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Background-—Several models have been developed for prediction of contrast-induced nephropathy (CIN); however, they only
contain patients receiving intra-arterial contrast media for coronary angiographic procedures, which represent a small proportion of
all contrast procedures. In addition, most of them evaluate radiological interventional procedure-related variables. So it is necessary
for us to develop a model for prediction of CIN before radiological procedures among patients administered contrast media.

Methods and Results-—A total of 8800 patients undergoing contrast administration were randomly assigned in a 4:1 ratio to
development and validation data sets. CIN was defined as an increase of 25% and/or 0.5 mg/dL in serum creatinine within
72 hours above the baseline value. Preprocedural clinical variables were used to develop the prediction model from the training
data set by the machine learning method of random forest, and 5-fold cross-validation was used to evaluate the prediction
accuracies of the model. Finally we tested this model in the validation data set. The incidence of CIN was 13.38%. We built a
prediction model with 13 preprocedural variables selected from 83 variables. The model obtained an area under the receiver-
operating characteristic (ROC) curve (AUC) of 0.907 and gave prediction accuracy of 80.8%, sensitivity of 82.7%, specificity of
78.8%, and Matthews correlation coefficient of 61.5%. For the first time, 3 new factors are included in the model: the decreased
sodium concentration, the INR value, and the preprocedural glucose level.

Conclusions-—The newly established model shows excellent predictive ability of CIN development and thereby provides
preventative measures for CIN. ( J Am Heart Assoc. 2017;6:e004498. DOI: 10.1161/JAHA.116.004498.)
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C ontrast-induced nephropathy (CIN) is an important
cause of acute kidney injury (AKI) in both ambulatory

and hospitalized patients. With the wide use of contrast
media (CM), CIN has become the third prevalent cause of
all hospital-acquired renal failure, accounting for 10%.1

Furthermore, the development of CIN has been reported to
prolong hospitalization and increase mortality and morbid-
ity.2 The precise pathophysiological mechanism of CIN
remains unclear, but some studies have shown the
pathogenesis of CIN to be related to the toxicity effect of
CM on the tubular epithelial cells due to apoptosis,

disturbances in intrarenal hemodynamics, and medullary
hypoxia.3

Unfortunately, few strategies have been shown to prevent
and cure CIN effectively. Therefore, it is important to
comprehensively assess the risks of CIN before CM admin-
istration and to take preventative measures. Preexisting
chronic kidney disease and diabetes mellitus are the most
important risk factors for CIN. Age over 70, preprocedural
dehydration, congestive heart failure, anemia, volume and
type of CM administered, and concurrent administration of
nephrotoxic drugs were found to be potential risk factors.4,5 A
number of risk prediction models with many important
predisposing factors have been developed for the evaluation
of an individual patient’s risk of developing CIN. However,
these models have exclusively focused on populations
receiving intra-arterial CM for coronary angiographic proce-
dures, and no model developed a predictive approach for
more common contrast-enhanced computed tomography (CT)
procedures.6 Indeed, the risk of CIN in a low-risk population
given intravenous contrast-enhanced CT procedures is not
small.7 What is more, most of the models evaluate the
radiological interventional procedure-related variables; thus,
they complete risk assessment only after CM administration.
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As far as we know, there have been only 4 published models
that studied the risk factors before coronary angiography.8-11

Among the 4 models, only Liu et al11 developed a preproce-
dural model in 728 Chinese patients with chronic total
occlusion undergoing percutaneous coronary intervention, but
common variables such as those related to diabetes were not
included in the model, so it is not particularly applicable to a
diabetes population. In addition, all of the 4 models are
focused on coronary angiography, and thus, they are
incapable of predicting CIN before other CM procedures such
as intravenous contrast-enhanced CT.

The purpose of this study was to determine the incidence
and to assess predictive factors of CIN in Chinese patients
and to develop a predictive model that could provide a good
prediction for CIN before patients were exposed to CM.

Materials and Methods

Ethics Statement
The study protocol was approved by the Medical Ethical
Committee in the Third Xiangya Hospital of Central South
University (No. 2016-S160). All subjects were anonymized so
informed consent was not required. This study conformed to
the ethical guidelines of the 1975 Declaration of Helsinki and
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines.

Patient Population
We performed a retrospective single-center case con-
trol study in hospitalized adults from September 2007 to
January 2015. According to our institute protocol, patients
were included if they were treated with CM for coronary
angiography or percutaneous coronary intervention or
received intravenous CM such as for CT or endovascular
procedures (n=69 827), identified by the electronic medical
record system at the Third Xiangya Hospital of Central South
University, Changsha, China. The exclusion criteria were
preprocedure estimated glomerular filtration rate (eGFR)
under 15 mL/(min�1.73 m2) (n=422), age ≤15 (n=635),
missing variables more than 30%, which means that the
number of missing variables is greater than 25 in the 83
variables (n=4914), and without serum creatinine value within
14 days before CM procedures or within 72 hours after
procedures (n=55 478).

Their detailed demographic and clinical characteristics
were collected from the hospital information system. The
serum creatinine (Scr) concentration at the earliest within
14 days before a procedure was defined as the baseline, and
the highest Scr within 72 hours after the procedure was used
as the follow-up Scr to evaluate the incidence of CIN.

Definition
In this study, CIN was defined as an increase of Scr of
0.5 mg/dl (44.2 lmol/L) or 25% relative increase in serum
creatinine from the baseline value to 72 hours after exposure
to CM in the absence of alternative causes for acute kidney
injury according to the Contrast Media Safety Committee
(CMSC). Creatinine clearance was calculated using the
modification of diet in renal disease (MDRD) equation, and
chronic kidney disease was defined as eGFR<60 mL/
(min�1.73 m2) as estimated with the modified MDRD for-
mula.12,13 Anemia is defined as hemoglobin (HGB) concen-
tration <13 g/dL for men and <12 g/dL for women.14

Statistical Analysis
Continuous variables of each group are presented as
mean�standard deviation, and the categorical variables are
expressed as absolute values and percentages. A t test was
used to compare the normally distributed continuous vari-
ables; otherwise, the Mann-Whiney U test was used.
Categorical variables were performed by chi-squared test. A
2-tailed value of P<0.05 was established as the threshold of
statistical significance. Data analysis was performed with the
statistical package SPSS, version17.0 (SPSS Inc, Chicago, IL).

Prediction Model Development
We developed the prediction model based on machine
learning. Randomization and data analysis were performed
using random forests (RF), an ensemble of decision trees.15

RF is good at describing the relationship between indepen-
dent and dependent variables with high flexibility and
sufficient accuracy. The 2 main parameters in RF are mtry,
the number of input variables randomly chosen at each split,
and ntree, the number of trees in the forest. In this model, the
mtry is 4 and the ntree is 1000. The training group is used to
form the algorithm composed of 1000 trees, each of which is
constructed using the bootstrap samples from the training
data and random feature selection. Each node is best split
from a random selected set. When the RF algorithm best
separates all instances and this tree is able to classify all
instances, this node becomes a terminal node with each
unpruned tree grown to its maximum extent. After 1000 trees
are achieved, the majority vote of all analogous trees in the
forest was taken for the predictions for test data. RF was
implemented by the RF function in the R package (ver 4.6.7).

The selected 8800 patients were randomly divided into 2
separate data sets: 80% of the patients (CIN=942, non-
CIN=6098) in our database were selected to the training data
set (the algorithm creation group), and the remaining 20%
(CIN=231, non-CIN=1529) were reserved as the external
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validation sets (validation group) to obtain unbiased estimates
of correct classification rates and variable importance.

In this model RF is also used to assess the importance of
variables in model quality when each variable is replaced in
turn by random noise in each tree. The variable importance is
measured by the resulting deterioration in model quality. The
deterioration in model quality can be assessed by the change
in misclassification rates for the out-of-bag validation. The
heuristics was based on the Gini criterion. Specifically, we
recorded the decrease in the Gini node impurity for the
variable Xj, which was used to form the split at each split. In
the forest where Xj formed the split, the average of all
decreases in the Gini impurity decided the Gini variable’s
importance. In addition, the AUC was also used to assess the
importance of selected variables: when a variable is excluded
in the model, the larger the change in value of AUC is, the
more important the variable is.

Five-fold cross-validation was primarily used as an internal
validation to evaluate the prediction accuracies of the model.
Briefly, we split the data set into 5 roughly equal-sized parts,
and then 4 of them were fit into the model while the other
part was used to calculate the error rate. The process was
repeated 5 times so that every part could be predicted as a
validation set.

The prediction performance was assessed by several
criteria including the overall prediction accuracy (R), sensitiv-
ity (SE), specificity (SP), and Matthews correlation coefficient
(MCC). The equations are as follows:

SE ¼ TP
TPþ FN

SP ¼ TN
TNþ FP

R ¼ TPþ TN
TPþ FPþ TNþ FN

MCC ¼ TP� TN� FN� FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞp

where true positive (TP) is the number of positive samples
predicted correctly, true negative (TN) is the number of negative
samples predicted correctly, false positive (FP) is the number of
negative samples indicated as positive, and false negative (FN)
is the number of positive samples indicated as negative.

SE and SP allow computation of the percentage of
correctly predicted CIN and non-CIN, respectively, while
prediction accuracy means percentage of correctly predicted
CIN and non-CIN. MCC is the statistical parameter to assess
the quality of prediction and to take care of the data

unbalancing. The Matthews correlation coefficient ranges
from �1 to 1. MCC=1 indicates the best possible prediction,
and MCC=�1 points out the worst possible prediction.

Results

Patient Characteristics
Of a total of 69 827 patients administrated CM, 8800
patients (5468 men, 3332 women; mean age
55.3�14.8 years) were included in this study. Of them,
1173 (13.3%) developed CIN. Table 1 shows the clinical
characteristics of patients who developed CIN and of those
who did not show this complication after CM administration.

Eighty-three variables including demographic information,
comorbidities, medications, and laboratory values were col-
lected for each patient. Among the 8800 patients, there were
1656 patients undergoing percutaneous coronary interven-
tion, and of them, 195 (11.8%) suffered from CIN. The
incidence in the other CM procedures can be seen in Table 2.
Figure 1 shows the number of patients included in analysis
after exclusion criteria had been applied. The baseline
characteristics of the training cohorts (7040 patients) sepa-
rated by CIN and non-CIN status are presented in Table 1. The
mean baseline eGFR in 7040 patients was 104.9 mL/
(min�1.73 m2) (SD 53 mL/[min�1.73 m2]). Chronic kidney
disease was present in 962 patients (13.7%).

Variables of Importance
In general, as more variables are chosen, the error of the model
will be smaller. However, increasing the number of variables
does not benefit clinical practice. To identify the prominent
features, we carried out variable selection using different
feature subsets by the RF method. Figure 2 shows the
relationship between the cross-validation error and the number
of variables. When the variables increase to 13, the error has a
sharp decrease to 0.18. With the variables increasing gradually
to 83, the error still remains at a similar level.

Thus, our final model included 13 indispensable features
for CIN prediction: baseline eGFR, red cell distribution width
(RDW), triglycerides, the most recent serum creatinine before
the procedure, high-density lipoprotein cholesterol (HDL),
total cholesterol, low-density lipoprotein cholesterol (LDL),
blood urea (BU), platelet larger cell ratio (P-LCR), serum
sodium (Na+), plateletocrit (PCT), international normalized
ratio (INR), and blood glucose (BG). The importance of the 13
variables is demonstrated in Figure 3. The larger the impor-
tance number is, the more important the variable is. In
addition, as shown in Table 3, the change of AUC value is also
used to assess the importance of the 13 selected variables.
There are some differences about the sorting on the
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Table 1. Demographic, Clinical, and Angiographic Data in CIN and Non-CIN Patients of the Training Data Set

Variable Non-CIN (n=6098) CIN (n=942) P Value

Sex (male) 3801 (62.33%) 609 (64.65%) 0.171

Age (y) 55.23�14.81 55.87�15.57 0.215

eGFR (mL/[min�1.73 m2]) 103.03�49.07 116.82�74.97 0.000*

CKD 791 (12.97%) 170 (18.05%) 0.000*

Diabetes 816 (13.38%) 68 (7.22%) 0.000*

Mechanical ventilation 808 (13.25%) 148 (15.71%) 0.040*

Myocardial infarction 330 (5.41%) 42 (4.46%) 0.224

Shock 147 (2.41%) 44 (4.67%) 0.000*

Gout 66 (1.08%) 5 (0.53%) 0.115

Liver cirrhosis 322 (5.28%) 103 (10.93%) 0.000*

Kidney transplant 42 (0.69%) 1 (0.11%) 0.033*

Atherosclerosis 796 (13.1%) 99 (10.51%) 0.029*

ICU admission before procedure 568 (9.31%) 145 (12.85%) 0.000*

Coronary heart disease 371 (6.08%) 43 (4.56%) 0.065

Anemia 3858 (63.27%) 667 (70.81%) 0.000*

Systolic blood pressure 126.97�27.77 128.70�21.32 0.704

Diastolic blood pressure 78.36�12.65 77.00�12.05 0.606

Blood glucose 6.47�2.92 7.07�4.36 0.000*

RDW 46.05�7.23 46.98�7.82 0.000*

NEUT% 75.15�12.85 76.59�12.92 0.000*

NEUT 7.80�5.36 8.26�5.79 0.033*

Lymphocytes% 16.35�10.33 15.13�10.19 0.000*

Lymphocytes 1.30�0.93 1.25�1.08 0.000*

Monocytes% 6.37�3.12 6.15�3.24 0.000*

Monocytes 0.58�0.48 0.57�0.38 0.240

Platelets 198.77�112.32 184.44�112.83 0.000*

Mean corpuscular volume 91.25�7.60 91.51�7.27 0.440

Mean corpuscular hemoglobin 29.76�3.06 29.84�2.90 0.740

Mean corpuscular hemoglobin concentration 326.06�19.44 325.83�18.90 0.781

Mean platelet volume 11.05�1.47 11.11�1.43 0.107

Eosinophils% 1.54�2.16 1.41�2.02 0.054

Eosinophils 0.12�0.21 0.11�0.17 0.033*

Basophil% 0.32�0.41 0.30�0.41 0.009*

Basophil 0.02�0.04 0.03�0.05 0.329

Reticolociti% 1.59�0.76 1.59�0.70 0.000*

Reticolociti 3.80�6.16 5.14�8.71 0.000*

Platelet distribution width 14.92�2.67 14.95�2.61 0.074

Platelet cell ratio 0.23�0.11 0.22�0.12 0.000*

Total bilirubin 32.65�59.44 37.15�74.15 0.808

Albumin 35.12�7.25 33.64�7.26 0.000*

Macro-platelet cell ratio 36.69�7.97 36.95�7.69 0.355

Albumin: globulin ratio 1.34�0.35 1.31�0.37 0.023*

Continued
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Table 1. Continued

Variable Non-CIN (n=6098) CIN (n=942) P Value

Creatinine 88.26�86.04 122.93�137.48 0.000*

Total protein 62.06�10.91 60.19�11.93 0.011*

Globulin 27.38�6.26 27.02�6.92 0.100

Alanine aminotransferase 67.44�161.33 72.64�150.05 0.353

Urea 6.16�4.66 8.23�7.56 0.000*

Uric acid 258.82�130.17 271.21�146.68 0.009*

Direct bilirubin 19.03�44.45 22.57�54.00 0.715

Total bile acids 15.31�38.35 18.44�43.96 0.133

Aspartate amino transferase 71.46�191.95 94.95�201.63 0.027*

Chlorine 102.97�5.36 102.97�5.88 0.984

Sodium 137.91�5.60 135.88�9.97 0.000*

Potassium 4.08�0.52 4.16�0.60 0.000*

Calcium 2.77�5.61 3.08�13.85 0.232

Hemoglobin 114.43�26.36 108.60�27.62 0.000*

Hematocrit 35.02�7.67 33.25�8.27 0.000*

Total cholesterol 4.23�1.52 4.18�1.78 0.238

LDL 2.33�1.06 2.23�1.13 0.008*

HDL 1.07�0.46 0.99�0.45 0.000*

Triglycerides 1.75�2.35 2.24�4.23 0.000*

Thrombin time 16.16�11.03 17.12�15.02 0.018*

Prothrombin time 12.89�4.01 13.51�4.86 0.000*

Fibrinogen 3.67�1.25 3.60�1.29 0.304

APTT 47.88�38.01 33.074�13.29 0.409*

International normalized ratio 1.11�0.35 1.17�0.503 0.000*

Pulse 82.49�14.43 85.72�17.13 0.000*

Diuretic 1760 (28.86%) 317 (33.65%) 0.003*

ACEI 695 (11.38%) 86 (9.13%) 0.039*

ARB 248 (4.07%) 26 (2.76%) 0.054*

NSAIDs 555 (9.10%) 76 (8.07%) 0.301

Vitamin C 2381 (39.04%) 363 (38.53%) 0.765

Alprostadil 690 (11.32%) 125 (13.27%) 0.081

Dopamine 268 (4.39%) 54 (5.73%) 0.067*

Cephalosporin 1173 (19.24%) 201 (21.34%) 0.000*

Glycopeptides 162 (2.66%) 30 (3.18%) 0.354

Quinolone 373 (6.12%) 65 (6.90%) 0.354

Vancomycin 49 (0.80%) 4 (0.42%) 0.211

Acyclovir 47 (0.77%) 2 (0.21%) 0.550

Aminoglycoside 643 (10.54%) 96 (10.19%) 0.742

Statins 882 (14.46%) 98 (10.40%) 0.001*

Asipirin 851 (13.96%) 100 (10.62%) 0.005*

ACEI indicates angiotensin-converting enzyme inhibitor; APTT, activated partial thromboplastin time; ARB, angiotensin receptor blocker; CIN, contrast-induced nephropathy; CKD, chronic
kidney disease (defined as eGFR <60 mL/[min�1.73 m2); eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein cholesterol; ICU, intensive care unit; LDL, low-density
lipoprotein cholesterol; NSAIDs, nonsteroidal anti-inflammatory drugs; PT, prothrombin time; RDW, red blood cell distribution width; TG, triglyceride; TT, thrombin time.
*P<0.05.
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importance of the variables as shown in Figure 3 and Table 3.
In the first approach the serum creatinine is more important
than serum sodium as shown in Figure 3. However, in the
method based on AUC, the AUC change value of serum
creatinine is bigger than that of serum sodium. Actually, the
approach of the out-of-bag validation and Gini in Figure 3 pays
more attention to the importance of the whole variables to the
model, but the method of comparing the AUC change values
after excluding each variable in Table 3 emphasizes the
impact of individual variables on the model. Those differences
do not affect the classification results.

Classification Results
Classification of a patient in the RF was determined by the
number of votes from all classification trees in the forest. We
obtained different sensitivity, specificity, and accuracy while
changing the threshold of voting. The receiver-operating curve

(ROC) was developed on basis of the sensitivity and specificity
of the above values. The area under the ROC curve (AUC) is
often used as an additional performance index. The closer AUC

Table 2. The Incidence of CIN in Different CM Procedures

CIN Non-CIN Incidence

Intravenous contrast-enhanced CT 734 4600 13.8%

Percutaneous coronary intervention 195 1464 11.8%

CT angiography 77 408 15.9%

Noncoronary angiography 32 176 15.4%

Other CM procedures 135 979 12.1%

Total 1173 7627 13.3%

CIN indicates contrast-induced nephropathy; CM, contrast media; CT, computed
tomography.

Figure 1. Flow chart depicting number of patients who were included
in analysis after exclusion criteria. The total included encounters were
divided into those with and without contrast-induced nephrotoxicity
(CIN). GFR indicates glomerular filtration rate.

Figure 2. The relationship between the cross-validation
error and the number of variables.

Figure 3. The importance of the 13 variables of the contrast-
induced nephropathy prediction model. BG indicates blood
glucose; BU, blood urea; eGFR, estimated glomerular filtration
rate; HDL, high density lipoprotein cholesterol; INR, International
Normalized Ratio; LDL, low density lipoprotein cholesterol; Na+,
serum sodium; PCT, plateletocrit; P-LCR, platelet larger cell
ratio; RDW, red cell distribution width; SCr, serum creatinine; TC,
total cholesterol; TG, triglyceride.
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was to 1, the greater was the predictive ability of the
model. A model with no predictive ability would yield the
diagonal line. Figure 4 shows the ROC curve for this model.

It is significant that our model obtained an AUC of 0.907.
Such results sufficiently indicated that a big separation for
CIN and non-CIN patients was indeed obtained from this
prediction model.

The prediction accuracies of the model were internally
evaluated by 5-fold cross-validation. On the average, the
prediction model gave a prediction accuracy of 82.2%,
sensitivity of 84.4%, specificity of 79.9%, and Matthews
correlation coefficient of 64.4%.

In order to examine the performance of the newly
developed model, we tested our training models based on a
data set containing 231 patients with CIN and 1529
patients without CIN for an external validation. The basic
information comparing the training and validation sets is
showed in Table 4. The external validation achieved 82.4%
for accuracy, 83.9% for sensitivity, 80.3% for specificity, and
a Matthews correlation coefficient of 0.647, respectively.
The result of high prediction accuracy and successful
prediction suggested that the new model was efficiently
used to predict CIN.

Table 3. The Change of AUC Value When Each Variable Is
Excluded in the Model

Variables

The Value of
AUC After
Excluding
a Variable

The Change
Value of AUC
After
Excluding
a Variable

All 0.907 0.000

Baseline eGFR 0.860 0.047

Serum sodium 0.867 0.040

Red cell distribution width 0.870 0.037

Triglyceride 0.870 0.037

High-density lipoprotein cholesterol 0.871 0.036

Low-density lipoprotein cholesterol 0.873 0.034

Blood urea 0.873 0.034

Platelet–larger cell ratio 0.873 0.034

Blood glucose 0.874 0.033

Total cholesterol 0.876 0.031

International normalized ratio 0.876 0.031

Serum creatinine 0.877 0.030

Plateletocrit 0.878 0.029

AUC indicates area under the receiver-operating curves; eGFR, estimated glomerular
filtration rate.

Figure 4. Cross-validated receiver-operating characteristic
curves for predicting contrast-induced nephropathy in the prediction
model. AUC indicates area under the receiver-operating curves.

Table 4. Demographic and Clinical Data in Training and
Validation Cohorts

Variable
Training Cohorts
(n=7040)

Validation
Cohorts
(n=1760) P Value

Sex (male) 4410 (62.64%) 995 (61.27%) 0.303

Age (y) 55.31�14.91 55.42�14.71 0.800

eGFR (mL/
[min�1.73 m2])

104.86�53.47 105.19�60.73 0.222

CKD 961 (13.65%) 233 (14.35%) 0.463

Diabetes 884 (12.56%) 212 (13.05%) 0.587

RDW 46.17�7.32 46.08�7.31 0.138

Triglycerides 1.82�2.68 1.86�2.94 0.717

HDL 1.06�0.46 1.06�0.45 0.766

Creatinine 92.90�95.28 92.00�102.17 0.803

LDL 2.31�1.07 2.30�1.15 0.462

Platelet-cell ratio 0.23�0.11 0.23�0.11 0.463

Urea 6.43�5.19 6.44�5.35 0.339

Sodium 137.64�6.40 137.71�6.26 0.811

Macroplatelet-cell
ratio

36.69�7.94 36.82�7.96 0.548

Coronary heart
disease

414 (5.88%) 81 (4.99%) 0.162

International
normalized ratio

1.12�0.38 1.12�0.47 0.736

Blood glucose 6.55�3.16 6.53�2.99 0.899

CKD indicates chronic kidney disease (defined as eGFR <60 mL/[min�1.73 m2); eGFR,
estimated glomerular filtration rate; HDL, high-density lipoprotein cholesterol; LDL, low-
density lipoprotein cholesterol; RDW, red blood cell distribution width.
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Discussion

With the increasing use of CM, CIN has become the third
leading cause of hospital-acquired acute renal failure,
contributing to growing in-hospital morbidity and mortality,
hospitalization prolongation, and increase in costs.16,17

Unfortunately, there are few definitively effective strategies
for prophylaxis or treatment of CIN.18,19 Therefore, it is
necessary to establish a model involved in various
comprehensive factors related to CIN that lets patients
be protected from CM, especially for those who might be at
high risk.

Several models have been developed for the prediction of
CIN; however, they just focus on patients receiving intra-
arterial CM for coronary angiographic procedures, which
represent only a small proportion of all contrast procedures.8-
11,20-23 In fact, contrast-enhanced CT scans are much more
commonly used, and the incidence of CIN resulting from
contrast-enhanced CT procedures is also high, occurring in
11% of an outpatient setting population.7 Thus, these
prediction models might not be available for those who
undergo these procedures, such as intravenous contrast-
enhanced CT and CT angiography. The Mehran risk score, a
classic model for CIN, has widely been used for many years,
but the risk factors included in the model occur only in
patients receiving percutaneous coronary intervention. Fur-
thermore, the volume of CM, a variable in this model, cannot
be known before the procedure. So risk assessment cannot
be completed before CM exposure. Although most of the
previously established prediction models included both pre-
procedural and procedure-related variables such as the
volume of CM, few studies aimed to develop risk models for
CIN before procedure. Liu et al11 developed a preprocedural
model in a Chinese population with chronic total occlusion
undergoing percutaneous coronary intervention including 3
periprocedural variables: age >75 years, LVEF <40%, and Scr
>1.5 mg/dL. Some common risk factors are not included,
such as diabetes, so it may not good at predicting CIN in the
diabetes patients who are at higher risk of CIN. The other 3
models did not involve a Chinese population. Furthermore, all
of these models also focus on coronary angiographic
procedures, so they are only able to be used before coronary
angiographic procedures.8-11

Here, we developed a prediction model of CIN with
preprocedure variables by RF, which was composed of
Chinese patients administered CM. The new system was first
established to provide a prediction model of contrast-induced
AKI using preprocedural variables in an unselected population.
The AUC of this newly developed model was 0.907, demon-
strating good discriminative power. Although the present
model did not include procedure-related variables, its predic-
tive value was better than that of the Mehran risk score,

whose AUC was 0.67. The prediction accuracies were
internally evaluated by 5-fold cross-validation and tested by
the test data set for an external validation. Thirteen of 83
variables were chosen in our risk prediction model for CIN. A
strong relationship is found between decreased sodium and
increased risk of CIN in patients who underwent CM
administration. Additionally, INR is also observed to be a
powerful factor affecting CIN prediction. In addition, we used
the preprocedural glucose level in a CIN risk prediction model
for the first time in the present study.

Our study is the first to show a relationship between
decreased serum sodium and increased risk of CIN among
patients who underwent CM administration. For 1 thing,
hospital-acquired lower serum sodium is found to coincide
with various inflammatory conditions.24,25 Inflammatory
cytokines such as IL-1b and IL-6 have been reported as
mediators in the development of hyponatremia related to ADH
secretion.25-27 Inflammation is associated with impaired renal
function. In addition, activation of the signaling pathway for
inflammation by CM in human renal proximal tubular cells has
been reported.28 Furthermore, some articles have shown that
hyponatremia might be a surrogate marker for the severity of
certain pathologies such as heart failure, pneumonia, and liver
disease,29,30 which may promote the development of CIN, so
patients with lower plasma sodium are susceptible to CIN
after CM exposure.

Our research indicates that baseline eGFR is an impor-
tant risk factor, as has been found in previous stud-
ies.16,31,32 The eGFR of CIN patients was lower than that of
non-CIN patients in the previous studies because they got
different eGFR values from using different preprocedural
time points, such as the first admission time or 7 or
14 days before the procedure. However, in the present
research, the eGFR from 14 days preprocedure of CIN is
greater than that of non-CIN patients. In addition, the most
recent SCr before procedure is 1 of the strongest prediction
factors for CIN development. The SCr of CIN is greater than
that of non-CIN patients, which is consistent with the
previous studies. In addition, we also compared the
increased value of Scr, defined as the most recent Scr
value before CM procedures minus that at admission,
between the CIN group and the non-CIN group. This result
showed that Scr increased 5.3% on average in the CIN
group and decreased 5.2% in the non-CIN group. In view of
the above factors, the renal function of some patients is
prone to be affected by medical interventions such as
nephrotoxic agents and operations. Although these patients
have a normal renal function at admission, Scr will increase
rapidly under admission conditions and leave these patients
more prone to develop CIN from CM.

Blood urea, a parameter for evaluation renal function, is
also in our model, although the renal function is mainly
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evaluated by eGFR. Furthermore, blood urea plays a funda-
mental and direct role in fluid and sodium homeostasis
regulated by neurohormonal systems.33-36 The decreased
intravascular effective volume and decompensated heart
failure reduce the rate of urea excretion and increase blood
urea levels.37,38 The decreased intravascular effective volume
would cause disturbances in intrarenal hemodynamics that
potentially could result in CIN. Thus, blood urea levels provide
an effective way to assess circulatory volume and play an
important role in the prediction of CIN.

The RDW, reported routinely as part of an automated full
blood count and used to evaluate the size of circulating red
blood cells and the possible causes of anemia, is a main risk
factor in the development of CIN. It has been found that
RDW correlates with kidney function. Moreover, recent
studies have reported an independent association between
increased RDW and CIN in patients who underwent PCI.39-41

Mizuno et al added the RDW to the Mehran risk score for
predicting CIN in patients with ST-elevation acute myocardial
infarction.42 Elevated RDW has been shown to be an
effective biomarker for chronic inflammation and oxidative
stress.43 Therefore, patients with an increased RDW may
have a high level of oxidative stress and chronic inflamma-
tion, which may lead to renal dysfunction after CM
administration.

Although several studies have indicated that elevated
glucose level is a risk factor of CIN,44-46 our study found that
the blood glucose level preprocedure enters the CIN risk
prediction model in both diabetic and nondiabetic patients.
Additionally, glycemic control using insulin in critically ill
patients has been shown to reduce the rates of AKI.47,48 The
mechanism of the underlying relationship between acute
hyperglycemia and the risk of CIN is still unknown. Studies
demonstrate that elevated glucose levels are associated such
factors as endothelial dysfunction,49 increased activation of
prothrombotic factors,50,51 markers of vascular inflamma-
tion,52,53 and generation of reactive oxygen species.54,55 An
animal study has demonstrated that hyperglycemia exacer-
bates kidney damage through mitochondrial dysfunction.51

Such factors may lead to kidney impairment if patients are
exposed to CM.

By examining the relationships among HDL cholesterol,
LDL cholesterol, triglycerides, serum total cholesterol, and
CIN, our study found that hypercholesterolemia, hypertriglyc-
eridemia, or low HDL would raise the risk for CIN. Such blood
lipid factors result in reducing the production of nitric oxide
and increasing oxidative stress and inflammation in the
kidney.56-58

For the first time, the elevated INR has been reported in a
CIN prediction model. INR monitoring is essential during oral
anticoagulation therapy to minimize bleeding complications
and thrombotic events. INR elevation indicates that the

glomerulus may hemorrhage, and red blood cell casts
obstruct renal tubules.59 Thus, INR is an important risk factor
for CIN.

We also find that platelet activity biomarkers may correlate
with the development of CIN. Those reflecting the platelet
reactivity, including platelet count (PC), platelet–larger cell
ratio (P-LCR), mean platelet volume (MPV), and platelet
distribution width (PDW), were evaluated in this study. PC and
P-LCR, the index of the platelet reactivity, are significant
variables in this model. Thrombocytopenia has often been
cited as an indicator of critical illness severity,60,61 and a
novel association between thrombocytopenia and postoper-
ative AKI has been established.61 Activated platelets have
been found as a source of vasoactive inflammatory mediators
related to the endothelial integrity,62 which is a key player in
the development of CIN.

Conclusion
A risk prediction model with excellent predictive ability for CIN
in Chinese patients has been successfully established. This
model can be applied to patients administered CM for
coronary procedures and other contrast procedures such as
intravenous contrast-enhanced CT, CT angiography, and
noncoronary angiography. For the first time, there are 3
new factors included in the model: the decreased sodium
concentration, the INR value, and the preprocedural glucose
level.

Limitations
The potential limitations of our study should be mentioned.
First, this study is limited by its retrospective design, whose
inherent weakness cannot be avoided. Second, our prediction
model is derived and validated by a single center. For the wide
application of the prediction model, it still needs to be
validated in a multicenter trial. Third, any variable that was
missing for more than 30% of the population was not
assessed in the present study. Finally, we ignored unstruc-
tured clinical notes. Future studies addressing these limita-
tions are necessary.
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