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Abstract

Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive
systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known
about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural
substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP,
Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking
following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-
spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal
periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were
associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however
the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of
neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a
possible mediator of this process.
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Introduction

Neonatal pain experiences such as hindpaw incision or

inflammation are known to produce developmentally regulated

changes in the nociceptive pathways, and subsequently exagger-

ated responses to future noxious and non-noxious stimuli [1–3].

Both clinical and animal studies have shown that changes in

endogenous pain modulation can also occur as a consequence of

neonatal inflammatory pain [4–6]. Although the effects of

neonatal pain experiences on processing of pain later in life are

well documented, the impact of neonatal exposure to mild stimuli,

such as lipopolysaccharide (LPS), on subsequent inflammatory

pain responses is less well understood.

Exposure to LPS during perinatal life is an established model of

early life immune stress [7–10]. Our laboratory and others have

demonstrated that neonatal LPS exposure alters immune and

neuroendocrine function later in life [11–13]. Interestingly, we

recently demonstrated that neonatal LPS exposure can also affect

inflammatory pain responses, as indicated by enhanced suscepti-

bility to formalin-induced flinching in LPS-challenged preadoles-

cent rats [10]. We have also shown that LPS-induced behavioural

hyperalgesia observed at postnatal day (PND) 22 is accompanied

by increased plasma corticosterone responses and changes in the

intrinsic properties of spinal dorsal horn neurons [10].

The inhibitory descending pathways travelling from the

periaqueductal grey (PAG) via the dorsolateral funiculus (DLF)

to the rostroventromedial medulla (RVM) and the spinal dorsal

horn constitute a major anatomical circuit for the descending

modulation of pain [14,15]. This system becomes fully mature by

the third week of development [16]. The PAG serves key functions

in this inhibitory descending pathway including promoting

analgesia [17–20]. For instance, formalin injection into the

hindpaw of infant and adult rats is associated with Fos expression

in the PAG [21,22]. Further, PAG stimulation or an injection of

morphine prior to formalin injection attenuated formalin-induced

nociception [23]. Anatomically, the PAG is organized into

longitudinal columns, namely dorsal PAG (DPAG), lateral PAG

(LPAG) and ventrolateral PAG (VLPAG) [24]. Whereas electrical,

opiate, or amino acid stimulation of the ventral PAG elicits opioid-

dependent analgesia, electrical or glutamatergic stimulation of the

DPAG or LPAG induces analgesia that is not blocked by opioid

antagonist (e.g. naloxone) [24–27]. One structure that provides
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significant input onto the PAG to mediate antinociception is the

habenula, particularly its lateral subdivision (LHb) [28,29].

Morphological and electrophysiological studies have indicated

that the habenula receives and modulates noxious inputs [30,31].

For example, electrical stimulation or microinjection of morphine

into the habenula induces analgesia in the formalin test [32,33]

and an injection of formalin into the hindpaw of rats is reported to

elicit the expression of Fos-protein within the LHb [34]. Formalin

injections are also associated with increased Fos-protein expression

in stress-sensitive regions, including the paraventricular thalamus

(PVT) [22].

Clearly, early life events are important in shaping the

nociceptive circuitry. We have previously demonstrated that

neonatal LPS exposure exerts developmentally regulated changes

in formalin-induced behaviours, corticosterone levels, and dorsal

horn neuronal properties with pronounced changes observed

particularly at PND 22 [10]. In the present study, we aim to

determine the supra-spinal changes associated with the neonatal

immune challenge in PND 22 rats. Specifically, whether the

increased flinching responses observed in preadolescent rats

treated with LPS as neonates is associated with altered neuronal

activity within specific subregions of the PAG, an essential

substrate for opioid-induced analgesia [35,36]. Our hypothesis is

that exposure to LPS during the first postnatal week, when the

descending inhibitory systems are still functionally immature [16],

will alter the neuronal activity within the PAG and subsequently

alter the behavioural responses to formalin injection at PND 22.

Materials and Methods

Animals and Ethics Statement
Five experimentally naı̈ve female Wistar rats were obtained

from the University of Newcastle Animal House and allowed one

week acclimatisation, after which two males were introduced to

their cages. The males were removed after two weeks and dams

were housed individually in custom designed polycarbonate-

perspex home boxes (43.5 cm628 cm612.5 cm; Mascot Wire

Works, Sydney, Australia). Mating occurred at the University of

Newcastle Psychology vivarium and resulted in a total of 68

offspring, from which a subset of males (n = 13) was selected for

use in this study. A maximum of three pups per litter were assigned

to each group and for each experimental condition; animals were

distributed as evenly as possible from all litters used per treatment

to avoid potential litter effects. Until their allocated testing day,

rats were maintained in a temperature (2161uC) and humidity

(60%) controlled environment, under a 12 h/12 h light-dark cycle

(light on 06:00 h) with food (Rat and Mouse Pellets, Glen Forest,

Western Australia) and water available ad libitum. All experiments

were carried out in accordance with the National Health and

Medical Research Council Australian Code of Practice for the

care and use of animals for scientific practice. All procedures were

reviewed and approved by the University of Newcastle Ethics

committee (Ethics approval no. A-2010-127).

Neonatal Endotoxin Exposure
At PND 3 and 5 (birth considered as PND 1), pups were briefly

removed from their home cages, weighed and administered

intraperitoneally (i.p) with either LPS (from Salmonella enterica,

serotype enteritidis; Sigma-Aldrich, USA, dissolved in 20 ml sterile

pyrogen-free saline, 0.05 mg/kg) or an equivalent volume of sterile

saline (Livingstone International, Australia). All injections were

made between 9:00 am and 10:00 am. This model has been

previously used in our [37,38] and other laboratories [12,39] with

the dosage and timing having been demonstrated to induce a rapid

sustained febrile response, but no mortality.

Formalin Testing Procedure
Unlike traditional tests of nociception such as the tail flick and

hot plate tests which investigate acute pain, the formalin test is a

widely accepted model of persistent pain and more closely

resembles clinical cases of chronic pain [40]. Injection of formalin

into the hindpaw of rodents produces a characteristic biphasic

response of flinching and licking of the injected paw, with an early

phase (0–5 min) and a late phase lasting up to 90 min [41,42].

The formalin solution was prepared using Formaldehyde

(36.5%–38%; Biolab Ltd, Victoria, Australia) and preservative-

free saline (Sodium chloride Injection BP 0.9%, Pfizer, Australia).

At PND 22, all rats (neonatal saline: n = 6; neonatal LPS: n = 7)

underwent a subcutaneous injection of 1.1% formalin into the

plantar surface of the left hindpaw using a 31 G needle (10 ml).

The choice of formalin concentration range, volume and site of

injection was based on our previous work [42]. Rats were tested in

transparent Plexiglas boxes (30 cm (w)630 cm (l)630 cm (h)). A

mirror was mounted 45u beneath the floor to allow for an

unobstructed view of the paws and a camera was mounted to

record the behavioural responses from the reflection of the mirror.

Behavioural recording was done on a DVD recorder for one-hour

post formalin injection. Flinching and licking were scored based on

the method of Wheeler-Aceto and Cowan [43] and was carried

out by a trained experimenter blind to treatment condition of each

animal. The one-hour of behavioural recording was divided into

an early phase (the first 5 min) and a late phase (10 to 60 min)

during which the frequency of flinching (paw lifting or shaking) as

well as the duration licking the injected paw (in seconds) was

scored. PND 22 rats were tested at room temperature and at this

age, an acclimation period was not required as during this period

of development rats are still unable to recognize and interact with

the environment [44].

No saline-injected rats were included in this study since it has

been previously shown that rats subjected to a subcutaneous

injection of saline into the plantar surface of the hindpaw do not

display flinching or licking behaviour when tested during the first

three postnatal weeks and adulthood [45–47]. Prior spinal cord

Fos studies showed that infant rats receiving less than 20 ml saline

demonstrated no Fos labelling [48].

Perfusion, Brain Collection and Immunohistochemistry
Rats were deeply anaesthetized with an overdose of Lethabarb

(2 mg/kg i.p; Virbac, Pty. Ltd, Milperra, Australia) one and a half

hours following the formalin test. This time point was selected as

Fos-protein expression has been shown to peak at 1.5–2 hrs

following stimuli exposure [49,50]. Animals were transcardially

perfused with 150 mls of normal saline followed by 500 mls of 4%

paraformaldehyde (pH 9.5). Brains were removed, postfixed and

cryoprotected (24 hours, at 4uC) in the same fixative solution with

the addition of 15% sucrose. Brains were then stored in 15%

sucrose in 0.1 M phosphate buffer (pH 7.4 at 4uC). Serial coronal

sections of the rostral forebrain (40 mm) and caudal midbrain

(50 mm) were cut on a freezing microtome (Leica SM 2000R,

Leica Biosystems, Germany). A 1-in-4 series of brain sections from

the habenula (lateral and medial sections, bregma 22.16 to 2

3.60) and the PVT (bregma 22.16 to 23.60), and a 1-in-5 series of

the rostral (bregma 27.64), medial (bregma 28.0) and caudal

(bregma 28.3) PAG [51] were processed for immunohistochem-

ical detection of Fos-protein (72 h, 1:10000, rabbit polyclonal,

Santa Cruz Biotechnology, CA, USA) as described previously

[52,53]. Sections were then incubated in a secondary antibody
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biotinylated anti-rabbit (2 hours, 1:300 donkey anti-rabbit, Jackson

ImmunoResearch, PA, USA). Finally, sections were incubated in

diaminobenzodine (DAB) in 2% filtered nickel sulphate (NiSO4)

for 15 minutes before glucose oxidase (0.2 mL per mL of solution)

was added to visualise Fos-protein.

Fos-positive cell counts were determined by creating boundaries

around each brain structure. The VLPAG boundary did not

include the raphe nuclei. After selecting the region of interest, a

thresholding procedure was used for Fos expression. Fos counts

were quantified using MetaMorph Imaging System Software

(Version 7.5; MDS Analytical Technologies) under a 10x

microscopic objective (Olympus CX40).

Statistical Analysis

Data analysis was carried out using the Statistical Package for

the Social Sciences for Windows, version 20 (SPSS). A Linear

Mixed Model (LMM) was applied to analyse the behavioural, and

Fos-protein immunohistochemistry data (For more details about

LMM, see [42]). For behavioural responses, the area under the

curve (AUC) which was the sum of flinching or licking responses

from 10 to 60 min was calculated and analysis was carried out

using an ANCOVA with litter size as a covariate variable. Post-

hoc analyses (two-tailed) were carried out using Least Significant

Differences (LSD) tests. An alpha value of 0.05 was adopted for all

tests.

Results

Formalin Responses in Preadolescent Rats: Neonatal
Immune Challenge Alters Formalin-induced Nociception
in both the Early and Late Phase

The characteristic biphasic response was observed in preado-

lescent rats in both treatment groups in flinching and licking of the

injected paw. However, neonatal LPS-treated rats displayed

higher flinching during the early and late phase. LMM analysis

of flinching responses revealed a significant two way interaction of

Time and Treatment [F(7,11) = 8.02, p,.01] implying that

neonatal LPS treatment altered the inflammatory pain response

in preadolescent rats. Pairwise comparisons revealed that LPS

treated rats displayed significantly higher flinching responses

during the late phase at 20 min post formalin injection when

compared to their matched saline control group (p,.05;

Figure 1A). Pairwise comparisons also revealed that during the

early phase (first 5 min), LPS-treated rats had significantly higher

flinching responses compared to saline (p,.05). Moreover, analysis

of the AUC during the late phase revealed that LPS treated rats

had significantly higher flinching responses compared to the saline

group [F(1,11) = 5.25, p,.05; Figure 1A]. LMM analysis revealed

no significant differences in licking responses between neonatally

saline or LPS-treated rats in both the early and late phase of the

formalin test (Figure 1B).

Formalin-induced Fos-protein Expression in Brain Areas
Involved in Stress and Analgesia

Fos-protein expression in the PAG was examined in the three

main subdivisions (DPAG; LPAG; and VLPAG) and across three

rostrocaudal axes (rostral, medial, and caudal). In the DPAG,

LMM analysis revealed a significant effect of treatment

[F(1,25) = 7.52; p,.05] within the DPAG at the rostral level.

Pairwise comparisons revealed that neonatal saline-treated rats

displayed significantly higher numbers of Fos-positive cells

compared to neonatal LPS-treated rats following formalin

injection (p,.01). No significant differences were found in the

medial and caudal part of the PAG (Figure 2E, Table 1).

No significant differences were found in terms of Fos-positive

nuclei on the ipsilateral versus contralateral side of either the

LPAG or the VLPAG, and therefore these data were combined. In

the LPAG, LMM analysis revealed a strong trend towards

decreased Fos-positive neurons in LPS-treated rats, however this

did not reach significance (p = .062; Figure 2F). In contrast, there

was a significant main effect of treatment on the induction of Fos-

protein in both the rostral and caudal VLPAG [F(1,34) = 5.71; p,

.05; F(1,34) = 8.39; p,.01, respectively]. Pairwise comparisons

Figure 1. Neonatal LPS exposure enhances formalin-induced nociception in preadolescent rats. Time course of flinching (A) and licking
(B) responses following an injection of 1.1% formalin (mean 6 SEM). AUC: the Area Under the Curve.
doi:10.1371/journal.pone.0098382.g001
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revealed that neonatal saline-treated rats exhibited significantly

higher Fos-positive neurons compared to LPS animals in the

rostral (p = .05) and caudal (p,.05) VLPAG (Figure 2G, Table 1).

Bilateral Fos-protein labelling was observed in the LHb and

medial Habenula (MHb). No significant differences were observed

in Fos-like immunoreactivity in the ipsilateral versus contralateral

Table 1. Fos expression in the periaqueductal grey (PAG).

Treatment Axis DPAG LPAG VLPAG

Sal/formalin Rostral 52.0614.5 35.0612.2 106.0633.1

Medial 22.868.3 40.8614.9 64.0619.7

Caudal 16.5610.2 36.269.1 102.2646.3

LPS/formalin Rostral 11.662.4 15.664.6 38.0613.6

Medial 18.366.0 22.067.2 36.8610.6

Caudal 6.663.1 29.264.9 23.269.3

Note: Data are presented as mean number of Fos-positive cells per section 6 SEM.
doi:10.1371/journal.pone.0098382.t001

Figure 2. Fos immunoreactivity in the midbrain periaqueductal grey (PAG) following a neonatal immune challenge and subsequent
inflammatory pain. Representative examples illustrate the distribution of Fos-positive nuclei in the dorsal and ventrolateral PAG (DPAG, VLPAG,
respectively) at the rostral (A & B) and caudal (C & D) axes following formalin injection in preadolescent rats. (E) Quantification of Fos-positive nuclei in
DPAG between neonatal saline and LPS-treated rats. (F) Quantification of Fos-positive nuclei in lateral PAG (LPAG). (G) Quantification of Fos-positive
nuclei in VLPAG. Data are presented as mean 6 SEM. *p,.05; **p,.01. Scale bar = 100 mm.
doi:10.1371/journal.pone.0098382.g002
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sides of formalin injection, and therefore data from both sides were

combined. LMM analysis revealed a significant main effect of

subregion [F(1,18) = 46.17; p,.001] implying that the LHb and

MHb showed different pattern of Fos activation. Pairwise

comparisons indicated that regardless of the neonatal challenge,

significantly greater levels of Fos-protein expression were observed

in the LHb compared to the MHb following formalin injection

(p,.001; Figure 3A & 3B).

The PVT is known to express Fos following formalin injection

into the hindpaw in rats [22]. There was a trend towards increased

levels of Fos immunoreactivity in the PVT in neonatal saline-

treated animals compared to LPS-treated animals, however this

failed to reach significance (p = .175) (Table 2).

Discussion

The current study demonstrates that exposure to an immune

challenge during the neonatal period is accompanied by enhanced

behavioural responses to formalin in preadolescent rats. We

observed increased susceptibility of preadolescent rats to formalin-

induced flinching but not licking behaviours in LPS-treated rats.

This LPS-induced hyperalgesia was associated with distinct

recruitment of supra-spinal structures as indicated by significantly

attenuated Fos-protein expression in the rostral DPAG as well as

rostral and caudal axes of the VLPAG.

Neonatal Exposure to LPS Alters Flinching but not
Licking Responses in Preadolescent Rats

The nociceptive system undergoes fine-tuning and maturation

during the first postnatal weeks of development [54]. While C-

fibers are present within the spinal cord prenatally, they become

functional and respond to noxious stimuli only during the second

postnatal week. For instance, the ability of C-fibers to produce

neurogenic oedema appears only at PND 11–14 [55]. Moreover,

application of mustard oil, a specific C-fibers irritant, to the

hindlimb skin does not induce Fos-protein expression in the spinal

cord until the second week of development [56]. These findings

suggest that the nociceptive circuitry is highly malleable during

early postnatal life. Therefore, exposure to a physiological insult

such as LPS during the first weeks of postnatal life, where the

neurocircuitry underlying nociception undergoes significant plas-

ticity, is likely to interfere with the normal developmental

trajectory of the nociceptive system, leading to altered behavioural

and neuronal responses following exposure to noxious stimuli later

in development.

The current study demonstrated that neonatal LPS exposure

produced increased flinching but not licking during both phases of

the formalin test. These findings are in accordance with our

previous work whereby neonatal LPS exposure was able to alter

flinching but not licking patterns in preadolescent rats [10].

Flinching and licking are mediated by distinct neural pathways.

Whilst the spontaneous rhythmicity of flinching behaviour suggests

this behaviour is spinally modulated, the complex movements

involved in licking behaviour suggest it engages supraspinal

modulation. Indeed, intrathecal injection of Lidocaine into the

lumbar spinal cord prior to formalin injection abolishes flinching

response during the late phase [57]. However, transection of the

spinal cord at the mid-thoracic level has been shown to have no

effect on formalin-induced flinching [57], but completely abolishes

formalin-induced licking [43]. The findings reported in these

animal studies suggest that the generation of flinching and licking

behaviours result from the activation of distinct neural pathways.

Exposure to an immune challenge is thus able to alter either the

spinal or supraspinal circuitry leading to alteration in the intensity

and profile of the biphasic formalin response later in development.

Together, the current findings suggest that neonatal exposure to

LPS enhances the sensitivity of preadolescent rats to inflammatory

noxious stimuli (i.e. hyperalgesia). This is in accordance with a

recent study demonstrating that rats challenged with LPS at PND

14 displayed enhanced mechanical and thermal nociception when

tested in adulthood (8 to 12 weeks old) [58]. In this study a

subsequent exposure to LPS in adulthood failed to alter the

behavioural responses to mechanical and thermal stimuli [58].

These data suggest that a single immune challenge is sufficient to

disrupt nociception later in life. The current findings add to the

literature by demonstrating that a neonatal immune challenge can

Figure 3. Fos immunoreactivity in the habenula following a
neonatal immune challenge and subsequent inflammatory
pain. (A) Representative examples illustrate the distribution of Fos-
positive nuclei in the lateral and medial habenula (LHb & MHb,
respectively). (B) Quantification of Fos-positive nuclei in LHb and MHb
in neonatal saline (white bar) and LPS-treated rats (grey bar) after
formalin injection in preadolescent rats. 3V: third ventricle. ***p,.001.
Scale bar = 100 mm for the 10x microscopic objective and 200 mm for
20x microscopic objective.
doi:10.1371/journal.pone.0098382.g003

Table 2. Fos expression in the paraventricular nucleus of the thalamus (PVT) and the lateral and medial habenula (LHb & MHb).

Treatment PVT LHb MHb

Sal/formalin 22.166.0 43.668.3 1.960.4

LPS/formalin 14.362.1 42.768.6 1.260.3

Note: Data are presented as mean number of Fos-positive cells per section 6 SEM.
doi:10.1371/journal.pone.0098382.t002
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also alter inflammatory nociception as indicated by enhanced

formalin-induced flinching in preadolescent rats.

Neonatal LPS Exposure Results in Distinct Recruitment of
Supra-spinal Structures Involved in Analgesia following
Formalin Injection

Electrical or chemical stimulation of the PAG produces

profound analgesia in rats [18,20,25,36,59,60]. The PAG is

organized into longitudinal columns [24,61], with a dorsal, lateral,

and ventrolateral column. The current study demonstrates that in

response to a neonatal immune challenge and subsequent

inflammatory pain at PND 22, preadolescent rats exhibited

distinct patterns of Fos-protein expression within these columns.

At PND 22, following formalin injection, LPS-challenged rats

exhibited significantly attenuated levels of Fos-protein in both

rostral DPAG and rostral and caudal VLPAG compared to saline-

challenged rats. Interestingly, although there was a strong trend

towards reduced Fos-protein expression in the LPAG in LPS-

treated rats, this did not reach statistical significance, possibly due

to the lack of power in our analyses. These findings are in

agreement with recent observations showing significantly in-

creased Fos immunolabelling in the caudal part of the DPAG

and VLPAG following formalin injection in PND 14 rats [22].

Electrical or opiate stimulation of the DPAG and VLPAG has

been previously reported to induce analgesia in infant and adult

rats [62–64]. For instance, injection of the m-opiate agonist,

DAMGO into both ventral and dorsal PAG was associated with

enhanced paw withdrawal latency to a noxious thermal stimulus

(47uC water) in 3, 10, and 14 day-old rats [63]. Since stimulation

of both the VLPAG and DPAG mediates analgesia [25,65], the

reduction in Fos-labelling within the DPAG and VLPAG of LPS-

challenged rats is likely associated with the observed hyperalgesia

in these animals following the formalin injection.

In addition to the PAG, the LHb has also been demonstrated to

play an important role in mediating analgesia in the formalin test

[32,33]. Further, increased neuronal depolarization was observed

in the LHb in response to noxious peripheral stimulation [30].

Importantly, these effects appear to be specific to the LHb, as adult

rats injected with formalin have been previously shown to display

increased Fos labelling in the LHb but not the MHb [34].

Moreover, electrical stimulation of the LHb but not the MHb in

freely moving rats has been shown to evoke naloxone-reversible

analgesia in the tail flick test [66]. Together, these findings suggest

that compared to the MHb, neurons in the LHb respond

specifically to noxious stimulations. This is consistent with our

findings where formalin injection into the hindpaw of preadoles-

cent rats was associated with increased Fos-protein labelling in the

LHb as compared to MHb. However, in the current study, the

intensity of Fos-protein expression was not affected by neonatal

immune challenge. It is however possible that formalin injection

resulted in maximal Fos-protein expression in LHb across both

groups, thereby preventing the identification of a treatment effect.

Morphological studies have revealed the existence of afferent

and efferent connections between the habenula and the PAG

[28,34,67,68]. The habenula constitutes an important relay in the

descending pathway to the PAG to subserve antinociception

[69,70]. Administration of morphine into the habenula of a rabbit

produced a marked increase in the withdrawal reflex latency to

radiant heat [69]. This antinociception was dose-dependently

attenuated by intra-PAG administration of the opiate antagonist

naloxone [69]. Furthermore, the antinociception induced by intra-

habenula injection of morphine, was attenuated by muscimol (a

GABA receptor agonist) injected into the PAG [69]. These data

suggest that morphine can act on the habenula to activate a neural

descending pathway projecting to the PAG to mediate analgesia.

This pathway seems to implicate the release of endogenous opioid

peptides and GABA. Of particular interest, stimulation of the LHb

was reported to inhibit the unit discharges of nociceptive-specific

neurons within the PAG [71]. The findings reported in these

animal studies are consistent with a recent human study that

revealed, using fMRI technique, an interrelated activity of

habenula and PAG following noxious thermal stimulation [70].

Since no significant differences were observed in the LHb, it is

possible that an alternate structure innervated the PAG to mediate

the decreased behavioural responses to formalin observed in

control animals. Another possibility is that the analgesia observed

in control animals could be attributed to PAG activation alone.

Further research is required to examine these possibilities.

Conclusion

The ability to perceive and respond to noxious stimuli is critical

for survival. Equally important is the recruitment of supra-spinal

structures involved in analgesia to reduce the suffering associated

with pain. The current study importantly demonstrates that

neonatal exposure to LPS results in decreased neuronal activation

within the PAG following exposure to a noxious inflammatory

stimulus in preadolescence. We have also demonstrated that

neonatal exposure to LPS produces altered behavioural responses

to formalin injection in preadolescent rats. These findings

highlight the importance of neonatal immune challenge in

programming behavioural and supra-spinal responses to inflam-

matory pain later in development.
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