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Transcriptional Regulation on 
Aneuploid Chromosomes in Diverse 
Candida albicans Mutants
Christopher Tucker1, Soumyaroop Bhattacharya   2, Hironao Wakabayashi1,  
Stanislav Bellaousov1, Anatoliy Kravets1, Stephen L. Welle3, Jason Myers4, Jeffrey J. Hayes1, 
Michael Bulger5 & Elena Rustchenko1

Candida albicans is a diploid fungus and a predominant opportunistic human pathogen. Notably,  
C. albicans employs reversible chromosomal aneuploidies as a means of survival in adverse 
environments. We previously characterized transcription on the monosomic chromosome 5 (Ch5) that 
arises with adaptation to growth on the toxic sugar sorbose in the mutant Sor125(55). We now extend 
this analysis to the trisomic hybrid Ch4/7 within Sor125(55) and a diverse group of three mutants 
harboring a single Ch5. We find a similar pattern of transcriptional changes on either type of aneuploid 
chromosome within these mutants wherein expression of many genes follows chromosome ploidy, 
consistent with a direct mechanism to regulate genes important for adaptation to growth. In contrast, 
a significant number of genes are expressed at the disomic level, implying distinct mechanisms 
compensating for gene dose on monosomic or trisomic chromosomes consistent with maintaining 
cell homeostasis. Finally, we find evidence for an additional mechanism that elevates expression of 
genes on normal disomic Ch4 and Ch7 in mutants to levels commensurate with that found on the 
trisomic Ch4/7b in Sor125(55). Several of these genes are similarly differentially regulated among 
mutants, suggesting they play key functions in either maintaining aneuploidy or adaptation to growth 
conditions.

Candida albicans is a unicellular fungus that lives as part of normal human gut or genital microflora, but is an 
important opportunistic infectious agent in immune-compromised individuals. The diploid genome of C. albi-
cans is organized into 8 pairs of chromosomes that can exhibit instability resulting in rearranged chromosomes 
or aneuploidy, which is well-tolerated by the organism1–4. Moreover, in C. albicans, reversible loss or gain of one 
copy of a specific chromosome or large portions of chromosomes appears to provide a means for the organism to 
adapt and survive in unique adverse environments3–6. A well-studied example of such control is a reversible loss 
of one copy of chromosome 5 (Ch5), which confers laboratory resistance to caspofungin (CasR), an important 
antifungal from the echinocandin class6, and also allows for the utilization of the otherwise toxic sugar L-sorbose 
(Sou+)4,7. Sorbose is known to kill fungi in a manner similar to echinocandins (reviwed in Yang et al.)6. It was 
proposed that one Ch5 is lost because Ch5 carries multiple genes for negative control of the CasR and/or Sou+ 
phenotypes8,9. Although the detrimental consequences of aneuploidy due to gene imbalances are well described, 
recent studies with Saccharomyces cerevisiae demonstrated that aneuploidy can confer a fitness advantage under 
adverse conditions10,11.

We have previously addressed the intriguing question of how aneuploidy affects transcription in C. albicans. 
For this purpose, we analyzed the transcriptional profile of the monosomic Ch5 in the mutant Sor125(55), a.k.a. 
Sor55, which has lost one Ch5 as an adaptation to growth on sorbose as a sole source of carbon. We found a 
complex pattern of transcriptional regulation in which many genes are expressed at half the level seen in disomic 
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strains, as would be expected, but many other genes are expressed at or near the same level as seen in disomic 
strains12. We proposed that aneuploidy in C. albicans is coupled with transcriptional compensation for changes in 
gene dosage to maintain cellular homeostasis. Our study of Ch5 in the mutant Sor125(55) raised several questions 
that we wished to address experimentally. Does monosomic Ch5 in other, independently derived mutants also 
exhibit dosage compensation, and if so, in a similar pattern? Does transcription from a trisomic chromosome, 
which we identified in Sor125(55), also involve dosage compensation?

To address these questions, we have examined three additional mutants that have lost one copy of Ch5 in order 
to adapt to growth in the presence of either sorbose or caspofungin. In addition, we examined transcription from 
the trisomic chimeric chromosome 4/7b of Sor125(55)2. Application of high stringency analysis to a diverse set 
of mutants shows underlying similarities in expression changes. In particular, while expression of the majority 
of genes on the monosomic Ch5 in the newly analyzed mutants were changed according to the ploidy change, as 
expected, a substantial number of genes are upregulated to the disomic level so as to compensate for gene dose. 
Moreover, likewise we find that the majority of genes on the Ch4/7b are upregulated coordinately with ploidy, but 
significant compensation to the disomic level also occurs. Finally, we also report an unknown mechanism in cells 
adapted to stress conditions that elevates gene expression on normal disomic Ch4 and Ch7 to the levels observed 
in mutant cells harboring trisomic Ch4/7b.

Results
General approach and verification of chromosome condition.  Our earlier analysis of the Sou+ 
mutant Sor125(55), indicated that Ch5 monosomy, responsible for adaptation to sorbose, directly results in 
a two-fold down-regulation of many Ch5 genes, as expected, while a substantial subset of Ch5 genes (at least 
30%) remains expressed at the diploid level, presumably due to transcriptional compensation for gene dose12. 
Somewhat surprisingly, we also found that a small number of Ch5 genes are excessively upregulated, despite the 
loss of DNA. In order to determine if these observations are a general feature of related aneuploidy in C. albicans, 
we analyzed two additional mutants carrying a single Ch5: JMC200-3-4 and SMC60-2-5, which were selected for 
laboratory resistance to caspofungin, and a third mutant, Sor1210(60), a.k.a. Sor60, which was selected for resist-
ance to sorbose. Each mutant was derived from a different genetic background (Table 1). The data for Sor125(55) 
were re-analyzed here using a more rigorous approach. In addition, we recently reported that both Sor125(55) 
and its parental strain, 3153A, harbor hybrid chromosomes resulting from a reciprocal exchange between one 
Ch4 and one Ch7 of the reference strain SC5314, which we term Ch4/7a and Ch4/7b2. In Sor125(55), Ch4/7b is 
duplicated, so genes on this hybrid chromosome, together with the corresponding portions of the intact Ch4 and 
Ch7, have a copy number of three2. Therefore, we also analyzed the transcriptional profile of “trisomic” Ch4/7b in 
Sor125(55). Notably, the Sor1210(60) mutant is also derived from the 3153A parental strain, and harbors Ch4/7a 
and Ch4/7b; however, Ch4/7b has not been duplicated in this mutant2.

We verified the chromosomal condition of all mutants using pulsed field gel electrophoresis, as well as 
DNA-seq (JMC200-3-4 and SMC60-2-5) and Southern blot analysis [Sor125(55) and Sor1210(60)]2,12,13.

Gene expression analyses.  We analyzed gene expression genome-wide in the three additional mutants 
described above by RNA-seq (Materials and Methods), to determine if a common subsets of genes were differ-
entially regulated in mutants compared to parental strains (see Table 1) in association with monosomic Ch5. 
Analysis of RNA-seq data using CuffDiff2 (at FDR < 0.05) identified 392, 21, and 394 genes as differentially 
expressed in JMC200-3-4, SMC60-2-5, and Sor1210(60), respectively (Table 2), as compared to their parental 
strains. A total of five differentially expressed genes were in common across all three mutants (Table 2). Out of 
the five, three were on Ch5, with CHT2 (orf19.3895) and TRR1 (orf19.4290) downregulated, while expression of 
CAG1 (orf19.4015) was increased in the mutants. Two other genes, FAR1 (orf19.7105), found on Ch7, and CEK2 
(orf19.460), on ChR, were both upregulated. Expression changes noted for CAG1, FAR1, and CEK2 that are 
involved in mating were as expected, as Ch5 monosomy carrying MTL (Mating Type Like) locus contributes to 
mating competence. Furthermore, downregulation of CHT2 was previously reported on the monosomic Ch5 in 
various strains6,9. Applying a similar stringent threshold on the expression array data for Sor125(55) which con-
tains a monosomic Ch5 and a trisomic Ch4/7b did not identify any differentially expressed genes (Table 2). CHT2 
and TRR1 were also downregulated and CAG1 was upregulated in Sor125(55), but these genes did not pass our 

Strain Description Phenotype Source

SC5314 Reference sequencing strain, normal diploid CasS Sou−a A.D. Johnson laboratory

SMC60-2-5 Same as SC5314, but Ch5 monosomy, MTLa. Caspofungin-generated CasR Sou+ ref.6

JRCT1 Clinical isolate, normal diploid CasS Sou− ref.6

JMC200-3-4 Same as JRCT1, but Ch5 monosomy, MTLα. Caspofungin-generated CasR Sou+ ref.6

3153 A Laboratory strain, normal diploid CasS Sou− ref.23

Sor125(55) a.k.a. Sor55 Same as 3153 A, but Ch5 monosomy, MTLα, and Ch4/7b trisomy. Sorbose-generated CasS Sou+ refs2,6,12

Sor1210(60) a.k.a. Sor60 Same as 3153 A, but Ch5 monosomy, MTLa. Sorbose-generated CasR Sou+ refs6,24

Table 1.  C. albicans strains used in this study. aThe majority of C. albicans strains do not utilize sorbose. 
However, monosomy of Ch5 confers sorbose utilization or the Sou+ phenotype. Caspofungin susceptibility of 
JMC200-3-4 or SMC60-2-5 was determined with spot assay and with standard broth microdilution method13, 
while Sor1210(60) or Sor125(55) were spot assayed6. Note that Sor125(55) is more susceptible to caspofungin 
than its parental strain 3153 A6.
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stringent threshold of FDR < 0.05. No differences were detected with the aforementioned approach despite the 
fact that previous analyses documented significant differences in expression of a fraction of genes in Sor125(55) 
compared to its parental strain12. This result suggests that at this extreme level of stringency differences observed 
in gene expression in mutants vs parentals detailed above are at very high level of confidence.

As the stringent analysis employed above identified no differentially expressed genes in Sor125(55), we then 
further assessed expression differences at a reduced threshold by CuffDiff2 at unadjusted p < 0.05. As presented 
in Table 2, this approach revealed a total of 154 differentially expressed genes (112 downregulated and 42 upreg-
ulated) in common across the three mutants with a Ch5 monosomy only, as well as a total of 15 genes (13 down-
regulated and 2 upregulated) in common across all four mutants. By this approach, TRR1 and CAG1 were among 
the 15 genes common for all mutants.

We, then, used semi-quantitative RT PCR to validate expression changes of CHT2, TRR1, and CAG1 in 
Sor125(55), as well as in two other representative mutants (Table 3). According to this method, CHT2 and TRR1 
were consistently downregulated, while CAG1 was upregulated in all mutants. These results are consistent with 
previously reported analyses of CHT2 expression in SMC60-2-5, and Sor125(55)6,13, as well as for CAG1 in 
Sor125(55) and Sor1210(60)12.

Based on CGD Gene Ontology Slim Mapper (Candida GO-slim Process), 9 out of 15 genes (60%) were iden-
tified as involved in regulation of biological processes, 6 (40%) are involved in filamentous growth, while 5 genes 
are involved in each of the following processes: response to chemical, transport, organelle organization, and 
conjugation.

In order to present statistically significant (unadjusted p < 0.05) changes in gene expression in mutants com-
pared to parental strains we plotted the fraction (%) of genes exhibiting similar changes in expression as a func-
tion of expression levels. Mutant/parental expression ratios of differentially expressed genes were grouped into 
bins spanning ranges from 0.4 to ≥2.8 and the proportions of genes falling within each bin were calculated. 
Expression ratios for genes from normal diploid chromosomes, monosomic Ch5, and the trisomic Ch4/7b are 
presented separately (Fig. 1). The binned levels of expression also represent multiples of the expected haploid 
expression level. Thus, for a normal, diploid chromosome, ratios of approximately 0.8, 1.0, and 1.2 (2×, see Fig. 1) 
cover the range of approximately equivalent gene expression between mutant and parent strains. However, for a 
monosomic chromosome, ratios of 0.8, 1.0, and 1.2 represent a 2-fold upregulation to the parental diploid level on 
a per-gene basis, as the expected ratio based on the haploid gene dose (and equivalent expression on a per-gene 
basis) would fall into the 0.4 to 0.6 bins (1×, see Fig. 1). For genes on the triploid Ch4/7b, ratios of 0.8, 1.0, and 
1.2 would represent downregulation to the diploid level, while the expected triploid level would be 1.4 to 1.6 bins 
(3×, see Fig. 1).

For each mutant strain, ratios of mutant to parental gene expression for genes on disomic chromosomes 
exhibit both increases and decreases in expression genome wide (Fig. 1A–D, blue lines). A similar analysis of gene 
expression on monosomic Ch5 in the mutant strains JMC200-3-4, SMC60-2-5 and Sor1210(60) (Fig. 1A–C, red 
lines) shows a peak in the 0.4–0.6 range indicating that, in general, Ch5 monosomy results in proportionately 
lower expression of Ch5-linked genes in these mutants compared to their parental strains. In contrast, although 
Ch5 genes show an overall expression decrease in Sor125(55), the majority of genes exhibit ratios of 0.6–0.8, 
which approach the disomic level of expression (Fig. 1D, red line). This suggests, as previously reported12 that a 
robust and broad mechanism compensating for gene dose on the monosomic Ch5 is operative in the Sor125(55) 
mutant compared to the three new mutants strains harboring only Ch5 monosomy, which showed a much lower 
total fractions of apparently compensated genes. Note that the latter are not shown in Fig. 1, which shows only 
differentially expressed genes (but see below the sub-section “Genes on the monosomic Ch5 and trisomic Ch4/7b 
that are expressed at the disomic level”). Thus there is more similarity in expression changes among the mutants 

Test Threshold

Ch5 monosomy Common in 
3 Mutants

Ch5 monosomy  
Ch4/7b trisomy Common in 

4 MutantsJMC200-3-4 SMC60-2-5 Sor1210(60) Sor125(55)*
CuffDiff2 FDR < 0.05 392 21 394 5 0 0

CuffDiff2 p < 0.05 1257 577 1204 154 191 15

Table 2.  Number of differentially expressed genes and genes in common in mutants JMC200-3-4, SMC60-2-5, 
Sor1210(60) and Sor125(55). *Differential expression was assessed by t test.

Gene SMC60-2-5/SC5314 Sor1210(60)/3153A Sor125(55)/3153A

CHT2 0.07 ± 0.03 0.63 ± 0.03 0.61 ± 0.07

TRR1 0.62 ± 0.09 0.63 ± 0.03 0.61 ± 0.07

CAG1 2.10 ± 0.15 2.39 ± 0.08 2.33 ± 0.08

Table 3.  Expression changea of CHT2, CAG1 or TRR1 carried on the monosomic Ch5. vs normal disomic Ch5 
of the corresponding parental strain, as determined with semi-quantitative RT-PCR from three independent 
RNA preparationsb. aExpression change was determined as averaged ratio mutant/parent ± SD. bThe differences 
in expression between mutants and parentals, SC5314 or 3153A, were evaluated with Student’s t test showing all 
p-values < 0.05.
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JMC200–3–4, SMC60–2–5 and Sor1210(60), which harbor only monosomic Ch5, but lack the trisomic Ch4/7b 
found in Sor125(55).

In addition, an examination of expression of genes present on the trisomic Ch4/7b in Sor125(55) showed 
the majority had expression ratios ranging from 1.4 to 2.2, indicating expression at trisomic or higher levels, as 
expected from gene dose. Remaining genes on Ch4/7b were expressed at monosomic or disomic levels.

Gene expression analyses on the monosomic Ch5s and trisomic Ch4/7b.  We next attempted to 
identify genes on chromosomes exhibiting aneuploidy by comparing expression of individual genes on mono-
somic Ch5s or trisomic Ch4/7b among the mutant strains. Application of CuffDiff2 (at FDR < 0.05) identified 
125, 7, and 108 Ch5 genes as differentially expressed, respectively, for the mutants JMC200–3–4, SMC60-2-5, and 
Sor1210(60), which harbor only Ch5 monosomy (Table 4). As mentioned above for the global analysis, this very 
stringent approach did not reveal differentially expressed genes on monosomic Ch5 in Sor125(55).

Figure 1.  Distribution of differentially expressed genes present on monosomic Ch5 or trisomic Ch4/7b 
genes over expression levels. (A,B, and C) Distribution for monosomic Ch5 genes that were significantly 
different (CuffDiff2 at p < 0.05) in mutant strains [JMC200-3-4, SMC60-2-5, and Sor1210(60), as indicated]. 
(D) Distributions for monosomic Ch5 genes and the trisomic Ch4/7b genes that were significantly different 
(CuffDiff2 at p < 0.05) in Sor125(55). X-axis represents expression levels of the genes in mutants compared to 
parental strains and Y-axis represents the frequency of genes. Red lines represent genes on monosomic Ch5, 
blue lines represent genes on disomic chromosomes, and green line (in D) represents genes on the trisomic 
Ch4/7b. For RNA-seq analyzed mutants JMC200-3-4, SMC60-2-5, and Sor1210(60), for each of the significantly 
different gene, we derived the ratio of the level of expression averaged from three independent reads from each 
mutant strain compared to that observed in the corresponding parental strain. For expression array analyzed 
Sor125(55) we derived three independent sets of ratios for every mutant/parent pair, and plotted the average of 
the three bin sets (see also Materials and Methods). Note that genes exhibiting no significant expression changes 
are excluded from these graphs, including transcriptionally compensated genes on aneuploid chromosomes.
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This analysis identified three Ch5 genes that were similarly regulated among three mutants harboring only 
Ch5 monosomy, with downregulation of TRR1 (~4 fold) and CHT2 (~5 fold), as well as ~10–15 fold upregulation 
of CAG1, consistent with previous results (see “Gene expression analyses”). Even though these three genes did 
not meet the statistical threshold of being identified as differentially expressed in Sor125(55) from the expression 
array data, they show similar changes in magnitude and direction, and differential regulation was in fact subse-
quently validated by RT-PCR (Table 3).

We also identified differentially expressed genes by looking at all genes that were significantly different at a 
p-value <0.05. As presented in Table 4, this approach revealed a total of 119 genes differentially expressed in com-
mon across the three mutants harboring a single Ch5, out of a total of 521 Ch5 genes (23%). A total of 12 genes 
(3%) were identified with similar expression patters in common across all four mutants (including Sor125(55)), 
with 11 genes downregulated, including TRR1 and CHT2, and one, CAG1, consistently upregulated in all four 
mutants.

When broken down by directionality of change, we found the highest overlap among downregulated genes. 
For example, 132 of a total of 369 (36%) Ch5 genes were downregulated in common between the mutants 
JMC200-3-4 and SMC60-2-5, which were derived from two different genetic backgrounds by exposure to caspo-
fungin, and harbor monosomic Ch5 (Fig. 2A). Further, we found an overlap of 106 (27%) genes downregulated 
in common when the mutant Sor1210(60) was included in this comparison (Fig. 2A). Note that this latter mutant 
was derived from still another genetic background by exposure to sorbose but also harbors a monosomic Ch5. 
In contrast, we found very few upregulated Ch5-linked genes that were similarly differentially expressed across 
the mutants. Two genes, CAG1 and PGA37 (orf19.3923), are upregulated in both of the mutants generated by 
caspofungin exposure (JMC200-3-4 and SMC60-2-5) and only CAG1 was also similarly upregulated in both the 
sorbose-generated mutants Sor1210(60) and Sor125(55) (Fig. 2B).

Of the 106 genes downregulated in common across the JMC200-3-4, SMC60-2-5 and Sor1210(60) mutants, 
the largest fractions play a role in the regulation of biological processes (32%), organelle organization (23%), and 
in RNA metabolic process (21%). Other functions include genes involved in response to stress (19%), filamentous 
growth (16%), cell-cycle (14%), transport (14%), response to chemicals (13%), and translation (12%), based on 
CGD Gene Ontology Slim Mapper (Candida GO-Slim: Process). Finally, 19% are involved in unknown biological 
processes.

Using CuffDiff2 (at p < 0.05) we identified a total of 51 genes differentially expressed out of 402 genes on the 
trisomic Ch4/7b. Almost all of the differentially expressed genes, 45 out of 51 or 90%, were upregulated (mutant 
to parent ratio of 1.4 or greater) consistent with the increased chromosome ploidy, while a small fraction of 6 
genes, 10%, were downregulated (mutant to parent ratio of 0.8 or less).

As can be seen from Tables 2 and 4, inclusion of the Sor125(55) mutant consistently diminished the number 
of differentially expressed genes regulated in common between all mutants. This may be attributed to the fact that 
Sor125(55) not only harbors a monosomic Ch5 but, unlike the other mutants, has the additional aneuploid chro-
mosome 4/7b and shows a much more robust transcriptional compensation of the monosomic (and trisomic) 
genes to the disomic level (Table 5). Interestingly, Sor125(55) is more susceptible to caspofungin than the parental 
strain (Table 1).

We also note that a substantial amount of the monosomic Ch5 or trisomic Ch4/7b genes in each mutant 
retained expression at the disomic level, i.e. were upregulated or downregulated, correspondingly, to compensate 
for gene dose. These genes are analyzed separately, below.

PCR-based validation of expression changes on the trisomic Ch4/7b.  We have previously validated 
the expression levels of many genes on the monosomic Ch5 in Sor125(55) using s.-q. RT PCR or Northern blot 
analyses12. Here we validated expression of four selected genes on the trisomic Ch4/7b that are expressed at either 
the trisomic or disomic levels, by s.-q. RT PCR: orf19.7096 and orf19.3833, that exhibit mutant/parent ratios of 
1.1 (disomic level); and GLN4 (orf19.7064), and ERG26 (orf19.2909) that exhibit mutant/parent ratios of 1.5 
(trisomic level) as determined by arrays (see Figure. S1 for an example of s.-q. RT PCR gel). We confirmed the 
expression ratios in three independent experiments. Orf19.7096 and orf19.3833 showed, respectively, averaged 
ratios of 0.95 and 0.97, while GLN4 and ERG26 showed, respectively, averaged ratios of 1.6 and 1.5, confirming 
results from the expression array determinations.

Genes on the monosomic Ch5 and trisomic Ch4/7b that are expressed at the disomic level.  
Genes expressed at the disomic level on the aneuploid chromosomes are of special interest, as this implies 
transcriptional compensation for the altered gene dose in aneuploid cells, presumably due to strict cellular 
requirements. We identified monosomic Ch5 or trisomic Ch4/7b genes in common among the mutants that are 

Test Threshold

Ch5 Monosomy Common in 
3 Mutants

Ch5 monosomy  
Ch4/7b trisomy Common in 

4 MutantsJMC200-3-4 SMC60-2-5 Sor1210(60) Sor125(55)*
CuffDiff2 FDR < 0.05 125 7 108 3 0 0

CuffDiff2 p < 0.05 309 198 252 119 38 12

Table 4.  Number of differentially expressed genes and genes in common on the monosomic Ch5 in different 
mutants, JMC200-3-4, SMC60-2-5, Sor1210(60), and Sor125(55). *Differential expression was assessed by 
Student’s t test. Note that a total of 521 genes are present on Ch5 in the RNA-Seq data for JMC200-3-4, SMC60-
2-5 and Sor1210(60) and 499 genes are present on Ch5 in the expression array data for Sor125(55).
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transcriptionally compensated to the diploid level of expression, which we took as mutant/parent gene ratios 
from 0.8 to 1.2. A total of 346 genes on monosomic Ch5 fit that criterion in at least one of the mutant strains: 
49 (9.4%) in JMC200-3-4; 71 (13.6%) in SMC60-2-5; 85 (16.3%) in Sor1210(60); and 151 (31.5%) in Sor125(55) 
(Table 5). Pairwise comparisons of mutants revealed 6 genes regulated in common in both of the mutants gener-
ated by caspofungin exposure, JMC200-3-4 and SMC60-2-5; 13 genes in JMC200-3-4 and Sor1210(60); 16 genes 
in JMC200-3-4 and Sor125(55); 32 genes in SMC60-2-5 and Sor1210(60); 34 genes in SMC60-2-5 and Sor125 
(55); and 41 genes in both of the mutants generated by sorbose exposure Sor1210(60) and Sor125(55) that are also 
of the same genetic background (Fig. 3).

Of six genes [CUP1 (orf19.3940.1); SNM1 (orf19.1927); MES1 (orf19.3955); SGE1 (orf19.1942); and unchar-
acterized orf19.577, and orf19.1121) shared between JMC200-3-4 and SMC60-2-5, three (SGE1, CUP1, and 
orf19.1121) were similarly expressed at diploid level in the Sor1210(60) (Table 5). Among those only orf19.1121 
was also expressed at diploid level in the sorbose-generated Sor125(55) that, unlike other mutants, harbors both 
aneuploid Ch5 and Ch4/7b (Table 5). When compared across all four mutant strains, we identified only one gene 
in common expressed at the diploid level, among the ~500 genes present on Ch5 (p-value of 0.03 by hyperge-
ometric test of overlap). Likewise, we find three genes similarly expressed at the disomic level across the three 
additional mutants (significant by hypergeometric test). Thus compensation of these genes appears to be signifi-
cant for some biological process, and their role will be the subject of future studies.

A total of 102 (25%) out of 402 trisomic Ch4/7b genes, were downregulated to the disomic level, supporting 
the idea that dosage compensation in Sor125(55) is operative not only on the aneuploid chromosome of the 
type 2n−1 (Ch5), but also on the type 2n + 1 (Ch4/7b). (For the PCR-based validation of expression changes of 
the representative trisomic genes see above). Based on CGD Gene Ontology Slim Mapper (Candida GO-slim 
Process), 28% of genes were involved in organelle organization, 26% were involved in regulation of biological 
processes, 23% were involved in transport, while 26% were associated with unknown biological processes, among 
others.

Comparison of genes expressed at the trisomic level on either normal Ch4 and Ch7 or trisomic 
Ch4/7b.  Among the mutants we have analyzed, Sor125(55) is unique in possessing the hybrid duplicated 
Ch4/7b. We were therefore interested in the identities of Ch4- and Ch7-linked genes in mutants harboring nor-
mal, disomic Ch4 and Ch7 that exhibit upregulation to the trisomic level observed in Sor125(55), as it is possible 

Figure 2.  Venn diagrams showing 369 genes that were differentially expressed by CuffDiff2 at p < 0.05 on the 
monosomic Ch5 in a total of three caspofungin-tolerant mutants JMC200-3-4, SMC60-2-5, and Sor1210(60). 
Numbers in intersections of the circles represent the number of shared genes, while the number in the 
larger part of the circle represents the genes unique to that particular mutant. (A) Downregulated genes. (B) 
Upregulated genes.

Ch5 monosomy Common in 
3 Mutants

Ch5 monosomy  
Ch4/7b trisomy Common in 

4 MutantsJMC200-3-4 SMC60-2-5 Sor1210(60) Sor125(55)

Ch5 49 71 85 3 151 1

Ch4/7b 102

Table 5.  Number of genes expressed at the disomic level on the monosomic Ch5 or the trisomic Ch4/7b in 
mutants JMC200-3-4, SMC60-2-5, Sor1210(60), and Sor125(55) and number of genes in common, as indicated.
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that some of these genes may contribute to the formation of the monosomic Ch5. We first identified 131 genes 
on trisomic Ch4/7b in Sor125(55) that are expressed to the fully triploid or higher level of expression, defined as 
mutant/parent gene ratios of 1.4 or higher (Table 6). We then similarly identified genes in the mutants JMC200-3-
4, Sor1210(60) and SMC60-2-5 that are upregulated to the trisomic or higher levels on disomic Ch4 or Ch7 [94 in 
JMC200-3-4, 108 in Sor1210(60) and 128 in SMC60-2-5], with a total of 12 (4%) genes [orf19.3140.1, orf19.741, 
orf19.2905, RHD3 (orf19.5305), orf19.3108, ZRT1 (orf19.3112), orf19.3827, orf19.3806, HOS1 (orf19.4411), 
orf19.1247, RPT5 (orf19.3123), orf19.1277] being regulated in common across all four mutant strains, suggesting 
that at least a subset of these genes are involved in accommodating the monosomic Ch5 condition (Table 6). 
Moreover, a total of 35 genes were upregulated in common between JMC200-3-4 and SMC60-2-5, while 45 genes 
were similarly in common between Sor1210(60) and Sor125(55).

To determine the significance of the 12 commonly upregulated genes, we performed a virtual experiment. 
Mutant/parent expression ratios were decoupled from the genes themselves and randomly assigned to the 
Ch4/7b-linked genes to generate shuffled datasets; this generated a new, random distribution that still mimicked 
the overall distributions observed in the mutant strains. We then determined the intersection of upregulated 
genes in 1 × 10e6 trials of these shuffled datasets. The simulation comparing four mutants produced median value 
of 4 with p-value = 0.029764 cutoff at 8. The 12 commonly upregulated genes gave a p-value of less than 0.01, well 
below the significance threshold of 0.05. This suggests that the number of upregulated genes we observed to be 
common among the mutant strains we have analyzed is highly significant, thus, indicating a specific mechanism 
for upregulation of those genes in different mutants.

Expression of Ch5-linked genes previously identified as responding to caspofungin exposure.  Ten 
Ch5-linked genes have been previously reported to change their expression after exposure to caspofungin14,15. These 
include ECM331 (orf19.4255) and ZCF14 (orf19.2647), that are induced, as well as SCW11 (orf19.3893), CHT2, 
FAS1 (orf19.979), FET33 (orf19.943), GIT3 (orf19.1979), MIG1 (orf19.4318), CCC2 (orf19.4328), and HAM1 
(orf19.1108) (Table S2) that are repressed. We examined expression of these genes in the caspofungin-tolerant 
mutants JMC200-3-4, SMC60-2-5, and Sor1210(60) (Table 1). The Sor125(55) mutant, in contrast, exhibits 
increased susceptibility to caspofungin (Table 1), and so we also examined gene expression in this mutant in order 
to compare the expression of genes responding to caspofungin exposure between resistant and susceptible mutants.

Of the induced genes, in our expression profiles of caspofungin-tolerant mutants JMC200-3-4, SMC60-2-5, 
and Sor1210(60), ECM331 is expressed at diploid or close to diploid level in two mutants and is decreased more 
than twofold in another mutant. Expression of ZCF14 diminished twofold or more in all three mutants. It appears 
that the pattern of ECM331 and ZCF14 changes is rather mixed or inconsistent with literature requiring more 
genes of this class to be analyzed.

Figure 3.  Venn diagrams showing genes that were expressed at disomic level on the monosomic Ch5 in all 
four mutants JMC200-3-4, SMC60-2-5, Sor1210(60), and Sor125(55). Numbers in intersections of the circles 
represent the number of shared genes, while the number in the larger part of the circle represents the genes 
unique to that particular mutant.

Ch5 Monosomy Common in 
3 Mutants

Ch5 monosomy  
Ch4/7b trisomy Common in 

4 MutantsJMC200-3-4 SMC60-2-5 Sor1210(60) Sor125(55)

Ch4/7b 131

Ch4 & Ch7* 94 128 108 27 12

Table 6.  Number of genes expressed at the trisomic level or higher on the trisomic Ch4/7b in Sor125(55) and 
on the disomic Ch4 or Ch7 in JMC200-3-4, SMC60-2-5, and Sor1210(60). *Disomic genes that are expressed at 
the trisomic level or higher in JMC200-3-4, SMC60-2-5, and Sor1210(60) out of a total of 402 genes residing on 
the trisomic Ch4/7b.
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Of the 8 genes reported to be repressed in response to caspofungin, 6 showed downregulation in all three of 
our caspofungin-tolerant mutants. The remaining two genes were expressed at the disomic or close to the disomic 
level. Thus, overall, there was a strong tendency to downregulation. In Sor125(55), in contrast, those genes had 
mixed expression from more than two-fold downregulation to full or close to full compensation.

Expression of essential genes.  A computer search of the CGD revealed a total of 15 essential genes on 
Ch5 and 11 on Ch4/7b (Table S3). Inspection of the expression profiles among all mutant strains indicated that 
the essential genes on the monosomic Ch5 were predominantly downregulated with 40 of the 64 total cases 
expressed at monosomic expression levels or lower. In only 11 cases were essential genes upregulated to an inter-
mediate level, mutant/parent ratio of 0.7–0.8, and in only 9 cases to the full diploid level (in 4 cases there was 
no data). This reflects that expression of the majority of essential genes on Ch5 tends to follow the ploidy of the 
chromosome. Of the 11 essential genes on the trisomic Ch4/7b in Sor125(55), 2 genes were expressed at the 
triploid level and 2 other genes at tetraploid level, whereas 4 genes were expressed at the diploid level and 2 genes 
expressed at an intermediate level between haploid and diploid levels (in 1 case there was no data). The data do 
not indicate that Ch4/7b essential genes are preferentially up- or downregulated in response to aneuploidy.

Expression changes analyzed by chromosomal position on Ch5 and Ch4/7b.  We asked whether 
changes in expression from a parental to a mutant strain are related to chromosomal position (Figure S2). We 
chose a representative mutant carrying a monosomic Ch5, JMC200-3-4, and grouped Ch5-linked genes in this 
mutant according to their mutant/parent expression ratios to define three classes: (1) genes with ratios consist-
ent with change in ploidy (twofold downregulation); (2) genes with ratios indicating expression at the disomic 
level; and (3) genes exhibiting overexpression to the trisomic level and above. We similarly defined three classes 
of Ch4/7b-linked genes in the Sor125(55) strain: (1) genes with mutant/parent expression ratios consistent with 
change in ploidy (1.5-fold upregulation); (2) genes exhibiting expression at the disomic level; and (3) genes exhib-
iting downregulation to the monosomic level. In the graphical representations (Figure S2), clustering of genes 
with similar expression changes on aneuploid chromosomes is not evident. Similarly, no clustering of twofold 
or more upregulated or downregulated genes was previously found on the monosomic Ch5 in Sor125(55)12. The 
data therefore indicate that up- or down-regulation of gene regulation on a monosomic Ch5 is not regulated at a 
locus- or domain-wide level, but suggests instead a gene-by-gene mechanism.

Evaluation of similarities in regulation on different monosomic Ch5s.  In order to better illustrate 
the similarities/differences of the expression of genes on different Ch5s, we performed comparison of expression 
ratios mutant/parent for each Ch5 gene between pairs of mutants. Expression ratios of every gene in two mutants 
were plotted against each other on the abscissa or ordinate using gnuplot software (Figure S3A–F). We found, as 
expected, that most of clustering occurs for downregulated genes and there is more similarities in the pairwise 
comparisons of three new mutants, i.e., not involving Sor125(55) (Figure S3A–C). Those scatter plots also had 
higher correlation coefficient R2: 0.825; 0.533, and 0.590, respectively. However, despite lower correlation coef-
ficients in pairwise comparisons involving Sor125(55) (Figure S3D–F), there was still much clustering of genes 
pointing to similarities in the control of genes on different monosomic Ch5s.

Discussion
We have previously analyzed gene expression from a monosomic Ch5 in the C. albicans mutant Sor125(55) and 
found that the monosomy condition controls many genes directly by downregulating them approximately two-
fold, but small number of genes are excessively upregulated despite the loss of one copy of Ch5. Interestingly, 
approximately 30% of genes across this chromosome were upregulated to the disomic level suggesting a dosage 
compensation mechanism is operative in this strain that is required for continued growth2. In addition, evidence 
for a transcriptional dosage compensation on the monosomic Ch5 is supported by the finding of a significant 
increase in the acetylation of histone H4 exclusively on Ch5 of Sor125(55)16. Here, in order to determine if mech-
anisms of transcriptional control that operate alongside inducible aneuploidy in C. albicans are more general, we 
have used a high stringency threshold to analyze transcription from a hybrid Ch4/7b that has been duplicated 
in Sor125(55), resulting in trisomy of some Ch4- and Ch7-linked genes that occur on this hybrid chromosome2. 
We found that the same principles of transcriptional control that operate on the monosomic Ch5 also operate on 
the trisomic chromosome: many Ch4/7b genes became upregulated accordingly to the increased chromosome 
ploidy, while a significant fraction (25%) of genes became downregulated to the disomic level, thus, implying 
compensation for the gene dose. If genes expressed at the disomic level are truly compensated for the dose, the 
corresponding hypothetical mechanisms operating at Ch5 or Ch4/7b have to be distinct, working in an opposing 
fashion to upregulate or downregulate genes, respectively.

To further investigate regulation on aneuploid chromosomes in C. albicans, we have analyzed gene expression 
from three additional mutant strains harboring monosomic Ch5s that independently arose from different genetic 
backgrounds. Similarly to the aneuploid chromosomes of Sor125(55), the majority of genes on the new mono-
somic Ch5s were expressed commensurately with the decrease of gene dose, i.e., were downregulated, while a 
second group of genes (9.4% to 16.3%) were expressed at the disomic level and thus were controlled via a distinct 
mechanism. The fraction of genes expressed at the disomic level in the new three strains analyzed in the current 
work was somewhat less than the 31.5% of genes elevated to the disomic level in the previously analyzed strain 
Sor125(55)12, suggesting that a more generalized compensation may be operative in the latter. It is possible that 
the additional aneuploid Ch4/7b enhances dosage compensation on Ch5, as approximately half as many genes 
(16.3%) are expressed at the disomic level in Sor1210(60), which is derived from the same parental strain as 
Sor125(55), but does not harbor a duplication of Ch4/7b or any other aneuploidy.
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As presented above, there is a relatively large number of Ch5 genes expressed at the disomic level in each of 
the individual mutant strains. However, only one gene, of unknown function, was found to be common among 
all mutants and only three genes were common in three new mutants when applying a very stringent analysis. 
Both these overlaps were significant by hypergeometric test of commonalities. When examined by pairwise com-
parisons for all combinations of mutants, the number of genes regulated in common was larger. We found six 
among the pair of caspofungin-derived mutants (JMC200-3-4 and SMC60-2-5), which have different genetic 
backgrounds and 41 for the pair of sorbose-derived mutants with the same genetic background [Sor1210(60) 
and Sor125(55)]. These analyses suggest a significant role of the genetic make-up and/or of the toxic substance 
to which mutants became adapted and that all mutants utilize a similar mechanism of transcriptional control 
associated with chromosome aneuploidy.

Among the three new mutants [JMC200-3-4, SMC60-2-5 and Sor1210(60)], which harbor only Ch5 mon-
osomy, we observed a degree of similarity in expression changes, be it either for genes across all chromosomes 
(five differentially expressed genes in common), or only restricted for genes located on Ch5 (three differentially 
expressed genes in common). The results of the differential expression analysis from the RNA-seq data for these 
three mutants were not as closely matched to the Sor125(55) mutant, which may be attributed to multiple factors, 
including the difference in platform used for expression profiling. Sor125(55) expression profiling data was gen-
erated on microarrays which are limited to detecting transcripts that correspond to existing genomic sequence 
information, while RNA-seq is capable of interrogating both known transcripts and exploring new ones, and as 
such is better suited for discovery-based studies. In addition, RNA-seq has the ability to quantify a large dynamic 
range of expression levels, thereby enhancing the gene expression changes in the mutant strains. This may explain 
the fact that while we observed multiple genes showing consistent differential expression changes at high level 
of stringency in the three strains from RNA-seq data, we did not see changes in the microarray data at the same 
level of stringency.

We find that some genes on the normal disomic Ch4 or Ch7 in the three new mutants are upregulated to the 
trisomic and higher levels due to an unknown mechanism, and, importantly, 12 of those genes are upregulated in 
common among three new mutants and to levels commensurate to that within the Sor125(55) mutant harboring 
the trisomic Ch4/7b. An exciting possibility is that increased expression of these 12 genes is important for the for-
mation and maintenance of the monosomic Ch5. It is unlikely that these 12 common genes are involved in adap-
tation to caspofungin, as Sor125(55) is more susceptible to caspofungin than its parental strain, unlike the three 
other mutants which exhibit decreased caspofungin susceptibility6. CGD Gene Ontology Slim Mapper analysis of 
these 12 genes did not identify any known biological processes or molecular functions, and hence identification 
of the relevant biological functions will require additional genetic studies.

In summary, various C. albicans mutants analyzed here showed similarities in transcriptional control on aneu-
ploid chromosomes of either of two types, 2n + 1 (Ch4/7b) or 2n − 1 (Ch5). We show that a subset of genes on the 
monosomic Ch5 are similarly differentially regulated, suggesting key functions in either maintaining aneuploidy 
or adaptation to growth conditions. This is despite the mutants having different genetic backgrounds and being 
derived by adaptation to two different toxins, caspofungin or sorbose. We also obtained evidence that a substan-
tial number of genes is expressed at the disomic level from aneuploid chromosomes, implying two distinct dosage 
compensation mechanisms operating on monosomic or trisomic chromosomes. We also obtained evidence for 
an additional mechanism operating in concert on normal disomic chromosomes that upregulates genes in the 
mutants. These hypothetical mechanisms and their role in establishing aneuploid states will be addressed in 
future studies.

Materials and Methods
Strains, media, and primers.  Parental strains, their aneuploid mutants used in this study, as well as rele-
vant phenotypes are described in Table 1.

Sorbitol medium was prepared by substituting glucose for 2% sorbitol in synthetic dextrose (SD) medium17. 
Cells were routinely grown at 37 °C.

Strains were stored at approximately −70 °C in 25% glycerol in order to interrupt cellular metabolism and to 
prevent induction and propagation of genetic instability. Care was taken to grow and handle strains with neces-
sary precautions to prevent undesirable chromosome instability, as previously described1,12,18.

Genes and primers used in this study are listed in Table S1 in the Supplemental material.

RNA-sequencing and analysis.  For the determination of expression levels, we standardized the growth 
of C. albicans cells. Petri dishes with synthetic medium in which glucose was substituted for sorbitol were seeded 
with ~3000 colony forming units per plate and incubated until young colonies appeared that contained ~105 cells/
colony. Sorbitol plates were used to grow batches of independent cultures for each strain. Total RNA was prepared 
from three independent batches for each strain using the YeaStarTM RNA kit (Zymo Research, Irvine, CA) per 
manufacturer’s recommendations. RNA concentration was determined with the NanoDrop 1000 spectropho-
tometer (NanoDrop, Wilmington, DE) and RNA quality assessed with the Agilent Bioanalyzer (Agilent, Santa 
Clara, CA). The TruSeq RNA Sample Preparation Kit V2 (Illumina, San Diego, CA) was used for next generation 
sequencing library construction per manufacturer’s protocols. Briefly, mRNA was purified from 100 ng total RNA 
obtained independently from the three replicates of each strain, with oligo-dT magnetic beads and fragmented. 
First-strand cDNA synthesis was performed with random hexamer priming followed by second-strand cDNA 
synthesis. End repair and 3′ adenylation was then performed on the double stranded cDNA. Illumina adaptors 
were ligated to both ends of the cDNA, purified by gel electrophoresis and amplified with PCR primers specific to 
the adaptor sequences to generate amplicons of approximately 200–500 bp in size. All together eighteen libraries 
were generated (three of parental, and three of mutants) for each strain comparison.
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The amplified libraries were hybridized to the Illumina single end flow cell and amplified using the cBot 
(Illumina, San Diego, CA) at a concentration of 8 picomoles per lane. Raw reads generated from the Illumina 
HiSeq. 2500 sequencer were demultiplexed and an average of 18,433,500 single-end 100 bp reads were obtained 
per sample. Quality filtering and adapter removal was performed using Trimmomatic and trimmed/cleaned reads 
are then mapped with Short-read mapping package (SHRiMP)19. FPKMs and fragment counts were scaled using 
the median of the geometric means of fragment counts across all libraries, and differential expression of genes was 
assessed using CuffDiff220 and corrected for multiple testing using False Discovery Rate (FDR) thresholding21.

Expression change was determined for each gene by ratio mutant/parent. For this, we averaged the gene 
expression values from three independent experiments with mutant and divided by the average of this gene 
expression in the respective parental strain from three repeats.

Expression microarrays and analysis.  We used custom-designed “CustomArrayTM 12 K” arrays from 
CombiMatrix Corp. (Mukilteo, WA) containing 11,898 unique probes that covered 6,327 ORFs found in assembly 
19 of the Candida Genome Database (CGD) (http://www.candidagenome.org/)22. Probes were designed to corre-
spond to 5′ and 3′ ends of each ORF. Expression arrays data were obtained from three independent experiments12. 
In this work, ORF annotations and chromosome positions were updated using genome assembly 21 of the CGD, 
resulting in a total of 6,001 genes.

Expression data were analyzed with R scripts, as described previously12. Genomewide differential expres-
sion was assessed using paired t test (two-tailed probabilities) in conjunction FDR based correction for multiple 
testing.

RT-PCR analyses.  Extraction of total RNA, RT-PCR, and s.-q RT-PCR analysis was performed as described 
previously12.

Data Availability
RNA-seq raw data are available at Short Read Archive (SRA), http://www.ncbi.nlm.nih.gov/sra, with the tem-
porary submission ID SRP063348. Expression array raw data are available at Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=) with the accession numbers GSM455127-GSM455132.

Otherwise, all data generated or analyzed during this study are included in this published article (and its 
Supplementary Information files).
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