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Ischemia/reperfusion injury (IRI) is caused by a sudden temporary impairment of the blood 
flow to the particular organ. IRI usually is associated with a robust inflammatory and oxidative 
stress response to hypoxia and reperfusion which disturbs the organ function. Renal IR 
induced acute kidney injury (AKI) contributes to high morbidity and mortality rate in a wide 
range of injuries. Although the pathophysiology of IRI is not completely understood, several 
important mechanisms resulting in kidney failure have been mentioned. In ischemic kidney 
and subsequent of re-oxygenation, generation of reactive oxygen species (ROS) at reperfusion 
phase initiates a cascade of deleterious cellular responses leading to inflammation, cell death, 
and acute kidney failure. Better understanding of the cellular pathophysiological mechanisms 
underlying kidney injury will hopefully result in the design of more targeted therapies to 
prevent and treatment the injury. In this review, we summarize some important potential 
mechanisms and therapeutic approaches in renal IRI. 
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Implication for health policy/practice/research/medical education:
Renal injury associated with ischemia/reperfusion results from a dynamic process involving inflammation and some mediators in a 
complex interaction. Formation of oxidative stress and lipid peroxidation seems to be major factors which promotes the inflammation 
process during ischemia/reperfusion injury. A better understanding of the pathophysiology and therapeutic approach underlying 
the functional defects found in ischemic acute renal failure will also require that we take into account the complexity of illness.
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Introduction
Ischemia/reperfusion injury (IRI) is characterized by re-
striction of blood supply to an organ followed by resto-
ration of blood flow and re-oxygenation. The inevitable 
injuries may occur after infarction, sepsis and organ trans-
plantation and this phenomena exacerbate tissue damage 
by initiating an inflammatory cascade including reactive 
oxygen species (ROS), cytokines, chemokines, and leu-
kocytes activation (1,2). In the kidney, IRI contributes to 
pathological conditions called acute kidney injury (AKI) 
that is a clinical syndrome with rapid kidney dysfunc-
tion and high mortality rates (3,4). The pathophysiology 
of IRI in kidney is very complex but some pathological 
pathways such as activation of neutrophils, release of re-
active oxygen species and other inflammatory mediators 

including adhesion molecules and a variety of cytokines 
are involved. Studies have demonstrated the beneficial ef-
fects of different agents in combat with IRI, for example, 
doxycycline through reducing the level of pro-inflamma-
tory cytokines (5,6), leptin by decreasing tumor necrosis 
factor alpha (TNF-α) level and increasing nitrite level (7), 
levosimendan through antioxidant and NO-related mech-
anisms (8), iloprost by suppression of lipid peroxidation 
and (9) ascorbic acid via free radical scavenging and anti-
oxidant activities (10).

Materials and Methods
For this review, we used a variety of sources by searching 
through PubMed, Embase, Scopus and directory of open 
access journals (DOAJ). The search was performed by us-

http://dx.doi.org/10.12861/jrip.2015.06


Journal of Renal Injury Prevention, Volume 4, Number 2, June 2015http://journalrip.com                                              21

Renal ischemia/reperfusion injury

R
ev

ie
w

ing combinations of the following key words and or their 
equivalents; renal injury, ischemia/reperfusion, AKI, reac-
tive oxygen species. Manuscripts published in English as 
full-text articles and or as abstracts were included in the 
study. 

Inflammation, leukocytes and adhesion molecules
Inflammation as a common abnormality in kidney IRI 
seems to link the various cell types and playing an impor-
tant role in its pathophysiology. Renal IRI triggers an in-
flammatory cascade that involved in more renal damages, 
so inhibition of inflammatory responses is a therapeutic 
approach to protect renal tissue (11,12). Chemokines are 
major mediators of the inflammation that regulate pro-
inflammatory cytokine, adhesion molecule expression, 
leukocyte infiltration and activation (13). Pro-inflamma-
tory cytokines and cytokines such as interleukin 6 (IL6) 
and TNFα play a major role in renal dysfunction of IRI 
(14-16). Activation of Janus kinase/signal transducer and 
activator of transcription (JAK/STAT) pathway mediated 
many pro-inflammatory cytokines that involved in pro-
gression of renal IRI (17). Dexmedetomidine (a highly 
selective α2-adrenoreceptor agonist) has a cytoprotective 
effect against renal IRI by inhibiting the phosphorylation 
of JAK/STAT proteins, reducing IL6 and TNFα that indi-
cating its anti-inflammatory effects (18-22). 
Inflammatory mediators, ROS and cell adhesion mol-
ecules – intracellular adhesion molecule-1 (ICM-1) and 
P-selectin – recruit leukocytes and neutrophil infiltration 
into post ischemic tissue, then leads to enhanced leuko-
cyte – endothelial interactions, which can promote inju-
ry, swelling of the endothelial cell and physically impede 
blood flow (23-26). Administration of ICM-1 antibody 
and the kidneys of ICM-1 knockout were protected from 
IRI in mice (27,28). Takada et al. showed that soluble P-
selectin ligand attenuates post-ischemic neutrophil in-
filtration and injury by inhibiting the binding between 
P-selectin and leukotriene aggregation (26). In addition 
Patel et al. showed that endogenous 5-lipoxygenase me-
tabolites enhanced the degree of renal injury, dysfunction, 
and inflammation caused by kidney IRI via expression 
of adhesion molecules while in 5-lipoxygenase knockout 
mice the renal IRI were ameliorated (29). Involvement of 
the inflammatory leukotriene pathway in IRI has been 
demonstrated in acute and chronic renal failure (29-32). 
Activation of leukocytes, especially neutrophils have an 
important role in the development of renal IRI (33,34). 
Neutrophils releases ROS, cytokines, proteases and other 
mediators that exceed IRI (35). Montelukast, zafirlukast 
and cysteinyl leukotriene receptor blockers, demonstrated 
protective effects on renal IRI through inhibition of neu-
trophil infiltration, suppression of adhesion molecules 
and lipid peroxidation (30,36). 
Many agents also have protecting effects on IRI through 
anti-inflammatory properties that mention in below. Nic-
otin is an anti-inflammatory cholinergic agonist, protect 
renal function after IRI by suppressing neutrophil infiltra-
tion, chemokines release and inflammation through an α7 

nicotine acetylcholine receptor (α7nAchR) (37,38). These 
renoprotective effects also reported in vagotomized ani-
mals and suggest that cholinergic agonists act directly 
within the kidney (38).
Celastrol is a bioactive ingredient of chines herb “Tripte-
rygium wilfordii” with anti-inflammatory and antioxidant 
activities that used in treating auto-immune diseases and 
chronic nephritis. Celastrol protect IRI by inhibiting neu-
trophil infiltration, lipid peroxidation and suppressing 
the induction of pro-inflammatory mediators synthesizes 
such as cyclooxygenase-2 (COX2) presumably by sup-
pressing nuclear factor κB (NF-κB) signaling pathway 
(39). Besides controversial studies reported that celastrol 
promoted the kidney injury in renal IRI by upregulation 
of COX2 and prostaglandin E2 (PGE2) synthesis (40). As 
a conclusion it seems that inflammation, leukocytes and 
adhesion molecules are seriously involved in IRI process, 
and any agents that suppress inflammation process, or in-
hibit leukocytes and neutrophil infiltration may be suit-
able to attenuate the side effect of IRI in the kidney.
 
Oxidative stress and lipid peroxidation
During IRI, the damaged tissue produce excessive amount 
of ROS cause oxidative stress which changes mitochon-
drial oxidative phosphorylation, ATP depletion, increase 
intracellular calcium and activation of membrane phos-
pholipids proteases (41-43). The blood flow during re-
perfusion phase of IRI can produce oxygen free radicals 
which leads to lipid peroxidation as main pathway of free 
radical tissue injuries (44). Formation of free radicals de-
velops renal tissue injury via peroxidation of membrane 
lipids and oxidative damage of proteins and DNA contrib-
ute to apoptosis and cell death (45). Also the down regu-
lation of the antioxidant enzyme system such as catalase, 
superoxide dismutase, and glutathione peroxidase could 
be responsible for the pathophysiology of ischemia-re-
perfusion injury (46). Therefore inhibiting this pathway 
or prevention of free radical production is the strategy to 
protect the tissue during IRI. 
Studies have shown beneficial effects of free radical scav-
engers and antioxidants on IRI (47-49). Supplementa-
tions with antioxidants agents have protective effects in 
IRI induced oxidative stress (50-52). Oxygen free radical-
mediated renal damage during the reperfusion period 
following ischemia was prevented by free radical scav-
engers and antioxidants activity of melatonin (53,54). In 
addition, inhibition of sympathetic nerve and decrease of 
catecholamine release (55) may be other mechanisms that 
melatonin protects renal against IRI. Ulinastatin a potent 
protease inhibitor with antioxidant activity attenuate renal 
injury after ischemia by inhibiting apoptosis and neutro-
phils infiltration (56). Propofol with antioxidant activity 
reduce IRI (57-59) through reduced lipid peroxidation, 
cytokines production, increased superoxide dismutase 
levels and up-regulation of bone morphogenetic protein-2 
(BMP2) family that play important roles in diverse cell 
types (60-62). BMP2 down-regulation in IRI may contrib-
ute to an imbalance between cell proliferation and apop-
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tosis thereby causing renal injury (63). 
Recent attentions to herbal products encourage scientists 
to investigate natural agents on IRI. Most of these prod-
ucts exert renoprotective effects on IRI by the radical 
scavenging and antioxidant activities such as picroliv, an 
antioxidant extract of Picrorhiza kurroa (49), naringin, a 
bioflavonoid (64) and aqueous garlic extract (65). As con-
clusion, it is obvious that antioxidants agents could eas-
ily act against oxidative stress to protect the tissue against 
ischemia during IRI phase. However special attention is 
needed to use the dose of antioxidants, because some an-
tioxidants showed toxic effects in particular dose (66,67).

Mitochondrial dysfunction
During ischemia, mitochondrial oxidative phosphoryla-
tion is suppressed by lack of oxygen. This phenomena im-
paired ATP synthesis and diminished activity of cellular 
energy-dependent processes which could contribute to 
cell death. Mitochondria are the major source of intracel-
lular ROS, and are also the primary target for ROS. ATP 
depletion stops pumping calcium out of the cell by Na/
Ca2+ antiporter channel therefore calcium accumulate in 
the cell and sodium accumulated within the cell cannot 
be removed by Na/K/ATPase (68). In addition intracellu-
lar calcium overload occurs from calcium redistribution 
of endoplasmic reticulum stores (69). Increased cytosolic 
calcium can activate calcium-dependent phospholipase 
A2, endonuclease and proteases within the cell that begin 
cell apoptosis (69,70). In the postischemic cell, mitochon-
dria will be exposed to large amounts of Ca2+ and oxygen 
free radicals. These factors likely contribute to the pro-
gressive functional deterioration of mitochondria during 
the reperfusion phase (71). Therefore the ideal drug thera-
py needs to be targeted to mitochondria. A number of ap-
proaches have been used for targeted delivery of therapeu-
tic agents to mitochondria and should demonstrate very 
powerful antioxidative properties inside the mitochondria 
under conditions of oxidative stress such as IRI (72-74). 
Gentamicin an antibacterial drug induce defect on mito-
chondrial oxidative phosphorylation and ATP/ADP ratio 
in reperfusion and therefore it causes renal damage in re-
perfusion phase more than ischemic phase (75-77).

Nitrite and nitric oxide 
Nitric oxide (NO) the endothelial cell product plays an 
important role in blood circulation. The half-life of NO in 
circulation is very short which limited its direct measure-
ment, therefore its metabolites; nitrite and nitrate usually 
are measured. NO in low concentrations considered as 
renoprotective against renal ischemia due to its vasodi-
latory, antioxidant and anti-inflammatory properties, as 
well as its beneficial effects on cell signaling and inhibition 
of nuclear proteins (78-80). 
Renal IRI activate nitric oxide synthase (NOS) and in-
crease the expression of NOS proteins (81). There are 
three different isoforms of NOS; endothelial NOS (eNOS) 
and neuronal NOS (nNOS) produce NO in short bursts 
in low concentrations for physiological purposes and in-

ducible form of NOS (iNOS) which produces NO in high 
concentrations. It has been suggested that NO produced 
by iNOS is a toxic agent whereas eNOS is seen as a pro-
tective enzyme (82-84). NO produced in the renal proxi-
mal tubules in response to ischemic injury is mediated by 
iNOS (85). 
 Studies have suggested that increased NO via iNOS activ-
ity during renal ischemia is deleterious to the kidney and 
inhibition of iNOS before IRI has a dramatic functional 
protection of kidneys against ischemic renal injury (86). 
Treatment with sildenafil citrate and tadalafil (phospho-
diesterase type 5 inhibitors) decreased lipid peroxidation 
and myeloperoxidase (indicator of polymorphonuclear 
infiltration) in renal tissues via inhibition of iNOS expres-
sion (87). In addition, ischemia itself can provide endo-
thelial dysfunction, and disturb formation of NO endo-
thelial form of eNOS (88).
The anion nitrite is an end product of NO metabolism 
(89). In hypoxia and ischemia conditions nitrite convert 
to NO by NOS and xanthine oxidase enzymes (90). Thus 
nitrite stored during normoxia and convert to NO in hy-
poxia conditions can be considered a NO buffer. Several 
recent reports have demonstrated NO and nitrite-medi-
ated cytoprotection in IRI models (91-94). In addition of 
NO-dependent cytoprotection, nitrite may act via inde-
pendent pathway (94,95). 

Renin-angiotensin system
Renin-angiotensin system (RAS) activation and angioten-
sin II (AgII) level elevation are the important risk factors 
in IRI (96,97). AgII make renal injury through constrict of 
renal vessels, enhance vascular sensitivity to sympathetic 
nerve stimulation (98), cause oxidative stress (99,100) and 
apoptosis induction (101).
RAS modulate inflammation in renal tissue with two 
opposite arms effects: angiotensin-converting enzyme 
(ACE)/AgII/AT1 receptor and angiotensin-converting 
enzyme 2 (ACE2)/(Ag-(1-7)/Mas receptor (deleterious 
and protective effect respectively) (102,103). Renal isch-
emia appears to change the balance of RAS axis (104). 
Administration of the Mas receptor agonist, AVE0991, 
attenuated renal tissue damage and infiltration of leuko-
cytes in the kidney IRI (105). ACE2 is a modulator of AgII 
levels and it convert AgII to Ag-(1-7) in renal tissue and 
antagonize many deleterious effects of AgII (106,107). 
New therapeutic strategy is led to activation of ACE2/Ag-
(1-7)/Mas axis in renal IRI. Studies have demonstrated 
that angiotensin converting enzyme inhibitors (ACEIs) 
and angiotensin receptor blockers have protective effects 
on IRI in the kidney (108,109). Aliskiren (rennin inhibi-
tor) can directly decrease rennin plasma activity and AgII 
level (110), has a protective effect on renal IRI through 
inhibition of RAS, oxidative stress and enhance the anti-
apoptosis activity (111).

Complement system 
Many studies have shown the activation of complement 
system in various IR organs (112-116). Complement sys-
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tem activation releases a number of biologically active 
products (C4a, C3a, and C5a, C5b-9 and the anaphylatox-
ins) with proinflammatory and upregulation of adhesion 
molecules activity (117,118). C5a and C5b-9 have been 
shown to stimulate endothelial cell expression of selec-
tins and intercellular adhesion molecule-1 (119,120). The 
recognition of the involvement of complement has led 
to novel strategies to modulate IRI. Specific C5a recep-
tor antagonist have shown protective effects against renal 
IRI (121). Also an interfering RNA (siRNA) that target 
complement 3 (C3) and caspase 3 genes reduced renal IRI 
(122). Zhou et al. in mice which deficient in C3, C4, C5, 
and C6 showed that C5b-9 mediated tubular cell damage 
was etiologic in IRI (123). 

Ischemic preconditioning 
Ischemic preconditioning (IP) is a tolerance or adapt-
ability of organ or tissue after primary exposure to a brief 
ischemia stimulus (124). The kidney has the ability to be 
preconditioned by a non-lethal period of ischemia, which 
makes it tolerate to subsequent ischemia-induced injury 
(125). In studies, renal IP was reduced cell lysis, apop-
tosis and lipid peroxidation with improvement of renal 
function in ischemic kidney (126). Reduction of adhe-
sion molecules and inflammatory responses may be the 
mechanism of IP preventing effects (127,128). But In 
other studies, ischemic preconditioning appears to be me-
diated via pre-ischemic activation of adenosine receptors, 
specifically A1 adenosine receptors (129-131).

Conclusion
Renal injury associated with ischemia/reperfusion re-
sults from a dynamic process involving inflammation and 
some mediators in a complex interaction. Formation of 
oxidative stress and lipid peroxidation seems to be major 
factors which promotes the inflammation process during 
IRI. A better understanding of the pathophysiology and 
therapeutic approaches underlying the functional defects 
found in ischemic acute renal failure will also require that 
we bear in mind the complexity of illness.
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