically 
identify genome-wide modulation of interaction networks. Based on a novel statistical test employing 
conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and 
adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved 
computation efficiency and overall superior performance than the MI-based method. We applied MAGIC 
to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) 
interaction networks in breast cancer. Several novel interaction hubs and functional interactions were 
discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated 
with patient survival. The findings were verified in independent datasets. Using MAGIC, we also 
assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, 
MAGIC is a systematic framework for comprehensively identifying and constructing the modulated 
interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for 
academic uses at https://github.com/chiuyc/MAGIC.

Dysregulation of oncogenes is one of the main causes of cancer. Through gene mutation or copy number ampli-
fication, the continual activation of oncogenes stimulates downstream signaling transduction to drive tumor 
proliferation and metastasis. These oncogenes can not only perturb gene expression, but also disrupt gene inter-
actions. For example, a recent study showed that oncogenic KRAS modulates HIF-1α  and HIF-2α  target genes 
and in turn regulates cancer metabolism1. Luo et al. demonstrated that COPS3, CDC16, and EVI5 were associated 
with patient survival under Ras modulation2. Estrogen receptor (ER), the primary oncogene in the luminal type 
of breast cancer, was reported to coordinate coexpression of keratin genes3 from a dataset composed of over 100 
primary breast tumors4. Furthermore, upon 17β -estradiol stimulation, the transcription factor (TF) regulatory 
network was found to be temporarily rewired in the human MCF7 breast cancer cell line5. These reports suggest 
the modulation capability of estrogen and its receptor protein (reviewed in ref. 6). Other studies also identi-
fied oncogene-modulated microRNA-gene regulation, gene-gene interaction, chemical-gene perturbation, and 
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protein-protein interaction in cancers7–9. These studies demonstrate that oncogenes play a modulatory role in the 
differential interaction of both genes and molecular functions.

With advances in microarrays and next-generation sequencing technologies, gene interaction networks 
have been constructed to understand the gene-gene interactions in cancer10–12. Some studies have employed 
these networks for clinical applications such as classification and prognosis prediction in breast cancer13,14. In 
order to extend this work, the concept of “differential network biology” was introduced to take into account the 
condition-specific rewiring of genetic and protein maps (reviewed in ref. 15). In vitro investigations have been 
carried out on networks of protein-protein16, protein-DNA17,18, and genetic interactions19. The results indicated 
the comprehensive effects of modulation of the interactome at any given point. For analyzing differential net-
works, some methods employ unsupervised hierarchical clustering to identify modules of gene pairs that share 
common patterns of differential coexpression between conditions20–22. Although these methods provide an over-
view of the inner structures of differential networks, they are limited in specifically dissecting the mechanisms 
governed by the cellular conditions determined by the status of a modulator gene, such as ER. Alternatively, the 
modulation-based methods are developed to directly identify core differential networks modulated by a modula-
tor. One class of such methods is based on the comparison of topological changes and rewiring among interaction 
networks each derived from a particular cellular condition19,23,24 (illustrated in Supplementary Fig. S1A). Since 
the fundamental components of these condition-specific networks are largely composed of static interactions, 
elucidating and analyzing the rewiring of these complex networks remain a challenging task. Another class of 
the modulation-based approach is to directly identify the modulated genomic interactions of which regulatory 
strength is significantly changed between conditions, and focuses on the network formed by these interactions 
only16 (Supplementary Fig. S1B). Several algorithms have been developed based on this approach and adopt the 
mutual information (MI) method to systematically explore the modulated interaction networks in cancer7,25,26. 
For example, modulator inference by network dynamics (MINDy) infers the post-translational modulation of 
TFs from microarray expression datasets25. Based on a different hypothesis, another MI-based method, namely 
Differential Multi-Information (DMI), was developed to infer whether a set of genes (i.e., targets of a TF) are 
differentially correlated between conditions27. Specifically, DMI measures multivariate MI among genes, while 
MINDy computes pairwise MI between a TF and its targets. However, since these algorithms utilize computa-
tionally expensive permutation tests for statistical inference, they highly rely on a priori knowledge, such as TF 
target genes and binding sites, to reduce the amount of computation. Novel modulated interactions beyond prior 
knowledge remain uncharted territory.

In this study, we present a novel algorithm, modulated gene/gene set interaction (MAGIC) analysis, to sys-
tematically identify modulated interactions at two levels, the gene level and the gene set level. While genes are 
players in genomic regulation, gene sets represent categories of biological function and can bring comprehensive 
interpretation to biological observations28. Instead of utilizing prior knowledge to reduce the number of inter-
actions being tested, MAGIC can efficiently examine genome-wide combinations of gene (and gene set) pairs 
based on the proposed statistical model. Our simulation confirmed the efficiency of MAGIC algorithm in com-
parison with the MI-based methods. Using breast cancer gene expression profiling datasets, we applied MAGIC 
to construct a modulated interaction networks by ER. By incorporating clinical survival information, the analysis 
further illuminated the interplay among ER, TGFβ , and NFκ B, and their association with tumor progression 
and patient survival. The results were verified in independent breast cancer datasets. Using MAGIC, we also 
assessed modulated interaction networks of another hormonal cancer, ovarian cancer, and identified both cancer 
type-independent and type-specific features of ER modulation, further demonstrating the capability of MAGIC 
in elucidating ER-modulated signaling and providing better understanding of complex cancer interactomics.

Results
Modulated gene/gene set interaction (MAGIC) analysis.  MAGIC infers pairs of genes (or gene sets) 
whose expression levels (or enrichment scores) are correlated in a modulator-dependent manner. Fig. 1A illus-
trates how MAGIC can dissect the modulated functional interactions. The modulator (M) is a gene or protein that 
influences (either activates or suppresses) the interaction of regulator–target (R–T) pairs. The regulator and target 
could be genes or biological functions, where the latter are represented by gene sets and their activities are esti-
mated by summarizing the expression of genes in gene sets. The interactions can be classified into four states as 
shown in Fig. 1B: positive or negative interaction specifically when the modulator is active (M+ ) or inactive 
(M−). MAGIC measures the difference in correlation coefficients between states to identify the modulated R–T 
pair. As shown in Fig. 1C, the Pearson correlation was applied to estimate the coexpression of gene pairs. We 
employed Fisher and inverse Fisher transformations on correlation coefficients to eliminate the biases arising from 
different sample sizes (i.e., M+  and M− ). The modulation score ∆I adj, that is, the difference in the adjusted cor-
relation, was then developed to measure the modulated interactions (Equation (9)). The statistical significance (the 
modulation test) was assayed on a sample-size-unbiased basis (Equation (5)). The mathematical model is detailed 
in the Methods section. The identified R–T pairs that met the selection criteria in terms of ∆I adj (Equations (10) 
and (11)) and P-values (Equations (6) and (7)) were constructed into networks, providing a systematic view of 
changes in gene and gene set interactions. The regulated network only works when specifically when the modula-
tor is active or inactive (Fig.  1D). Analysis flowchart of MAGIC is shown in Supplementary Fig. S2.  
Through the proposed algorithm, a systematic study of modulator-specific interaction networks was carried out in 
breast and ovarian cancers.

Performance evaluation of MAGIC and MI-based method.  We utilized simulated datasets to evalu-
ate the performance of MAGIC and the MI-based method. The simulated datasets were synthesized using three 
parameters: (i) sample size (N =  30, 100, 300, 500, and 1,000), (ii) proportion of M+  samples (75%, 50%, and 
25%), and (iii) correlation coefficient in M+  samples for M-modulated pairs (corrM+ =  0.3, 0.7, and 1.0 (low, 
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moderate, and high correlation), while corrM− =  0). Expression levels of 5,000 gene-pairs were simulated from a 
bivariate normal distribution for each combination of parameter settings. The expression data were added with 
white noise signals and scaled (Methods). We used two simulation configurations, one with an unbalanced num-
ber of modulated gene pairs (20%) and the other with a balanced number (50%). Performance was evaluated 
using the measurements of precision, recall, accuracy, and computation time. We note that another class of algo-
rithms (i.e., clustering-based methods) clusters pairs of genes based on the patterns of differential coexpression 
instead of assessing the statistical significance of individual pairs; therefore, we did not include it in the compari-
son study with MAGIC (see the Discussion section).

Using the unbalanced design, MAGIC achieved overall high precision, recall, and accuracy (mean =  0.96, 
0.75, and 0.95, respectively; Table 1). Low precision and recall were observed in datasets with moderate/low 
corrM+ with small sample size (N =  30 or 100) and/or small proportion of M+  samples (25%). Although the 
MI-based method achieved generally moderate precision (mean =  0.41), the recall was quite low (mean, 0.09) 
(Table 1), suggesting moderate false-positive and high false-negative rates. Overall, MAGIC attained consider-
ably higher precision in 43 (95.6%) of the 45 simulation datasets and higher or equal recall in all cases than the 
MI-based method. In terms of accuracy, MAGIC outperformed the MI-based method by a wide margin (mean, 
0.95 vs. 0.82; Table 1).

We also compared computation time between the two methods. MAGIC completed significance evaluation 
of 5,000 gene-pairs in 5.1 (N =  30 with 25% of M+  samples and moderate corrM+) to 8.1 (N =  500 with 25% of 
M+  samples and high corrM+) seconds, while the MI-based method, largely due to the permutation process, used 
691 (N =  30 with 25% of M+  samples and moderate corrM+) to 3,372 (N =  1,000 with 75% of M+  samples and 
high corrM+) seconds (Table 1). On average, MAGIC achieved about 300-fold acceleration in computation time 
compared to the MI-based method.

We identified comparable trends in the simulated datasets with balanced design. The mean differences in 
performance between the two methods were 0.35, 0.67, and 0.33 for precision, recall, and accuracy, respectively 
(Supplementary Table S1). MAGIC, again, outperformed the MI-based method in computation by about 300 
folds (Supplementary Table S1).

Figure 1.  Illustration of the proposed algorithm for modulated gene/gene set interaction (MAGIC) 
analysis. (A) Illustration of modulated interaction. From the viewpoint of modulated interaction, the strength 
of interaction between regulator and target is dependent on the status of the modulator (indicated by M).  
(B) Examples of the modulated interaction pairs. The MAGIC method is designed to infer the interaction pairs 
that exhibit significantly intensified positive or negative correlation in one state of modulation (“ON” (M+) 
or “OFF” (M− )) compared to the other. (C) Schematic illustration of MAGIC. The correlation coefficients of 
each pair of genes (or gene sets) in M+  and M−  samples are Fisher transformed and statistically tested for 
a difference between the M+  and M−  samples. MAGIC infers modulated interaction pairs by two criteria: 
statistical significance of the modulation test and difference of adjusted coefficients (modulation scores). 
Mathematical details are described in the Methods and Supplementary Methods sections. (D) The modulated 
interaction network. The significantly modulated interaction pairs are merged and visualized in networks 
for dissecting the systematic view of modulated signaling. A schematic flowchart of MAGIC is shown in 
Supplementary Fig. S2.
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Taken together, the MI-based method suffers from high type-II errors and expensive computation, and 
requires large sample size to reach desirable accuracy. It is largely due to intrinsic limitations of calculating mutual 
information and evaluation of significance; while MAGIC, facilitated by the statistical model built on Pearson 
correlation, greatly improved the performance over a broad range of simulated datasets.

The ER-modulated gene interaction network (ER-MGIN) in breast cancer.  Overexpression of ER 
is a key feature of most breast cancers. Although ER-regulated genes and functions have been widely identified, 
system-level gene/function modulation was uncharted territory. We applied the MAGIC algorithm to the expres-
sion profiles of breast tumors to illustrate how MAGIC resolves the modulated gene network. Summary of data-
sets used in the study is shown in Supplementary Table S2. Dataset GSE2034, containing expression profiles of 
209 ER-expressing (ER+ ) and 77 non-expressing (ER− ) breast tumors, was utilized to identify the M+  and 
M−  states for ER. After excluding the non-informative genes with low signal (mean probe-set intensity < 6 in log2 
scale) or low variations (coefficient of variation < 5%) across 286 samples, 5,308 informative genes were analyzed 
by MAGIC for identification of ER-modulated R–T pairs (ER-MRTPs). A total of 883 ER-MRTPs, including 604 
genes (ER-modulated genes, ER-MGs), passed the selection criteria (Bonferroni adj-P-value <  0.05 and ∆I adj  
> 0.6). ER-modulated gene pairs are tabulated in Supplementary Table S3A. Interestingly, all identified pairs were 
ER+  modulated, i.e., intensified correlation was observed specifically in ER+  samples. A total of 830 out of the 
883 ER-MRTPs had an ER+  specific positive correlation, while the other 53 pairs were negatively correlated. 
Notably, the ER-MRTPs accounted for a tiny portion (0.17%, 883 out of 527,202) of the R–T pairs formed in the 
ER+  samples (Bonferroni adjusted correlation P <  0.05 in ER+  samples). The ER-modulated gene interaction 
network (ER-MGIN) is showed in Fig. 2A, with nodes and edges denoting ER-MGs and ER-MRTPs. We note that 
ER-dependent correlation of ER-MRTPs was not necessarily attributed to differential expression of component 
ER-MGs between ER+  and ER−  samples. Taking the ER-MG pair of AKR1C1–LPL, which had the highest ∆I adj 
of 0.81, as an example, the correlation coefficient reached as high as 0.79 ( = .+I 0 86ER

adj ) in the ER+  tumors but 
only 0.07 ( −IER

adj  =  0.05) in the ER−  tumors (Fig. 2B), while neither of the two genes exhibited significant differen-
tial expression between ER+  and ER−  states (see Supplementary Fig. S3). Among the 604 ER-MGs, only 138 
genes (22.9%) were differentially expressed (Bonferroni adjusted t-test P <  0.05).

The number of ER-MRTPs of each ER-MG is listed in Supplementary Table S3B. There were 11 genes involved 
in 20 or more ER-MRTPs. For those genes, we annotated these hub genes with gene symbols in Fig. 2A. To 
understand the functional enrichment of the hub genes, we applied functional annotation analysis to each of the 
hub genes together with their ER-modulated partners. The results showed the top 4 hub genes were all enriched 

Measurement Method ρM+
a

N = 30 N = 100 N = 300 N = 500 N = 1000

Mean3:1b 1:1b 1:3b 3:1b 1:1b 1:3b 3:1b 1:1b 1:3b 3:1b 1:1b 1:3b 3:1b 1:1b 1:3b

Precision

MAGIC

0.3 0.96 0.72 0.25 0.98 0.91 0.71 0.99 0.99 0.97 1.00 1.00 0.99 1.00 1.00 1.00 0.90

0.7 0.99 0.98 0.84 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98

1.0 0.99 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MI

0.3 0.00 0.11 0.11 0.20 0.17 0.00 0.50 0.40 0.40 0.00 0.14 0.00 0.43 0.00 – 0.18

0.7 0.33 0.30 0.23 0.00 0.33 0.00 0.88 0.25 0.00 0.64 0.43 0.33 0.97 0.79 0.43 0.39

1.0 0.43 0.27 0.00 0.60 0.29 0.40 0.96 0.93 0.43 1.00 0.99 0.45 1.00 0.99 0.91 0.64

Recall

MAGIC

0.3 0.03 0.01 0.00 0.18 0.08 0.02 0.76 0.50 0.18 0.96 0.82 0.38 1.00 0.99 0.78 0.45

0.7 0.53 0.26 0.07 1.00 0.97 0.59 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.83

1.0 1.00 1.00 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

MI

0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.09 0.02 0.00 0.01

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.05 0.00 0.90 0.41 0.01 1.00 1.00 0.07 0.24

Accuracy

MAGIC

0.3 0.80 0.80 0.80 0.83 0.81 0.80 0.95 0.90 0.83 0.99 0.96 0.87 1.00 1.00 0.96 0.89

0.7 0.90 0.85 0.81 1.00 0.99 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96

1.0 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MI

0.3 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

0.7 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.82 0.80 0.80 0.80

1.0 0.80 0.80 0.80 0.80 0.80 0.80 0.84 0.81 0.80 0.98 0.88 0.80 1.00 1.00 0.81 0.85

Time (sec.)

MAGIC

0.3 5.2 5.1 5.1 5.2 5.1 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.4 5.4 5.4 5.3

0.7 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.4 5.4 5.5 5.3

1.0 5.2 5.1 5.1 5.2 5.2 5.2 5.2 5.3 5.3 5.4 7.2 8.1 6.4 6.2 5.5 5.7

MI

0.3 736 717 693 1020 1012 943 1579 1561 1421 2020 1960 1828 3042 2903 2681 1608

0.7 726 711 691 1008 1007 950 1597 1532 1427 2041 1954 1812 3030 2905 2679 1605

1.0 728 716 696 1018 1007 946 1579 1524 1454 2341 2499 2436 3372 2904 2674 1726

Table 1.   Performance of MAGIC in comparison with MI-based methods (unbalanced design). 
Measurement numbers greater than 0.80 are labeled in bold. aCorrelation coefficient in M+  samples for 
M-modulated pairs. bRatio between numbers of M+  and M−  samples.
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in expression of the signal peptides (Fig. 2C,D and Supplementary Fig. S4). The KEGG pathway “pathway in 
cancer regulation of migration”, and the gene ontology terms of “regulation of cell migration” and “blood vessel 

Figure 2.  The ER modulated gene interaction network (ER-MGIN) in breast cancer. We applied MAGIC to 
the GSE2034 breast cancer dataset and inferred 883 significant ER-modulated gene pairs which involved 604 
genes. (A) The ER-modulated gene interaction network. The network was constructed by merging the identified 
883 gene pairs, with nodes and edges denoting genes and ER-modulated interactions, respectively. Node sizes 
are proportional to the degrees (number of first-order neighbors) of genes, and genes with identical degree are 
arranged in one circle. List and summary of ER-MRTPs are provided in Supplementary Table S3. (B) Scatter plots 
of the AKR1C1− LPL gene pair, which had the highest ∆Iadj score of 0.81 among all ER-modulated regulatory 
gene pairs. Raw correlation coefficients of the two genes are 0.79 and 0.07 in ER+  and ER−  samples, respectively. 
(C) Subnetwork and functional annotations of NRN1 and its ER-modulated partners. (D) Subnetwork and 
functional annotations of SFRP1 and its modulated partners.
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development” were enriched for the partner genes of NRN1 (Fig. 2C). Interaction partners of SFRP1 exhib-
ited enrichment in “response to wounding” and “regulation of cell proliferation” (Fig. 2D). We also found that 
the oncogene, AR, and the immune-related genes, STAT3 and TGFBR2, were differentially regulated in the 
ER-modulated network. AR is the most crucial dysregulated oncogene in prostate cancer. The results showed that 
AR affects the functions of phosphoproteins, DNA binding, and the Golgi apparatus, at least partially, through ER 
modulation (Supplementary Fig. S5). The biological effects of TGFBR2 and STAT3 have been extensively studied 
in cancer and the immune system. TGFBR2 and STAT3 were found to be involved in the regulation of glycopro-
teins and acetylation under ER modulation, respectively (Supplementary Fig. S5). Collectively, these results show 
that our algorithm can successfully detect interaction network interactions and connect the modulated hub genes 
with their partner genes that affect well-studied functions.

We further sought to verify the R–T pairs in two breast cancer datasets, GSE2990 and GSE4922. Each dataset 
contains more than 100 samples (Supplementary Table S2). Of the 883 ER-MRTPs in the GSE2034 dataset, 59.2% 
and 71.7% were validated (with Bonferroni adj-P <  0.05) in GSE2990 and GSE4922, respectively. Remarkably, 
the top 50 ER-MRTPs achieved even higher validation rates (90.0% and 94.0%) in the two validation datasets. 
Overall, the 883 pairs were significantly overlapped with the results obtained from the two validation datasets 
(both Fisher’s exact test P-values ~0; hypergeometric P =  7.65 ×  10−32 and 1.15 ×  10−162). Though, the Jaccard 
index was quite low (0.27% and 1.22%), largely due to the very stringent criteria we set to identify the most sig-
nificant ER-MRTPs and the limited sample sizes of the validation datasets. Taken together, the data demonstrated 
the reproducibility of results identified by MAGIC.

The ER-modulated gene set interaction network (ER-MGSIN) in breast cancer.  To move beyond 
the modulated interaction network on the single-gene level, we applied MAGIC to function/pathway-level anal-
ysis based on a gene set approach. Here the activities of pathways and biological functions were modeled by 
enrichment scores of corresponding gene sets. After data pre-processing (detailed in the Methods and 
Supplementary Methods sections), a total of 2,026 gene sets underwent MAGIC for ER-modulated gene set inter-
action. These gene sets were defined from 5 categories: curated chemical or genetic perturbations (CGP), tran-
scription factor targets (TFT), gene ontology terms (GO), oncogenic signatures (OS), and cytogenetic bands 
(CB). With identical criteria (Bonferroni adj-P <  0.05 and ∆I adj  >  0.6), we identified 487 ER-MRTPs composed 
of 350 ER-modulated gene sets (ER-MGSs). Similar to the results of gene-level analysis, all ER-MRTPs exhibited 
ER+  modulated interaction. The ER-modulated gene set interaction network (ER-MGSIN) was constructed by 
merging the ER-MRTPs (Fig. 3A). Among the ER-MRTPs, 398 and 89 pairs showed ER+  specific positive and 
negative correlation, respectively. A detailed list and summary of ER-MRTPs are presented in Supplementary 
Table S4A,B. Of the 487 ER-MRTPs, 71.3% and 84.4% were validated in GSE2990 and GSE4922, respectively 
(with Bonferroni adj-P <  0.05). The validation rates of the top 50 pairs reached 88.0% in both of the validation 
datasets. Generally, the 487 pairs were in line with those identified from independent analyses of the two datasets 
(Fisher’s exact test P =  0.003 and ~0; hypergeometric P =  7.67 ×  10−3 and 8.52 ×  10−64), while the Jaccard index 
was still unsatisfactory (0.05% and 0.25%).

The connectivity of ER-MGSIN was 2.78 (the average number of ER-MRTPs directly connected to each gene 
set). Gene sets in the constructed network were found to be highly linked to each other, indicating that ER mod-
ulates a complex functional signaling cascade (Fig. 3A). The ER-MRTP between HUANG_DASATINIB_
RESISTANCE_UP and VALK_AML_CLUSTER_11 had the highest unadjusted correlation coefficient (0.81) in 
ER+  samples. AMIT_EGF_RESPONSE_480_HELA and SCHLOSSER_SERUM_RESPONSE_UP were found to 
have the highest modulation score ∆I( )adj  of 0.76. The gene set LEE_LIVER_CANCER_ACOX1_UP, which is 
composed of the up-regulated genes in mouse liver cancer after overexpression of ACOX1, accounted for the 
largest number of ER-MRTPs (35).

To dissect the complex network, we stratified it into 5 sub-networks based on the original definition of 
these gene sets (Fig. 3A). Through the sub-networks shown in Fig. 3B,C and Supplementary Figs S6 and S7, 
we interpreted that several well-studied functions/pathways were involved in the regulation of important 
biological functions under ER modulations. In the OS sub-network, the well-known oncogenes mTOR, cyc-
lin D, and RAF were found to be actively regulating other gene sets in an ER+  dependent manner (Fig. 3B). 
The hub node CAHOY_ASTROCYTIC, which includes the up-regulated genes in astrocytes, was involved 
in 16 ER-MRTPs (Fig. 3B). Among the 16 ER modulated partners, three were OS gene sets, including KRAS.
PROSTATE_UP.V1_UP, DCA_UP.V1_DN, and CYCLIN_D1_KE_.V1_DN. Also, CAHOY_ASTROCYTIC 
was found to regulate the target genes of transcription factors FOXI1 (V$HFH3_01), EVI1 (V$EVI1_05) and 
STAT4 (V$STAT4_01). The P53_DN.V1_UP gene set participated in 9 ER-MRTPs, including the stem cell 
related gene set BOQUEST_STEM_CELL_CULTURED_VS_FRESH_DN and the wound healing related gene 
set CHANG_CORE_SERUM_RESPONSE_DN.

The hub nodes of the TFT sub-network are shown in Fig. 3C. The gene set derived from MYC targets 
(BENPORATH_MYC_TARGETS_WITH_EBOX) was associated with 9 TFTs. Some of them have been proven 
to have important roles in cancer development. For instance, the activity of SMAD4 is highly correlated with 
tumor metastasis. The other hub-node, KASLER_HDAC7_TARGETS_1_UP, which is composed of genes 
up-regulated by expression of HDAC7, was connected to 12 TFT gene sets. Among them, MYCMAX and HIF1 
have been well studied in cancer biology.

The survival-associated TGFβ early-phase response gene set regulates NFκB under ER modu-
lation in breast cancer.  In addition to exploring modulator-specific gene or gene set interaction, MAGIC 
can also incorporate clinical patient data to investigate the effects of modulation on patient survival. Among the 
2,026 gene sets, we identified 610 ER-dependent prognostic gene sets, i.e., a significant association between 
patient survival and these gene sets was specifically observed in ER+  patients (detailed in the Methods section). 
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Seventy-five of these gene sets (23.0%) were involved in the ER-MGSIN (Fig. 4A and Supplementary Table S4C). 
Among them, 65 gene sets carried negative Cox beta coefficients (β), indicating ER+  specific favorable survival, 
and the other 10 exhibited positive β (adverse survival). We constructed an ER-modulated survival sub-network 
by extracting these prognostic genes sets and their ER-modulated partners from the ER-MGSIN (Supplementary 
Fig. S8 and Supplementary Table S4C). It is noteworthy that the gene set COULOUARN_TEMPORAL_TGFB1_
SIGNATURE_DN, which was originally defined as group of genes overexpressed at an early phase of TGFβ 29, 
exhibited ER+  dependent survival association. This gene set was reported as being associated with the molecular 
subtype of hepatocellular carcinoma with a less invasive phenotype29. Our analysis showed that in ER+  patients, 
high expression levels of the TGFβ  gene set are indicative of better survival (Cox P =  4.97 ×  10−3, Fig. 4B). 
However, the gene set was not significantly associated with survival in ER−  patients (Cox P =  0.339, Fig. 4B). 
ER-dependent association of this gene set with patient survival was confirmed in the two validation datasets 
(Fig. 4B and Supplementary Fig. S9). The gene set was connected to 6 ER-MRTPs in the survival sub-network. As 
shown in Fig. 4C, all of the 6 gene sets were TFTs. SMAD is perhaps the best-known downstream target of TGFβ  
signaling. Our data revealed that ER may play a modulatory role in the interaction between TGFβ  and SMAD. 
Also, we found that three gene sets among the NFκ B targets were ER-MRTPs of the TGFβ  gene set. Notably, 
similar to TGFβ , the three NFκ B gene sets also showed ER-dependent survival associations. NFκ B is an impor-
tant regulator of inflammation and immune function. TGFβ  is also an immune-related gene and has been 
reported to have dual functions in tumor biology, i.e., it can act as a tumor suppressor in the premalignant state or 
as an oncogene during tumor progression and invasion. Our data suggest that TGFβ  can interact with NFκ B 
under ER modulation. The interaction inhibits tumor progression and in turn prolongs patient survival (illustra-
tion in Fig. 4D). The ER-modulated interaction between the TGFβ  response gene set and three NFκ B gene sets 
was confirmed in the validation datasets (see Supplementary Table S5). These observations demonstrate that ER 
modulation can play a crucial role in cancer prognosis and that MAGIC is capable of detecting the effects of 
ER-MRTPs on clinical outcomes such as survival.

Application of MAGIC to ovarian cancer.  To explore whether ER plays the role of modulator in other 
hormone-associated cancers, we also applied MAGIC to analyze the 185-sample primary ovarian tumor set 
(GSE26712). Since the status of ER was not available, we estimated ER protein expression level based on the 
expression level of the ER encoding gene, ESR1. In the gene-set analysis, among 4,256 informative genes MAGIC 
identified 11,411 ER+  and 173 ER−  modulated gene interaction pairs, comprising a total of 1,477 ER-MGs 

Figure 3.  The ER modulated gene set interaction network (ER-MGSIN) in breast cancer. The MAGIC 
method can be also applied to identify modulated interactions among functions and pathways. (A) The ER-
modulated functional gene set interaction network. The network was built by incorporating the 487 significant 
ER-modulated gene set interaction pairs composed of 604 individual gene sets. Each node and edge represent 
gene sets and ER-modulated interactions of pairs of gene sets, respectively. List and summary of ER-MRTPs 
are provided in Supplementary Table S4A,B. (B) Sub-network of oncogenic signature gene sets and their ER-
modulated partners. (C) Sub-network of gene sets of TF targets and their ER-modulated partners.
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(Supplementary Table S6A). We note that only a small, while higher than randomness, portion of these pairs 
were validated in an independent 420-sample dataset profiled by The Cancer Genome Atlas (TCGA) using 
the next-generation sequencing (observation, 597 pairs; average of 100 iterations of random sample permuta-
tion, 348.7 pairs). This reflected the potential effects of ER+ /−  status accuracy estimated by ESR1 expression, 
lymph-node status, co-existence of other dominant modulator genes in ovarian cancer, expression meas-
urement (log-transform or not, RPKM or TPM, etc.), and characteristics of sample population on ER mod-
ulation as well as our model (see the Supplementary Discussion section). The constructed ER-MGIN was 
much more complex (connectivity =  15.7, Supplementary Fig. S10) than the one in breast cancer. Among the 
top hub genes of the ER-MGIN we identified a potential biomarker for ovarian cancer (PDIA3)30,31, a BRCA1 
mutation-dysregulated gene (HNRNPA2B1)32, and a gene implied to be associated with transition from normal 
into cancerous state in endometrial cancer, another hormone-related cancer (DDX3X)33 (Supplementary Fig. S10  
and Supplementary Table S6B). Our data showed that these genes perform their functions, fully or partially, 
under ER modulation. We also identified several novel hub genes that were previously unreported in ovarian 
cancer, such as BCL2-associated transcription factor 1 (BCLAF1), ADP-ribosylation factor-like 8B (ARL8B), and 
SEC31 homolog A (S. cerevisiae) (SEC31A) (Supplementary Table S6B). We compared the ER-MGINs of breast 
cancer and ovarian cancer, and found that, interestingly, the two networks shared no common in hub ER-MGs 
(defined as nodes with connectivity in the top 5%34), indicating the cancer-type specific feature of ER modulation.

At the gene set level, MAGIC analyzed 2,042 pre-processed gene sets and identified 36,389 ER+  and 2,502 
ER−  modulated ER-MRTPs among 1,517 gene sets (Supplementary Table S6C), which again could not be 
satisfactorily reproduced in the TCGA dataset (observation, 2,512 pairs; average of 100 iterations of random 
sample permutation, 1,717.6 pairs). The constructed ER-MGSIN was highly intertwined (connectivity =  51.3, 
Supplementary Fig. S11). The top three hub gene sets were REGULATION_OF_IMMUNE_SYSTEM_PROCESS 
(GO), CADWELL_ATG16L1_TARGETS_UP (CGP), and chr4q28 (CB) (Supplementary Table S6D). The chro-
mosome region chr4q28 was known as associated with ovarian cancer survival35. In the ER-MGSIN, chr4q28 
interacted with a wide range of gene sets in the ER+  specific manner, such as target genes of ER, progesterone 
receptor (PGR), and androgen receptor (AR), response genes of sodium arsenite treatment (a compound that 
sensitizes ovarian cells to cisplatin36,37), gene sets characterizing ovarian cancer subtypes, and other cytobands 
(Supplementary Table S6E), strongly suggesting the involvement of chr4q28 in ER modulation in ovarian can-
cer. Among the hubs, we also identified a handful of gene sets that were known to associate essential functions, 
tumor growth, resistance to chemotherapeutics, or prognosis of ovarian cancer, such as immune system process, 
signature genes of oncogenes Src38–40 and EZH241–43, and up-regulated genes in an ovarian cancer cell line upon 
treatment of the anticancer drug 17-AAG44 (Supplementary Fig. S11 and Supplementary Table S6D).

Figure 4.  ER modulated prognostic effects of functions/pathways in breast cancer. (A) Visualization of 
the identified 75 gene set with ER-dependent survival association. (B) Kaplan-Meier curves of the gene set 
COULOUARN_TEMPORAL_TGFB1_SIGNATURE_DN in GSE2034 and GSE4922 datasets, which was 
originally defined as the early phase response of TGFβ . Activity of the gene set is significantly associated with 
patient survival, specifically in ER+  sub-cohort. Kaplan-Meier curves of GSE2990 is shown in Supplementary 
Fig. S9. (C) Sub-network of the early phase TGFβ  response gene set and its ER-modulated partners. All 6 
partners were TF target gene sets, including SMAD, a well-known downstream player in TGFβ  signaling, and 
NFκ B, an important regulator of inflammation and immune function. Among them, three NFκ B gene sets also 
exhibited ER+  specific prognostic association. (D) Illustration of ER-modulated interaction between TGFβ  and 
NFκ B, and its effect in regulating tumor progression and patient survival.
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We further compared the ER-MGSINs between the two cancers and identified 2 common hub gene sets, 
BENPORATH_MYC_TARGETS_WITH_EBOX and CAHOY_ASTROCYTIC. BENPORATH_MYC_
TARGETS_WITH_EBOX, originally defined from c-Myc target genes that contained an E-box element, was 
reported as associated with high-grade ER−  breast tumors45. While the modulated partners of the c-Myc target 
set shared no overlap between the two cancers, a significant overlap was observed in the partners of the astrocytic 
gene set (Fisher’s exact test P =  6.68 ×  10−5; Supplementary Fig. S12). We further examined the interaction 
between the TGFβ  response gene set and the three NFκ B target gene sets. Remarkably, a clear trend of modula-
tion by ESR1 was observed (∆I adj =  0.10, 0.17, and 0.12; P =  0.06, 0.008, and 0.03; Supplementary Table S7). 
However, the TGFβ  response was not associated with patient overall survival in either high- or low-ESR1 groups 
(data not shown). Taken together, we demonstrated the capability of MAGIC to analyze ovarian cancer and to 
reveal the essential role of ER modulation in ovarian cancer, similar to some extent to breast cancer, but yet dis-
tinct due to biological characteristics of ovarian cancer.

Discussion
As we showed in our analysis, traditional gene-gene interaction analysis using gene expression profiling can-
not fully capture the complicated interactions among bio-molecules in cells. The “interaction under modula-
tion” model that investigates changes in interactions across different modulator states provides an enhanced 
description of the interactome. As suggested by the growing evidence that ER can function as a modulator3,5, we 
investigated ER-modulated interaction networks of breast cancer in this paper. To achieve our goal, a novel math-
ematical model, MAGIC was designed to integrate gene-level and gene set-level analyses, modulated interaction, 
survival analysis, and finally a simplified interaction network analysis. At the gene level, MAGIC constructed the 
ER-MGIN, and through analysis of key hub genes, it identified both well-studied and novel functions modulated 
by ER. In parallel at the gene set level, MAGIC systematically unveiled how ER modulates interactions among 
biological functions/pathways of CGP, GO, TFT, CB, and OS in the ER-MGSIN. MAGIC further incorporated 
patient survival data to pinpoint an ER-modulated interaction between TGFβ  response genes and NFκ B targets. 
The results of gene-level, gene set-level, and survival analysis were validated in two independent datasets.

By incorporating patients’ survival data, MAGIC found that the TGFβ  early-phase response gene set, 
COULOUARN_TEMPORAL_TGFB1_SIGNATURE_DN, was associated with survival in ER-positive patients. 
TGFβ  has two faces in breast cancer: it can play the role of tumor suppressor to inhibit epithelial cell cycle pro-
gression and promote apoptosis during early tumor growth, whereas it also acts as an oncogene that regulates 
the immune system and the tumor microenvironment to promote the epithelial-to-mesenchymal transition at 
late stages (reviewed in ref. 46). In Coulouarn et al.29, the gene set was shown to induce transcriptional acti-
vation of cell cycle arrest and apoptosis in a group of hepatocellular carcinoma patients. Different from29, our 
results showed an association between expression of the gene set and patient survival in breast cancer and in an 
ER-dependent manner. We speculate that the ER modulation is necessary for the early-phase TGFβ  signaling 
to act as a tumor suppressor at an early phase of TGFβ 1 treatment, thus the name “early-TGFB1 signature.” In 
our data, the early-TGFβ  signature has 6 ER-MRTPs in the survival sub-network (Fig. 4C). One is the target 
gene set of SMAD, a well-known downstream signaling target of TGFβ . We also found that the ER-MRTPs of 
the early-TGFβ  signature included three target gene sets of NFκ B, an important TF that regulates immune and 
inflammatory responses, based on different p65 binding motifs, and all three were associated with patient sur-
vival under ER modulation. While the crosstalk between NFκ B and ER has been widely studied47–49, our analysis 
(Fig. 4A,B) introduced a significant difference in terms of the ER dependent prognosis and interaction with TGFβ , 
unveiling a new potential regulation relationship: early phase of TGFβ  response could co-activate with NFκ B 
targets under ER modulation (Fig. 4C,D). This finding warrants further study. In addition to the early-TGFβ  
signature, we identified a total of 610 ER+  specific prognostic gene sets, and among them, 75 ER-MRTPs were 
further identified. Through the systematic analysis, the ER-specific crosstalk among important pathways and their 
prognostic effects can be delineated. For instance, a FGFR1-related gene set showed an interaction relationship 
with FOXP3 under ER modulation (Supplementary Fig. S8), yet another unexplored interaction in breast cancer 
discovered by our study of interaction under modulation.

MAGIC investigates ER-modulated interaction in two genomics layers, gene level and gene set level. The for-
mer reflects the mechanism by which ER directly or indirectly facilitates or suppresses gene interaction, through 
ER-regulated genes50–52 or its cooperating TFs, such as the forkhead DNA binding proteins53,54; while the latter 
enables interpretation of the “functional” effects of ER modulation. Analysis at the gene set level, represent-
ing biological pathways, cellular functions, genetic or chemical perturbation, and cytogenetic positions, has 
been shown to surpass single-gene methods in reproducibility, tolerance of data noise, and detection of modest 
changes among conditions28 and to greatly increase explanatory power for biological observation55. Our analysis 
supports the same observation: connectivity of a gene set in ER-MGSIN is indicative of the connectivity of genes 
within the gene set (Supplementary Fig. S13A, correlation =  0.149, P =  0.005). Furthermore, the correlation is 
evident between connectivity of gene sets and the proportions of hub genes in them (defined as nodes with con-
nectivity in the top 5%34) (see Supplementary Fig. S13B, correlation =  0.113, P =  0.034). In summary, hub genes 
or gene sets in ER-MGSN or ER-MGSIN, respectively, likely represent two levels of precision of information flow 
in ER-modulated interaction networks.

At the gene set level, MAGIC identified significant ER-modulated interactions between TGFβ  response genes 
and NFκ B target genes in breast cancer (Fig. 5A), representing functional activities of the TGFβ  and NFκ B pro-
teins, respectively. Careful examination of transcripts encoding TGFB1, NFKB1, and NFKB2 showed modest 
concordant ER modulation effects at gene level (∆I adj =  0.16 (raw P =  0.008) and 0.10 (raw P =  0.081), for 
TGFB1–NFKB1 and TGFB1–NFKB2, respectively). Neither modulated interaction was significant enough to be 
considered in the ER-MGIN (Bonferroni adj-P =  1); however, their modulated interaction activities (represented 
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by TGFβ  and NFκ B gene sets) were significant by integrating effects from their response or target genes. In addi-
tion, three interesting observations are worth noting in Fig. 5: firstly, the gene-level ER-modulated interaction 
network, even though constrained to only those genes in the TGFβ  and NFκ B gene sets, is too complex to deduce 
biological interpretations solely from the gene-level network; secondly, overrepresentation of inter-gene set 
ER-MRTPs was found between TGFβ  response genes and NFκ B target genes (Fig. 5B, observed-to-expected 
ratio =  1.82), demonstrating the stability of ER-modulated interaction of TGFβ  and NFκ B; and thirdly, the ER 
modulated gene-pairs were mostly composed of the key hub genes, such as BMPR2, PPAP2B, and SVIL in the 
TGFβ  gene set and RGL1, ACTN1, and MSN in the NFκ B target gene set (Fig. 5B). Taken together, by integrating 
modulated interaction analysis in two levels, MAGIC can discover critical mechanisms for maintaining 
ER-dependent interaction at upper levels (survival associated and ER-dependent interaction of TGFβ  and NFκ B 
gene sets) and then investigate the detailed interaction at the gene level, providing a comprehensive landscape of 
ER-modulated interaction.

We also applied MAGIC to explore ER modulation in ovarian cancer. Our data reveal both cancer-specific 
and conserved features of ER modulation. While ER-MGINs of breast cancer and ovarian cancer did not share 
common hub genes, at the gene set level we demonstrated that the ER modulated relationship between TGFβ  and 
NFκ B is stably maintained between breast and ovarian cancers. Indeed, the two hormonal cancers share some 
genomic characteristics and risk factors in common, such as mutations in BRCA1, BRCA2, TP53, and HER2/neu 
amplification56–60. However, the heterogeneity of ER+  breast cancer, the differences of mutation spectrums, and 
molecular profiles between the two cancers58,59 may greatly complicate the story of genomic interaction under 
modulation. Furthermore, it is likely that there co-exist other key modulator genes61, that may dilute or even 
overtake the effects of ER modulation. As a result, similar to other genomic features, the modulation genomic 
interaction appears to possess both cancer-specific and constitutive properties, partly reflecting the biological 
characteristics of cancer heterogeneity. Further studies that draw a pan-cancer picture of ER modulation are 
warranted.

The study of differential network biology agrees with biological intuition that topological changes in interac-
tion networks are essential in cells as they are continuously receiving and responding to varied stimulation and 
signals. Addressing this, several algorithms have been developed for analyzing modulated or dynamic interaction, 
including clustering-based methods20–22 and MI-based approaches7,25,26. The former methods group gene pairs 
into modules based on their patterns of differential coexpression. The modules may comprise an overall func-
tional landscape and reveal inner structures of the differential networks. However, it remains a challenging task 
to further investigate the mechanisms modulated by a modulator gene, such as ER, from the identified modules. 
On the other hand, MAGIC identifies statistically significant modulated gene (or gene set) pairs and incorporates 
clinical relevance to construct a single concise interaction network. MAGIC and the clustering-based methods 
fundamentally tackle different biological questions, and yield different results (a handful of modules vs. single 
concise network) which can hardly be compared; therefore, in the simulation study we only compared the perfor-
mance between MAGIC and the MI-based methods. The MI-based approaches measure changes in probabilistic 
dependence between two variables. The MINDy method, one of the most well-known MI-based methods, was 
built to identify genome-wide post-translational modulators of TF activity by comparing CMI given the status 
of a modulator and MI25. Focusing on competing endogenous RNA regulation, Hermes is another MI-based 

Figure 5.  Incorporation of gene set-level and gene-level ER-modulated interaction between TGFβ and 
NFκB in breast cancer. (A) Gene set-level ER-modulated interaction between the TGFβ  response gene set 
and the NFκ B target gene set. The two gene sets, representing activities of TGFβ  and NFκ B proteins, were 
significantly correlated with each other in an ER+  dependent manner. (B) Gene-level ER+  dependent 
interaction among genes belonging to the two gene sets. Node size is proportional to the connectivity and nodes 
with connectivity ≥ 20 are labeled with gene symbols. Overrepresentation of inter-gene-set ER-MRTPs was 
observed (observed-to-expected ratio =  1.82).
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algorithm for studying dynamic gene regulation7. The two algorithms conceptually infer whether acquiring 
knowledge of M (the modulator) improves mutual dependency of R and T (the regulator/target pair; Fig. 1A). 
Recently, based on MINDy, Chen et al. proposed the DIGGIT (driver-gene inference by genetical-genomics 
and information theory) method that dissected how gene mutations modulate master regulators in diseases62. 
These algorithms carried out comprehensive analyses in human cancers and other diseases, and the results were 
validated using biological experiments. However, the statistical inference based on random permutation tests 
is computationally intensive and thus limits the application in efficient genome-wide analysis. Gaussian kernel 
probability can be used as an estimator of entropy so that the calculation of (conditional) mutual information 
is estimated by covariance, which corresponds fundamentally to the correlation coefficient in the case of reg-
ulation of two genomic features63. MI features capability of detecting both linear and non-linear relationships 
between two variables. However, it was reported that gene regulation has mostly linear or monotonic relation-
ships64. Therefore, correlation-based methods, such as MAGIC proposed here, can achieve equivalent or even 
better performance64, without requirement of large sample size and intensive computation, in constructing gene 
co-expression networks.

For identification of modulated R–T pairs, MAGIC utilizes two major criteria: the modulation scores ∆I adj 
and the P-values of the modulation test. The former ensures biologically meaningful changes in correlation coef-
ficients while the latter measures statistical significance. The ∆I adj was derived from Fisher transformation of 
correlation coefficients followed by inverse Fisher transformation to adjust the correlation coefficients into equiv-
alent statistical bases (i.e., equal sample size). Despite the efforts to statistically eliminate the biases arisen from 
sample sizes, our model seemed to be still moderately affected by the sample sizes of real genomic datasets (see 
Supplementary Discussion), though it performed quite well in simulated datasets. This may, at least partly, arise 
from the fact that genomic data may not perfectly fit the normal distribution, the moderate dependency among 
the modulator and other genes, and the existence of other layers of genomic regulation/interactions (discussed in 
the Supplementary Discussion section). Notably, a critical advance in the study is that instead of the permutation 
strategy, the probability distribution function was derived (Equations (6) and (7)). By doing so, the statistical 
significance can be directly assessed without using computationally expensive permutation processes. For the 
analysis of ER-modulated gene interaction in this study, the critical computation processes, including calculation 
of pairwise correlation coefficients of 5,308 genes in 209 ER+  and 77 ER−  samples, calculation of modulation test 
P-values and ∆I adj scores, and inference of ER-modulated gene pairs, were done within one minute (~51 seconds) 
on a machine equipped with dual quad-core (16 threads) 2.4 GHz CPUs, with less than 6 GB RAM used. However, 
the same processes are estimated to take about 52 days using the MI-based method (estimated based on linear 
computation complexity from Table 1). Overall, the advance in computation efficiency enables MAGIC to meet 
the challenge of genome-wide analysis of modulation networks.

The computation efficiency and flexibility makes MAGIC applicable to a variety of research topics in differ-
ential network biology. For instance, in addition to direct action of microRNAs (miRNAs) on their target genes, 
recent reports have unveiled an alternative role of miRNAs in facilitating crosstalk and coexpression between 
genes, namely the competing endogenous RNA (ceRNA) regulation7,65,66. The regulation strength of ceRNA is 
known to depend on a handful of factors, including the level of miRNAs67,68. Under this circumstance, MAGIC 
can be used to analyze miRNA-modulated gene-gene regulation, where the M+ /−  states would be high and low 
miRNA expression. Also, while multiple genes have been reported to be independently methylated, studies also 
showed that concurrent methylation of several tumor-associated genes can be associated with disease subtype69 
and prognosis70 in human leukemia. In this scenario, MAGIC can be simply adapted to infer concurrent meth-
ylation of genes (with R and T representing the transformed methylation M-values71) under the modulation 
of disease states (M =  states or subtypes) or prognosis (M =  favorable/adverse prognostic factor). Furthermore, 
adopting the strategy of averaging correlation coefficients, Taylor et al. identified proteins with highly dynamic 
interaction with other proteins and proved that the dynamic interaction is predictive of breast cancer survival14. 
As Ideker and Krogan predicted15, the future analysis of “differential interaction” will become as prominent as 
the current analysis of “differential expression.” We expect MAGIC to be widely used in studying differential 
interaction and illuminating an alternative layer of modulated interaction within the complex interactome, due 
to MAGIC’s statistical model, flexible applicability, and computation efficiency.

Methods
Datasets.  Gene expression microarray data of 286 lymph-node negative primary breast cancer patients (209 
ER+  and 77 ER− , with NCBI/GEO72 accession number GSE203473) who had not received adjuvant systemic 
treatment was used for constructing the ER-modulated gene (or gene set) interaction networks. Two additional 
datasets from GSE299074 and GSE492275 were analyzed as validation sets. For the discovery analysis of ovarian 
cancer, we used the GSE26712 dataset76. We also included the ovarian cancer dataset profiled by TCGA58 using 
the Illumina HiSeq 2000 RNA sequencing for validation purpose. Summary of datasets used in the study is shown 
in Supplementary Table S2. All the data were retrieved from NCBI/GEO or TCGA databases and appropriately 
processed to obtain gene-level expression values as described in Supplementary Methods.

Gene sets.  The gene sets of the Molecular Signatures Database (MSigDB) v3.177 were analyzed in this study, 
including 5,982 gene sets from five categories: curated chemical or genetic perturbations (CGP), transcription 
factor targets (TFT), gene ontology terms (GO), oncogenic signatures (OS), and cytogenetic bands (CB). Small or 
oversized gene sets (containing < 20 or > 500 gene members) were eliminated from further analyses, except for 
the CB gene sets. Among the gene sets in CGP, GO, and OS, we used kappa statistics (Supplementary Equations 
(S1) and (S2)) to measure and cluster the gene sets with significant similarity in terms of their gene contents and 
assigned one centered “functionally representing gene set” for each of the clusters (details and illustration in the 
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Supplementary Methods section and Supplementary Fig. S14). Subsequent gene set analysis was conducted using 
the representing gene sets.

Gene set enrichment scoring.  We proposed a gene set enrichment score to represent activities of gene sets 
in gene set analysis. For a given gene expression dataset, we first performed z-transformation: µ σ= −z x( )/kn kn k k, 
where xkn is the log2-transfromed and normalized gene expression data of the k-th gene (k =   … K1, , ) in the n-th 
sample (n =   … N1, , ), and µk and σk are the mean and standard deviation for the k-th gene, respectively. 
=Z z{ }M kn M

 is the matrix format of z-values in samples with modulator status M, where ∈M {0, 1} and for 
example, 0 representing ER− , and 1 for ER+ . We defined the gene set content matrix G (number of gene sets S by 
number of genes K) as =G s k n( , ) 1/ S, where nS denotes the number of genes in gene set s, if s includes gene k, 
otherwise, 0. We calculated the gene set enrichment score for the n-th sample in the s-th gene set, = ∑ ∈a zsn n k s kn

1

S
, 

or in the matrix format,

= ⋅ES G Z (1)M M

for M =  0 and 1. By calculating the inner product of the component of matrices G and Z, we simply average all the 
z-scores of genes in a gene set for one sample. Each entry of matrix ESM represents the degree of activation for the 
corresponding gene set in a sample under one modulator state.

Assuming that the gene set scores followed the standard normal distribution by the law of large numbers, we 
employed the statistically reliable L0.05 criterion78, which is ± 1.96 times the standard deviation of enrichment 
scores in ESM obtained from random expression levels, as the informativeness measure (i.e. unlikeliness to be 
contributed from random events) for gene sets. Gene sets with enrichment scores falling within the ± L0.05 bound-
ary in more than 80% of the samples in either the ER+  or ER−  cohort were denoted as non-informative and fil-
tered out from subsequent analyses.

Modulated gene/gene set interaction (MAGIC) analysis.  MAGIC is designed to examine the associ-
ation of two genes/gene sets whose regulatory interactions are modulated by the modulator status, i.e., ∈M {0, 1} 
(ER−  and ER+  in this study), representing the “ON” and “OFF” states of a modulator (Fig. 1A). A schematic 
flowchart of MAGIC is shown in Supplementary Fig. S2. Taking gene analysis as an example, we started by calcu-
lating the Pearson correlation as the measure of “interaction” between genes i and j:

=I E Ei j corr i j( , ) ( ( , :), ( , :)) (2)M M M

where E i( , :)M  and E j( , :)M  are the vectors of expression values of gene i and j, respectively, under a given modu-
lator status ∈M {0, 1}. For the gene set analysis, the enrichment scores (ESM in Equation (1)) of gene sets were 
used in place of the gene expression abundances EM.

We hypothesized that for a modulator to be relevant to a given biological system, it must exert a strong influ-
ence on a network of genes when it is functional (whether M =  1 or 0), but have relative weak effect otherwise. 
We wanted to identify a pair of genes that show a significant difference in their interaction (modulated by M) by 
statistically testing
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Realizing that sample correlation coefficients are prone to be biased by different sample sizes of G0 and G1, we 
performed Fisher transformation79 to project the correlation coefficients to a sample-size-free domain (criterion 
1: modulation test), followed by inverse Fisher transformation to adjust the correlation coefficients to an assigned 
sample size so that equivalent sample size can be achieved for two groups of samples (criterion 2: modulation 
score). Mathematical details of the two filtering criteria are provided below.

Given the correlation coefficient IM and sample size ηM, Fisher transformation, as defined in Equation (4), 
projects IM to the standard normal distribution and yields IM .

 η
η

= =
− +

−
.I I I

I
( , )

3

2
ln 1

1 (4)M M M
M M

M

Assuming that =IM 1 is independent of =IM 0, the modulation test estimates the statistical significance of








∆ = − =

∆ = − ≠
.= =

= =

H I I I

H I I I

: 0

: 0 (5)
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  

  

Based on the normal distribution of IM
 , we derived the probability density function (PDF) of ∆I  as

π
∆ = ⋅








−


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






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I

f e erf( ) 1 1
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and the cumulative distribution function (CDF) as
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∆ = +
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2




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where erf () is the Gauss error function and sgn() is the sign function which gives 1 or − 1 for positive or negative 
inputs, respectively. Since the PDF and CDF were determined, the significance of ∆I  (the modulation test 
P-value) can be directly assessed. The threshold of statistical significance was adjusted for multiple testing with a 
Bonferroni correction.

We then performed an inverse Fisher transformation on IM  to adjust the coefficient to an assigned sample size 
η ′M . The inverse Fisher transformation followed

 


η
η

= =
−

−

+
.−

′
′

I I e

e
( , ) 1

3
1

1 (8)

I

IM
adj

M M
M

1
2

2

M

M

Based on the conjugate Fisher- inverse Fisher transformation, correlation coefficients sampled from two pop-
ulations can be compared with the adjusted equivalent sample size of η ′M . We define the modulation score as

∆ = − .= =I I I (9)adj
M
adj

M
adj

1 0

The modulator “ON” interaction can be identified as an element of ∆I adj that is greater than the threshold 
∆I th

∆ > ∆I I (10)adj
th

and the modulator “OFF” interaction can be identified as an element of ∆I adj less than −∆I th

∆ < −∆ .I I (11)adj
th

Survival analysis.  We integrated patient survival information into MAGIC. A Cox proportional hazards 
regression model was used to identify modulator-dependent prognostic gene sets. A gene set was defined as a 
modulator-dependent prognostic gene set if (i) PM = 1 <  0.01, PM = 0 >  0.1, or (ii) PM = 0 <  0.01, PM = 1 >  0.1, where 
PM is the P-value yielded from the Cox model. The criteria were designed to catch the gene sets for which a sur-
vival association was observed specifically in one state of modulation.

Visualization of interaction networks.  The identified ER-modulated gene (and gene set) pairs were com-
bined into networks with nodes representing genes (gene sets) and edges denoting the modulated interaction. 
We employed open source software Cytoscape80 for visualizing constructed interaction networks. For fully repre-
senting the identified information regarding genes and their interaction relationship, node and edge colors were 
designed to illustrate the survival association and interaction types, respectively. The complexity of regulatory 
relationships and signal transduction were measured by the “connectivity” (i.e. average number of nodes adjacent 
to each node) in the built network.

Implementation of MI-based method.  MI-based methods for identifying modulated interaction are 
typically constructed based on comparison between conditional MI (CMI) given the status of a modulator M 
and MI7,25, i.e.,

∆ = −E E M E EI CMI i j MI i j( ( , :), ( , :) ) ( ( , :), ( , :))MI

Pairs of genes exhibiting significant positive ∆IMI are considered as M-modulated regulatory pairs. In the 
simulation study, we calculated MI and CMI by using the MATLAB tool “MIToolbox for C and MATLAB”81. 
Statistical significance of ∆IMI was assessed by a 1,000-time permutation test with respect to modulator status for 
each gene pair.

Simulation study.  We synthesized a total of 45 simulated datasets, each dataset was constructed using a 
specific sample size (N =  30, 100, 300, 500, or 1,000). For each dataset, samples were partitioned into two groups 
under different modulator statuses (η η= =/M M1 0 =  3, 1, or 1/3), with a particular correlation coefficient for mod-
ulated gene pairs in M =  1 samples ( =corrM 1 =  0.3, 0.7, or 1.0) and M =  0 samples ( =corrM 0 =  0). The correlation 
coefficient of unmodulated gene pairs was set as zero. In each dataset, expression levels of 5,000 pairs of genes 
were independently simulated by sampling the bivariate standard normal distribution with zero mean and a 
standard deviation of 10. A Gaussian white noise with 20% power of the original expression data was added. We 
used two main simulation configuration:

(i)	 The percentage of modulated gene pairs was set to 20% (1,000 and 4,000 hypothetical modulated and unmod-
ulated gene pairs, respectively) in each dataset (hereafter referred to as an “unbalanced” design). All of the 
modulated gene pairs carried pairwise positive correlation in samples with M =  1 while zero correlation in 
samples with M =  0.

(ii)	 The percentage of modulated gene pairs was set to 50% (2,500 and 2,500 hypothetical modulated and unmod-
ulated gene pairs, respectively) in each dataset (a “balanced” design).
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For each of the two configuration, 45 simulated datasets (5 sample sizes, 3 modulation partitions, and 3 
gene-pair correlation coefficients) were generated and tested for performance using the MAGIC method and 
the MI-based method. Gene pairs with P-values <  0.001 from the modulation test (MAGIC) or permutation 
test (MI-based method) were called as M-modulated pairs. The performance was measured based on 4 meas-
urements: precision, recall, accuracy, and computation time. Mathematical expressions of the measurements are:

=
+

=
+

=
+

+ + +

Precision TP
TP FP

Recall TP
TP FN

Accuracy TP TN
TP FP FN TN

where TP, FP, FN, and TN denote the numbers of true positives, false positives, false negatives, and true nega-
tives, respectively. The simulation study was performed and timed on a computing machine equipped with dual 
quad-core (16 threads) 2.4 GHz CPUs.
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