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Abstract
The bistable Rb‐E2F gene regulatory network plays a central role in regulating cellular
proliferation‐quiescence transition. Based on Gillespie's chemical Langevin method,
the stochastic bistable Rb‐E2F gene’s regulatory network with time delays is proposed. It
is found that under the moderate intensity of internal noise, delay in the Cyclin E
synthesis rate can greatly increase the average concentration value of E2F. When the
delay is considered in both E2F‐related positive feedback loops, within a specific range
of delay (3‐13)hr, the average expression of E2F is significantly increased. Also, this
range is in the scope with that experimentally given by Dong et al. [65]. By analysing the
quasi‐potential curves at different delay times, simulation results show that delay regu-
lates the dynamic behaviour of the system in the following way: small delay stabilises the
bistable system; the medium delay is conducive to a high steady‐state, making the system
fluctuate near the high steady‐state; large delay induces approximately periodic transitions
between high and low steady‐state. Therefore, by regulating noise and time delay, the cell
itself can control the expression level of E2F to respond to different situations. These
findings may provide an explanation of some experimental result intricacies related to the
cell cycle.

1 | INTRODUCTION

Noise and time delay are ubiquitous in various biological
processes, existing over multiple scales of biological systems
from the population level to the molecular level. Noise might
be perceived as a nuisance due to its effects on molecular
events. However, it modulates the system's dynamics [1, 2].
Noise permeates biological networks at all levels, from the
basic cellular to population levels, where it causes inevitable
effects to the system [3–8].

It is shown that cellular processes such as gene expression,
signalling pathways, circadian rhythms, etc., when exposed to
noise, deal with it differently [9, 10]. It makes it rather hard to
give a general effect of noise precisely. Experimentally, bimodal
population distributions of cells demonstrate that noise can
cause switching on and off states in genetic toggle switches to
determine the cell’s fate in a bistable system [11, 12].

In a stable genetic regulatory network (GRN) maintained
by positive feedback, intrinsic noise impacts the unstable

intermediate states [13]. Stochastic resonance (SR), in which
some noise level is added to a weak signal in a non‐linear
system, enhances weak signals' detection and transmission
[14, 15]. The noise‐enhanced stability (NES) phenomenon has
also been studied to show how noise can stabilize the system's
fluctuating metastable states [16–21]. Zeng and Wang [22]
applied the NES with coloured noise and showed how tumour
cell growth could be stabilised. Thus, it is a clear indication
that noise [23] has a significant role in modulating a system's
dynamics.

On the other hand, the time delay [24–26] is one of the
essential aspects featured in GRNs [7, 8, 13, 27]. Time delays
describe the propagation phenomena, material transfer in
intercommoned systems, and data transmission in communi-
cating systems in many natural and physical setups [28].
Typically, time delays deem to complicate the system’s dy-
namics by causing oscillations, instability, and poor control
performances [29, 30]. In the cell cycle, delays are shown to
affect the cell cycle [31] by inducing cell arrest and apoptosis
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through the p53 network upon sensing damaged DNA [32].
These and many other existing works, such as [33–35] to
mention a few, have analysed delayed systems deterministically.
However, there are increasing attempts to study the behaviour
of stochastic systems with the time delay [36–38]. Predomi-
nantly, most of the indagations are based on modifications on
the Chemical Langevin Equations (CLEs) to account for time
delay [36, 38–40]. In fact, Bratsun et al., [38] analysed the
combined effects of time delay and intrinsic noise on gene
regulation and noticed that the two entities' variability was
almost the same. Also, Brett and Galla [41] using the Brus-
selator model showed that in the presence of noise and delay,
the system not only fluctuates with small amplitudes about the
deterministic fixed point, but intermittent spikes are also
invoked. By using a variety of delay models, Jiang et al. show
that Markov’s model learning by the neural network can
accurately reflect the stochastic dynamics across the parameter
space [42]. Due to delays in gene regulatory networks in an
oscillating system, noise can enhance robustness to maintain
the oscillating expression pattern [13].

Human cell cycle progression, apoptosis, quiescence, and
proliferation have been well‐studied to examine the cell's fate
in the case of anti‐mitogens such as DNA damage that would
otherwise result in detrimental conditions such as cancer [43,
44]. The cell can ensure the fidelity of DNA replication
processes before entry and progression from the G1 to the S
phase through several signalling pathways [45]. Signalling
events controlled by the Rb/E2F pathway are conserved in
many eukaryotes, including mammals, as key regulators of the
G1/S checkpoint [46, 47]. E2F is a family of transcription
factors that activates many growth target genes that drive
entry and advancement through the cell cycle [48, 49]. In
contrast, retinoblastoma (Rb) is a tumour suppressor and
transcription factor regulating proliferation in almost all cell
types [43, 50].

Upon detection of DNA damages or insufficiencies, Rb
suppresses cell cycle progression by inhibiting the proliferation
activity of E2F [43, 51–53]. Moreover, CDK Inhibitors such as
p27, p21 can also promote quiescence by blocking Rb's
phosphorylation, allowing it to bind to E2F hence suppressing
cell cycle procession [54, 55]. Myc, Cyclin D/CDK4, 6, and
Cyclin E/CDK2 can mediate Rb's phosphorylation, prevent-
ing it from binding to E2F [56, 57]. Therefore, this will
enhance the activation of E2F, leading to the progression of
the cell cycle. Based on rather intricate regulatory networks
comprising feedback loops, feedforward loops, or autor-
egulatory loops [58] involved, the E2F‐Rb homoeostatic
mechanism in the cell cycle is dependent on external serum or
external and internal random disturbance [59]. Yao et al. [60]
described a bistable Rb‐E2F switch mechanism in which
inhibitory and growth signals are converted into a binary
OFF/ON signal by E2F in an ‘alright or none’ manner leading
to quiescence or proliferation [43, 53].

Generally, the role of time delay is rather complex and
system dependent. It can induce either on/off switching of
oscillation states and create coherent bistability that can aid in
the decision‐making of the system [61]. Since E2F plays a vital

role in the cell cycle process, it is essential to know how noise
and time delay regulate this gene expression.

In this article, the effects of internal noises and time delay
on the expression of transcription factor E2F are studied in
the bistable Rb‐E2F GRN. In section 2, based on Gillespie's
CLEs method, the stochastic differential equations of bistable
Rb‐E2F GRN with time delay are proposed. The effects of
noise and time delay on the expression of transcription factor
E2F are discussed in section 3. We end with the conclusions
of the results and the possible biological significance in
section 4.

2 | MODEL AND METHOD

When the internal noise is ignored, the E2F regulated cell‐cycle
network can be described by Yao's model [60]. However, noise
inevitably exists in living cell systems. Therefore, stochastic
equations are more valid than deterministic equations. Here we
only consider the internal noise, which originates from the
random birth‐death chemical species. In this article, Gillespie's
stochastic simulation method is adopted, which is mainly based
on the reaction rate to determine which reaction will happen
next. According to this method, we introduce the number of
intracellular E2F molecules as MoleE2F. Similarly, MoleMyc,
MoleR, MoleRP, MoleCD, MoleRE, MoleCE are the number of
intracellular molecules of Myc, Rb, phosphorylated Rb, CycD‐
Cdk4/6 complex, Rb/E2F complex, and CycE‐Cdk2 complex,
respectively. Then, the concentrations of the genes involved in
the E2F regulated cell‐cycle network are expressed in the
following ways:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

½E2F � ¼
MoleE2F

Ω
; ½R� ¼

MoleR
Ω

;

½RP� ¼
MoleRP

Ω
; ½CD� ¼

MoleCD

Ω
;

½RE� ¼
MoleRE

Ω
; ½CE� ¼

MoleCE

Ω
;

½Myc� ¼
MoleMyc

Ω
;

ð1Þ

where Ω is the volume of the whole compartment of the
cell. There are 20 elementary processes for the current E2F
network model, and the corresponding transition rates are
proportional to the system size Ω. Figure 1 illustrates all the
interactions between different species, and Table 1 describes
the respective processes and transition rates. Here [S]
represent the concentration of the external serum growth
signal.

The direct stochastic simulation method is accurate, but it
takes too much time when the system size is large. To over-
come this challenge, based on the 'macro‐infinitesimal' time-
scale of the system, Gillespie found that CLEs [62] is instead a
good approximation for studying the system's dynamics. It is,
therefore, more convenient to qualitatively examine the
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influence of internal noise using CLEs. Then, according to the
relationship between the concentration and molecular number,
the CLEs corresponding to Yao's [60] macroscopic differential
equations can be represented as:

d½E2F �
dt

¼ V 1 þ V 2 þ V 3 þ V 4 − V 5 − V 6

þ
1
ffiffiffiffi
Ω
p

� ffiffiffiffiffiffi
V 1

p
ξ1 þ

ffiffiffiffiffiffi
V 2

p
ξ2 þ

ffiffiffiffiffiffi
V 3

p
ξ3

þ
ffiffiffiffiffiffi
V 4

p
ξ4 −

ffiffiffiffiffiffi
V 5

p
ξ5 −

ffiffiffiffiffiffi
V 6

p
ξ6
�

ð2Þ

d½R�
dt
¼ V 7 þ V 8 − V 6 − V 9 − V 10 − V 11

þ
1
ffiffiffiffi
Ω
p

� ffiffiffiffiffiffi
V 7

p
ξ7 þ

ffiffiffiffiffiffi
V 8

p
ξ8 −

ffiffiffiffiffiffi
V 6

p
ξ6

−
ffiffiffiffiffiffi
V 9

p
ξ9 −

ffiffiffiffiffiffiffiffi
V 10

p
ξ10 −

ffiffiffiffiffiffiffiffi
V 11

p
ξ11
�

ð3Þ

d½RP�
dt
¼ V 3 þ V 4 þ V 9 þ V 10 − V 8 − V 12

þ
1
ffiffiffiffi
Ω
p

� ffiffiffiffiffiffi
V 3

p
ξ3 þ

ffiffiffiffiffiffi
V 4

p
ξ4 þ

ffiffiffiffiffiffi
V 9

p
ξ9

þ
ffiffiffiffiffiffiffiffi
V 10

p
ξ10 −

ffiffiffiffiffiffi
V 8

p
ξ8 −

ffiffiffiffiffiffiffiffi
V 12

p
ξ12
�

ð4Þ

d½RE�
dt
¼ V 6 − V 3 − V 4 − V 13

þ
1
ffiffiffiffi
Ω
p

� ffiffiffiffiffiffi
V 6

p
ξ6 −

ffiffiffiffiffiffi
V 3

p
ξ3 −

ffiffiffiffiffiffi
V 4

p
ξ4 −

ffiffiffiffiffiffiffiffi
V 13

p
ξ13
� ð5Þ

d½Myc�
dt

¼ V 14 − V 15 þ
1
ffiffiffiffi
Ω
p

� ffiffiffiffiffiffiffiffi
V 14

p
ξ14 −

ffiffiffiffiffiffiffiffi
V 15

p
ξ15
�
ð6Þ

d½CD�
dt
¼V 16 þ V 17 − V 18 þ

1
Ω

� ffiffiffiffiffiffiffiffi
V 16

p
ξ16

þ
ffiffiffiffiffiffiffiffi
V 17

p
ξ17 −

ffiffiffiffiffiffiffiffi
V 18

p
ξ18
� ð7Þ

d½CE�
dt
¼ V 19 − V 20 þ

1
ffiffiffiffi
Ω
p

� ffiffiffiffiffiffiffiffi
V 19

p
ξ19 −

ffiffiffiffiffiffiffiffi
V 20

p
ξ20
�
ð8Þ

In the above mesoscopic stochastic differential equations,
internal noise intensity is proportional to 1ffiffiffi

Ω
p : Therefore, if the

cell volume is big enough, that is, as Ω→ ∞, internal noise will
vanish in this thermodynamic limit.

A natural boundary at ½E2F � ¼ 0, ½R� ¼ 0, ½RP� ¼ 0,
½RE� ¼ 0, ½Myc� ¼ 0, ½CD� ¼ 0 and ½CE� ¼ 0 are used since the
noise may drive the system variables to negative values. Artificial
boundary conditions may affect the calculation accuracy [63].
Schnoerr et al. have shown that the chemical Fokker‐Planck
equation is a good approximation of the CLEs even for a
small number of molecules [64]. Fortunately, even in small vol-
ume Ω = 50, our calculation does not encounter the boundary.

There are time delays between any change in E2F's con-
centration and the response to that change in E2F synthesis and
degradation processes. For example, using a dual E2F reporter
system, Dong et al. suggest two delays in the G1 phase: an initial
delay in the transcription of E2F and the delay between E2F's
transcriptional dynamics and E2F's activity [65]. The later delay
is due to the immediate sequestration of the newly synthesised
E2F proteins by Rb. It not only affects the first delay but also
regulates the whole cell cycle duration. Therefore, the delay
between E2F's transcriptional dynamics and E2F's activity plays
an essential role in the cell cycle process.

In this Rb‐E2F GRN, the reaction rates related to the
concentration of E2F itself were V1 and V19. These two re-
action rates are contained in two positive feedback loops. V1

corresponds to the self‐regulated positive loop, and V19 is
related to the E2F‐CE‐E2F loop, as illustrated in Figure 1.
Therefore, considering delays, equations V1 and V19 can be
rewritten as follows:

V 1 ¼ kE

�
Myc

IM þ ½Myc�

��
½E2F �ðt − τ1Þ

IE þ ½E2F �ðt − τ1Þ

�

Ω ð9Þ

V 19 ¼
kCE½E2F �ðt − τ2Þ
IE þ ½E2F �ðt − τ2Þ

Ω ð10Þ

To study the effects of noise and time delay on the
expression level of [E2F ], stochastic numerical simulations are
needed, and the seven above mesoscopic equations are inte-
grated by using a simple forward Euler algorithm. The time
step is set at 0.001 h, and the initial transient dynamics were
discarded in every simulation. Values of Ω, τ1 and τ2 were

F I GURE 1 The schematic model of the Rb‐E2F network with the
corresponding 20 reactions and time delays incorporated in the auto‐
synthesis of E2F and in E2F‐dependent production of CycE‐Cdk2
complex
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estimated and varied accordingly, while other parameter values
in the model are adapted from reference [60]. The average
expression level of [E2F ], quasi‐potential function, and time
evolutions are examined in four different cases: (i) when only
noise is present; (ii) besides noise, when the time delay is only
present in the production rate V 1; (iii) besides noise, when the
time delay is only present in the production rate V 19; (iv)
besides noise, when the time delay is considered in both pro-
duction rates.

3 | RESULTS AND DISCUSSIONS

3.1 | Effects of internal noise on the system
dynamics

A high expression level of E2F can push the cell cycle into
progression [49]. Therefore, we can consider the high con-
centration state as an ‘on’ state, whereas the low concentration
state is an ‘off ’ state. Suppose the external stimulation [S] is

chosen in the bistable region. The system is either in a high
steady‐state or low steady‐state in the deterministic case,
depending on the initial conditions. The time courses of [E2F]
are plotted for different system volumes at [S] = 0.3, as shown
in Figure 2, respectively. Here [S] = 0.3 is in the bistable region,
but the E2F system is preferred to stay at a low stable state.

Under the disturbance of the internal noise, the state
system is different. The smaller the system volume, the bigger
the internal noise will be. At a small system volume Ω = 50,
the noise is too large to induce approximately sustained
random fluctuations with high amplitude of E2F. There is no
obvious high‐low two‐state form of E2F. Even when the
system volume increases to Ω = 100, oscillations in [E2F]
begin to decrease in amplitude. When Ω = 200, the concen-
tration of E2F is divided into evidently high and low bistable
states, and each state has a long duration. There are very few
transitions between the two states. However, when Ω = 500,
the noise level is too small to induce switching to the ‘on’
state, so the system is completely maintained on the ‘off ’ state.
The red line in the inset is the time evolution from the

TABLE 1 Reaction kinetics, terms, and descriptions

Transition Number Transition Processes Transition Rates Description

V1 E2F → E2F þ 1 kE

�
½Myc�

IMþ½Myc�

��
½E2F�

IEþ½E2F�

�

Ω E2F production modulated by cooperation between Myc and E2F.

V2 E2F→ E2F þ 1 kb ½Myc�
IMþ½Myc�Ω

E2F production modulated by only Myc

V3

E2F → E2F þ 1
RP→ RPþ 1
RE→ RE − 1

kp1
½CD�½RE�
ICDþ½RE�Ω

E2F release from Rb‐E2F complex due to its phosphorylation
mediated by the CycD‐Cdk4/6 complex

V4

E2F → E2F þ 1
RP→ RPþ 1
RE→ RE − 1

kp2
½CE�½RE�
ICEþ½RE�Ω

E2F release from Rb‐E2F complex due to its phosphorylation
mediated by the CycE‐Cdk2 complex

V5 E2F → E2F − 1 dE½E2F�Ω E2F degradation

V6

E2F → E2F − 1
R→ R − 1
RE→ REþ 1

kRE½R�½E2F�Ω Rb‐E2F complex formation

V7 R→ R þ 1 kRΩ Rb integrated production

V8
R→ Rþ 1
RP→ RP − 1

kDP ½RP�
IRPþ½RP�Ω

Rb production due to the dephosphorylation of RP

V9
R→ R − 1
RP→ RPþ 1

kp1 ½CD�½R�
ICDþ½R�

Ω CycD‐Cdk4/6 complex phosphorylation of Rb

V10
R→ R − 1
RP→ RPþ 1

kp2 ½CE�½R�
ICEþ½R�

Ω CycE‐Cdk2 complex phosphorylation of Rb

V11 R→ R − 1 dRΩ Rb degradation

V12 RP→ RP − 1 dRP½RP�Ω RP degradation

V13 RE→ RE − 1 dRE½RE�Ω RE degradation

V14 Myc→Myc þ 1 kM ½S�
KSþ½S�

Ω Myc production owing to an external serum stimulation

V15 Myc→Myc − 1 dM½Myc�Ω Myc degradation

V16 CD→ CD þ 1 kCD ½Myc�
IMþ½Myc�Ω

Myc drives CycD‐Cdk4/6 complex activation and formation

V17 CD→ CD þ 1 kCDS ½S�
KSþ½S�

Ω CycD‐Cdk4/6 complex activation and formation facilitated by
the external serum signal (S)

V18 CD→ CD − 1 dCD½CD�Ω CycD‐Cdk4/6 complex degradation

V19 CE→ CE þ 1 kCE ½E2F�
IEþ½E2F�

Ω CycE‐Cdk2 complex activation and formation by E2F

V20 CE→ CE − 1 dCE½CE�Ω CycE‐Cdk2 complex degradation
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deterministic model. The average value of [E2F] as a function
of Ω is plotted in Figure 3, and it decreases monotonously
with increasing of Ω.

These results here all together demonstrate that there exists
a moderate noise intensity above which E2F is in the high‐
frequency oscillation to elevate [E2F] (hence proliferation)
and below which E2F switches off to quiescence. Our results
rhyme with previous findings that if the volume is excessively
increased, it results in reduced E2F expression levels (Figure 3),
which consequently leads to quiescence, and if this is pro-
longed, it might result in senescence [66].

3.2 | Effects of time delay in E2F itself τ1

The cumulative time ofE2F under the regulation of time delay τ1
was firstly explored in Figure 4. The serum signal [S] = 0.8 μM
was chosen, since this concentration is significant enough to
elevate the E2F to the ‘on’ state at a large cell volume that would
otherwise cause quiescence when at [S] = 0.3 μM in Figure 2. To
emphasize this delay's effect, we consider a very small internal
noise intensity at Ω = 500. It is clearly shown in Figure 4 that
increasing time delays postpone the rising time of E2F with all
the trajectories raised to approximately the same maximum
[E2F] level. It indicates how time delay regulates the E2F acti-
vation time to enable the cell exit quiescence, intimating on
cellular quiescence depths. For deeper quiescence, longer acti-
vation times of E2F will be required to proliferate the cells from

this state [43, 67]. As previously demonstrated, switching E2F
from ‘off ’ to ‘on’ positively correlates with transition from deep
or shallow quiescence. Also, cells have a higher E2F switching
threshold during deeper quiescence under the same growth
conditions [53]. We can ratify that deeper quiescent cells also
exhibit delayed E2F activation, hence delayed DNA replication
is observed compared to cells in shallow quiescence. Delay times

F I GURE 2 Time evolutions of [E2F] at different system volumes under a low serum signal [S] = 0.3. Noise is inversely proportional to cell volume, and at
moderate volume size (Ω = 200), the transitions between high and low steady states are very obvious. When the volume size is big (Ω = 500), the noise level is too
small to induce switching to the ‘on’ state. The [E2F] fluctuates around the ‘off’ state. The red line in the inset is the time evolution from the deterministic model

F I GURE 3 E2F expression levels. The average value of [E2F]
decreases with the increase of system volume under a low serum signal
[S] = 0.3
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could facilitate the lock‐in strategy proposed in cancer therapy
where cancer stem cells can be maintained in the G0 state to
prevent tumour growth and metastasis [68]. But the final con-
centration of E2F changes not with the increase in delays.
Therefore, time delay does not change the final E2F concen-
tration but in a high steady‐state.

Then, we sought to examine the influence of the delay time
on the average value of [E2F ] at a low steady‐state for different
intrinsic noise levels. The serum growth signal chosen is low
beyond the bistability region that is, [S] = 0.3 μM. Hence, as
shown in Figure 2, without involvement of a stimulant such as
some noise level, the expression level of E2F stays at the ‘off’
state. From Figure 5, it is clearly seen that the average value of
[E2F ] changes slightly with the increase of time delay at small
(Ω = 50, Ω = 100) and big (Ω = 300) system volumes. These
volumes correspond to high and low noise levels respectively.
However, the trend changes remarkably with increasing delay
time at medium noise level that is, system volume at Ω = 200.
Firstly, E2F0s average value was slightly increased with time
delay to a maximum by approximately 7 h. Then, it dramati-
cally decreases to a minimum value by around 15 h. Finally, it
increases again to almost a constant value (τ1 > 20 h). These
results concretise the fact that only at moderate noise intensity,
time delay causes significant changes in the dynamics of
average E2F concentrations.

Next, we focus on the dynamic behaviour of the system
when the volume is Ω = 200. Time courses of [E2F] are plotted
for different time delay values, as shown in Figure 6. The resi-
dence times for which the system stays at high and low stable
states are longer at τ1 = 7 than at τ1 = 0. Increasing the time delay
to τ1 = 10 does not increase the residence time further but ini-
tiates the appearance of pulse‐like oscillations. Low steady‐state
and pulse oscillation state coexist at τ1 = 15, and the amplitude of
the oscillations begins to increase. From τ1 = 20 to τ1 = 50, the
system is in an oscillation state. With the increase of time delay,

the oscillation becomes more regular and the oscillation period
becomes larger. Comparison of the state change from τ1 = 0 to
τ1 = 15 and from τ1 = 20 to τ1 = 50, are obvious differently.
Therefore, we choose τ1 = 15 as the critical delay value and
discuss the behaviour of the system in the case of small‐time
delay (≤15) and large delay (>15). From our results, we can
demystify the existence of a certain delay time value belowwhich
E2Fexpression levels in off and on states are sustainably distinct
and above which, the system goes into absolute oscillation.
However, the two steady states coexist at this critical value.

Since the toggle between different states corresponds to
different phenotypes, it is expedient to obtain relative depth or
order of the metastable states through a quasi‐potential func-
tion U(x), where the variable x here refers to [E2F ] [69]. To
calculate the potential U, CLEs were run for 50,000 h to get a
steady‐state histogram of [E2F ]. The simulation time is long
enough, so we get a smooth steady‐state probability distribu-
tion (PS). Then the quasi‐potential as per Kwon et.al approach
[53] is defined as:

Uð½E2F �Þ ¼ −In Ps þ In Psad ð11Þ

Where Psad is the steady‐state distribution at the saddle
point. It is clearly shown in Figure 7 that there is a typical peak
between two troughs in the landscape, which corresponds to
an unstable state of E2F, the saddle point. With such a func-
tion, it is possible to explicitly illuminate the probability and
direction of transition between the stable states in a noisy or
stochastic system [69–71]. There are two troughs in the E2F
landscape, one corresponding to E2F 'off' state (left Uoff) and
the other one corresponding to the 'on' state (alright Uon).
Quiescence is associated with E2F 'off' state, while the acti-
vation and cell cycle entry are associated with a high concen-
tration level of E2F, that is, E2F 'on' state. Besides, there is a
common peak in the landscape, which corresponds to an

F I GURE 4 The time evolution of E2F for different time delays for
Ω = 500 (low noise intensity) at constant serum signal concentration
[S] = 0.8. Longer time delays stretch the rising time to shoot up the E2F
expression to the ‘on’ state without altering the final E2F concentration
level

F I GURE 5 The average value of [E2F] as a function of time delay
under different system volumes/noise levels at a low serum signal
concentration [S] = 0.3. At moderate noise intensity when Ω = 200, the
average E2F changed remarkably with the increasing delay time
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F I GURE 6 Time evolutions of [E2F] at different time delay at system volume Ω = 200, at a constant low serum signal concentration [S] = 0.3. From τ1 = 0
to τ1 = 10, there are transitions between ‘on’ and ‘off ’ states. At τ1 = 15, oscillation state begins to emerge. From τ1 = 20 to τ1 = 50, typical oscillations only with
changes in amplitude

F I GURE 7 The system's quasi‐potential landscape at different delays for system volume Ω = 200, [S] = 0.3. (a) Small time delay cases: τ1 = 0 (black line)
has the deepest quiescent well (corresponding to ‘off ’ state). Depth of other delay time does not differ so much in the ‘off ’ state. For τ1 = 10 (orange line) and
τ1 = 15 (blue line), the depth in the ‘on’ state distinctly differs. Deeper potential barriers in the E2F‐on states than the ‘off ’ state for all time delays except for
τ1 = 15. (b) Big time delay cases: No palpable difference in depths between the steady states corresponding to different time delay values. Inset: enlargement of
the ‘on’ troughs, the location of the ‘on’ trough shift to the high value of E2F from delay time τ1 = 15 (blue line) to τ1 = 30 (magenta line)
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unstable state of E2F. This unstable state can be considered
as the saddle point of the potential Usaddle. Then, the po-
tential barrier for E2F activation from the ‘off ’ state is given
by ΔUAct = Usaddle−Uoff. The potential barrier for E2F inac-
tivation from the ‘on’ state is given by ΔUInact = Usaddle−Uon.
The deeper the potential trough, or the higher the potential
barrier, the harder the steady state transition [53]. Kwon et al.,
2017 illustrated that the depth of quiescence regulated by Cdk
inhibition rate affects cell cycle re‐entry and correlates with the
relative change in quasi‐potential [53].

Here, we categorised delay times as small (i.e. τ1 ≤ 15) or
big (i.e. τ1 > 15). In the case of small delays, from τ1 = 0 (black
line) to τ1 = 4 (red line) and then to τ1 = 7 (green line) in
Figure 7(a), it can be seen that with the increase of time delay,
the depth of low steady‐state potential trough becomes shal-
lower, while the depth of high steady‐state potential trough
remains unchanged. ΔUAct is smaller when τ1 = 7, so the
system is easier to be activated and thus increased E2F acti-
vation readiness towards cell proliferation. Therefore, the
average value of E2F in Figure 5(c) reaches the maximum value
at τ1 = 7 h.

When the time delay approaches the critical delay, see
τ1 = 10 (orange line) and τ1 = 15 (blue line) in Figure 7(a), the
depths of the ‘off ’ state are almost similar to that of τ1 = 7.
While the trough at the ‘on’ state is becoming shallow, with
τ1 = 15 reaching the most superficial state, it results in the
decrease of the inactivation barrier potential, ΔUInact. It
signifies an increase in the abilities of E2F switching back to
the ‘off ’ state. Therefore, the probability that E2F stays at the
‘on’ state decreases, and the average value of E2F reaches the
lowest value in Figure 5(c). Besides, the depth of the two
troughs is shallow and is very similar at τ1 = 15. It indicates
that switching between the ‘on’ and ‘off ’ states is easy under
this delay, and oscillations began to appear. Thus, the system
dynamics change from longer residence times in stable states
to oscillation with increased time delay.

In the case of big time delays, there is no obvious differ-
ence in depth of the troughs on either the 'off' or 'on' states
with different delay times in Figure 7(b). The depth of the two
troughs of all quasi‐potential curves is shallow and approxi-
mately the same. Therefore, switching E2F between 'on' and
'off' states is easy, and the whole system is in the oscillation
state. But analysing the ‘on’ state at an enlarged scale in
Figure 7(b) inset, it is evident that the location of the 'on'
trough shifts to a higher value of E2F at τ1 = 30 (magenta line)
than at τ1 = 15 (blue line). It explains why the average of E2F
goes up from τ1 = 15 to τ1 = 30 in Figure 5 (green line with
stars). All put together, the delay in E2F itself does not destroy
the bistability of E2F but fine‐tune its expression level.

To qualitatively determine the value of delay at which the
system is set into periodic oscillation, we calculated the power
spectra of the time series for the different τ1 values. The power
spectra were computed from 500 averages of the power spectra
for the time series of [E2F] with length 16,384 using a fast
Fourier transform. It is shown in Figure 8(a) that at small τ1
values (0‐10), no peak was obtained. Hence no oscillations are
invoked. As the delay increased to τ1 = 15 (blue line in Figure 8
(b)), a small peak emerges, which characterises the onset of
periodic oscillations. The height of the peak grows with an
increasing value of τ1 in Figure 8(b). Actually, from the power
spectrum, τ1 = 50 (brown line) forms the highest peak. In
addition, by comparing the power spectra at τ1 = 20 (magenta
line) with τ1 = 50 (brown line) in Figure 8(b), it is found that
the frequency corresponding to the highest peak is decreased.

3.3 | Effects of time delay in CE τ2

Next, we sought to examine the influences of the delay time τ2
on the average value of [E2F ]. Similarly, the serum growth
signal is chosen low beyond the bistability region at
[S] = 0.3 μM. From Figure 9, it can be clearly seen that the

(a) (b)
F I GURE 8 Power spectra of [E2F] at different
delays for system volume Ω = 200, [S] = 0.3. Small τ1
values (0‐10) no peak observed. Big τ1 (15‐50), peak
starts to appear and its value increases steadily with
delay value, a manifestation of increase in periodic
oscillation
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average value of [E2F ] decreases with the increase in time delay
at small Ω = 50 (black line with rectangles) and big Ω = 300
(blue line with triangles) system volumes. Moreover, when
Ω = 300, the average value of [E2F ] is very close to 0, indi-
cating that it has been in the low steady‐state and cannot transit
to the high steady‐state. It increases slightly with the increase
of delay time at Ω = 100 (red line with open circles). Inter-
estingly, it increases remarkably at medium system volume, see
at Ω = 200 (green line with stars). From τ2 ¼ 0 to τ2 ¼ 6, the
average value of [E2F] increased rapidly with the delay, and
then, when τ2 > 6, it remained in a high expression level almost
unchanged. Medium system volume Ω = 200 corresponds to
moderate intensity of internal noise. Therefore, there is a
synergistic effect between noise and delay, making the system
stay in the ‘on’ state.

We focus on the dynamic behaviour of the system when
the volume is Ω = 200. Time courses of [E2F] are plotted for
different time delays, as shown in Figure 10. In the comparison
of time evolutions, at τ2 = 2 and τ2 = 0, it can be seen that the
addition of a small delay can significantly increase the residence
times. It is consistent with the conclusion of reference [72] that
the increasing delay can stabilise the bistable gene network.
Increased time delay to τ2 = 5, to τ2 = 10, and then to τ2 = 20
does not increase the residence time further but destabilised
the bistability. The system is preferred to stay at a high steady‐
state. A big time delay τ2 = 50, approximate regular transitions
between ‘on’ and ‘off ’ states but not oscillations as in the τ1
case appear. However, it is obvious that the high steady‐state's
residence time is longer than for the low steady‐state.

The system's quasi‐potential landscapes under the regula-
tion of different time delays for four system volume are shown
in Figure 10. Though at small (Ω = 50) and big (Ω = 300)
system volumes, increasing time delay will reduce the average
[E2F] similarly (as shown in Figure 9). The shapes of the quasi‐
potential function U(x) change differently with the increasing
delays in Figure 11(a), (b), and (d). When τ2 increases from 0 to

5 in Figure 11(a), the trough for the low steady‐state disap-
pears. It means that an increase in τ2 causes the system to lose
bistability, and E2F is always at a high expression level. While
for the big system cases in Figure 11(d), an increase in τ2 causes
the system to lose bistability, and E2F is always at a low
expression level.

The shape of U(x) changes complicatedly as time delay
changes at medium system volume Ω = 200 in Figure 11(c).
Slightly increasing time delay to τ2 = 2 (red line in the inset of
Figure 11(c)) causes the trough depth to deepen and widen. It
implies that an increase in time delay to τ2 = 2makes the system's
transition between the potential troughs more difficult. Time
delay stabilised the bistability of the E2F gene regulate network
[72]. Increasing the delay further to τ2 = 5, to τ2 = 10, to τ2 = 20,
and then to τ2 = 50 facilitates the high steady‐state. Conse-
quently, the average value of [E2F] is maintained at a high
expression level in Figure 9 (green line with stars).

Similarly, we calculated the power spectra of the time series
for the different τ2 values. It is clearly shown in Figure 12 that
for all the different τ2 values, the power spectra peaks are
either very minimal or nothing at all. Therefore, increasing this
type of delay will not induce oscillation. Anyway, as observed
in Figure 10, no oscillations were created by this kind of delay.

3.4 | Effects of time delay in E2F and CE

Next, we consider the two delays simultaneously, that is,
consider the delay between E2F transcriptional dynamics and
activity dynamics. The average value of [E2F] versus delay time
τ1&τ2 under different system volumes are shown in Figure 13. In
the case of small volume Ω = 50, Ω = 100 and large volume
Ω= 300, the variation of average [E2F] with two delays is similar
to that of τ2 considered alone. However, at moderate noise level,
that is, Ω = 200, the curve is increased first and then decreased.
The change of average [E2F] with delay is similar to resonance.
Moreover, the range of delays (3‐13 h), which induced the high
expression level of E2F, coincides with the experimental range
byDong et al., (for the transcriptional delay is in the range 6‐20 h
and for the delay between E2F's transcriptional dynamics and
E2F's activity is in the range of 0‐10 h) [65]. Therefore, this range
of delays is physiologically meaningful.

Time courses of [E2F] are plotted for different time delays
at system volume Ω = 200, as shown in Figure 14. The resi-
dence times in ‘on’ and ‘off ’ states are extended by adding
small delays, see τ1&τ2 = 0 and τ1&τ2 = 2. Increased time
delays to τ1&τ2 = 10 do not increase the residence time further
but destroyed the bistability. The system is preferred to stay at
a high steady‐state. These [E2F] changes with the increasing
delay times τ1&τ2 were similar to those of τ2 alone. However,
when τ1&τ2 = 15, the situation is different. There are fast and
nearly periodic transitions between high and low steady‐states
that begin to appear. These are transitions but not oscillation as
in the case where τ1 regulates alone in Figure 6 for τ1 = 15.
Increased time delay to τ1&τ2 = 20 and to τ1&τ2 = 50 in-
creases the period of the transiting, and the residence time of
high steady‐state is increased.

F I GURE 9 The average value of [E2F] as a function of time delay τ2
under different system volumes, [S] = 0.3. At moderate volume, Ω = 200, the
average E2F increased markedly with delay time
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F I GURE 1 0 Time evolutions of [E2F] at different τ2 at system volume Ω = 200, [S] = 0.3. From τ2 = 0 to τ2 = 2, the transitions between ‘on’ and ‘off’
states are decreased, that is, increasing delay increases the residence times in ‘on’ and ‘off’ stable states. From τ2 = 5 to τ2 = 20, the value of [E2F] fluctuates
randomly near the high steady state. At τ2 = 50, it begins to transit a little regularly between high and low steady‐states

(a)

(c) (d)

(b)

F I GURE 1 1 The system's quasi‐potential landscapes at different time delays for four system volumes, [S] = 0.3. (a) Small system volume cases: Ω = 50,
increasing the delay destroys the bistability of the system, and only the high steady‐state exists at τ2 ¼ 5hr (green line). (b) system volume: Ω = 100, similar to
small volume cases, and only the high steady‐state exists at τ2 ¼ 5hr (green line). (c) medium volume cases: Ω = 200, increasing the delay to τ2 ¼ 2hr (red line)
stabilised the bistability of the system (Inset: enlargement of τ2 ¼ 0 (black line) and τ2 ¼ 2). However, big delays stabilised the high steady‐state, see τ2 ¼ 5 (green
line), τ2 ¼ 10 (blue line), τ2 ¼ 20 (claret line) and τ2 ¼ 50 (orange line). (d) Big system volume cases: Ω = 300, increasing the delay destroys the bistability of the
system, and only the low steady‐state exists at τ2 ¼ 2hr (red line)
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Figure 15 depicts the quasi‐potential U(x) for four system
volumes and different delay times. Small (Ω = 50, 100) and big
(Ω = 300) system volumes, and the variation of quasi‐potential
U with the increase of delay is similar to that of τ2 alone. At
medium system volume Ω = 200, increasing the delays to τ1 &
τ2 = 2(red line) deepens both troughs. Delays stabilised the
bistability of the system. Increasing the delay to τ1 & τ2 = 5 h
(Inset: green line) and τ1 & τ2 = 10 h (blue line) makes the
trough of high steady‐state more profound. It means that
increasing the delay is beneficial to a high steady‐state. How-
ever, further increasing delay times to τ1 & τ2 = 15 h (magenta
line) and τ1 & τ2 = 50 h (orange line) makes the two potential
troughs change significantly, the low steady‐state potential
trough becomes deeper, and the high steady‐state potential
trough becomes shallower. At τ1 & τ2 = 50 h, the depth of the
two troughs is very close. It implies that the transitions

between high and low steady‐states become easier. This cor-
responds to Figure 13, when τ1 & τ2 is greater than 15 h, the
average value of E2F begins to decrease.

The power spectra of the time series for the different τ1 &
τ2 values are shown in Figure 16. It was evident that no peaks
were created for small τ1 & τ2 values (0‐10), which explains the
absence of oscillations for such small delays seen in Figure 14.
However, an increase in delay values say at τ1 & τ2 = 15(blue)
is enough to cause periodic oscillations. A delay value of τ1 &
τ2 = 20 (magenta) shown in Figure 16 produced the highest
peak, which is very similar to periodic oscillation. For the
biggest delay τ1 & τ2 = 50 (brown), the peak value of the
power spectra decreases, and the periodicity decreases. At the
same time, the frequency corresponding to the peak is
decreasing, as observed in Figure 14.

4 | CONCLUSIONS AND DISCUSSION

Noise and delays can play pivotal roles in regulating the
functions of genes. Based on the stochastic Rb‐E2F model, the
effects of internal noise and time delay on the E2F's dynamics
related cell cycle system have been investigated. It was found
that the internal noise will induce the switching between 'on'
and 'off' states when the external stimulation is set in the
bistable region. The bigger the noise, the more frequent are the
switches, and the higher will be the average [E2F ].

At the moderate intensity of internal noise, when Ω = 200,
adding different time delays in the system can significantly
change the average value of [E2F ]. Especially when the delay is
added to the Cyclin E synthesis rate, increasing the delay to
τ2 > 3hr can greatly increase the average concentration value of
E2F. When the delay is considered in both E2F‐related positive
feedback loops, within a specific range of delay (3‐13)hr, the
average expression of E2F was significantly increased, also this
range is in the scope given experimentally by Dong et al. [65].

(a) (b)
F I GURE 1 2 Power spectra of [E2F] at different
delays for system volume Ω = 200, [S] = 0.3. With
the same scale along the y‐axis as in Figure 8.
Generally, almost no peak or very minimal peaks
formed at all τ2 values, which implies no or marginal
periodic oscillations occurs

F I GURE 1 3 The average value of [E2F] as a function of two delays
under different system volumes, [S] = 0.3. At moderate system volume,
Ω = 200, the average E2F increased remarkably with delay time
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F I GURE 1 4 Time evolutions of [E2F] at different τ1 & τ2 at system volume Ω = 200, [S] = 0.3. From τ1 & τ2 = 0 to τ1 & τ2 = 2, the transitions between
‘on’ and ‘off’ states are decreased, that is, increasing delay increases the residence times in ‘on’ and ‘off’ stable states. At τ1 & τ2 = 10, [E2F] are occasionally
transmitted to low steady‐state. At τ1 & τ2 = 15, [E2F] are transited frequently between ‘on’ and ‘off’ states. At τ1 & τ2 = 20, it is distinct that the frequency of
transiting is decreased. At τ1 & τ2 = 50, the residence time of high steady‐state is increased, and the frequency of transiting is decreased further

(a)

(c) (d)

(b)

F I GURE 1 5 The system's quasi‐potential landscapes at different time delays τ1 & τ2 for four system volumes, [S] = 0.3. (a) and (b) Small system volume
cases: increasing the delay destroys the bistability of the system, and only the high steady‐state exists at τ1 & τ2 = 5hr (green line). (c) Medium volume cases:
Ω = 200, increasing the delay to τ1 & τ2 = 2hr (red line) stabilised the bistability of the system (Inset: enlargement of τ1 & τ2 = 0 (black line) and τ1 & τ2 ¼ 2).
Big delays stabilised the high steady‐state, see τ2 ¼ 5 (Inset: green line), τ1 & τ2 = 10 hr (blue line). However, further increasing delay times to τ1 & τ2 ¼ 15hr
(magenta line) and to τ1 & τ2 = 50 hr (orange line) induce transitions between ‘on’ and ‘off ’ steady‐states. (d) Big system volume cases: Ω = 300, increasing the delay
destroys the bistability of the system, and only the low steady‐state exists at τ1 & τ2 = 2hr (red line)
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By analysing the quasi‐potential curves at different delay times, it
was found that whether it is under the regulation of τ2 or under
the regulation of τ1 & τ2 simultaneously, increasing the time
delays will experience: small delay which stabilises the bistable
system; the medium delay that favours high steady‐state condi-
tions, thereby making the system fluctuate near the high steady‐
state; large delay induces approximately periodic transitions
between high and low steady‐state.

Our exploration of the effects of noise and delay is based
on Yao's model [60], which uses the Michaelis–Menten (MM)
rate law to describe the key interactions of E2F during the G1/
S cell cycle transition. Results from Yao's model are qualita-
tively in good agreement with those in their experimental work.
Besides, Yao et al. also give a minimum network structure with
which the system bistability can be maintained [73]. Also, some
other study points out the critical parameters that control the
activation threshold of this kind of network switch [53].
However, Segel and Slemrod [74] spotlighted that only when
the enzyme concentration is low enough to the substrate,
quasi‐steady state approximation (QSSA) [75] can be used to
simplify the full mass‐action rate laws to the MM rate laws.
Recent studies [76–79] have shown that the concentrations of
transcription factors (TFs), kinases, phosphatases, inhibitors,
etc., in protein interaction networks are usually comparable.
Therefore, it is risky to use an MM rate law to describe the
interactions between TFs and gene promoter regions and
describe the interaction between ligands and receptors. Instead,
Kim et al., 2020 [80] suggested that the total quasi‐steady state
approximation (tQSSA) model is accurate for any combination
of substrate and enzyme concentrations. Future work is best to
confirm the experimental basis of MM rate law's validity
condition in the E2F‐Rb cell cycle network.

Then, by converting the protein concentration to its number
of molecules, it gives a good approximation of Gillespie's sto-
chastic simulation method, so CLEs are adopted in our paper.
However, Kim et al. [81] show that the accuracy of such

stochastic QSSA is determined by timescale separation and by
the sensitivity of the QSSA solution at the same time. Further-
more, by using both theory and simulations, James and Roman
show that Hill functions in describing transcriptional regulation
are only valid in a fast promoter switching condition [82].
Stochastic (tQSSA) ismore accurate than the stochasticQSSA. It
is difficult to find an analytical solution of the tQSSA of the
complex E2F‐Rb network, Kim and partners' [80] excellent
work on a single substrate enzyme‐catalysed reaction system
hints that in the future, we can make use of the tQSSA to get the
simplified model from the full detailed model based on mass‐
action kinetics.

In general, the previous work showed that cell quiescence
depth is controlled by the activation threshold of an Rb‐E2F
gene switch [53], that is, the barrier of activation in the quasi‐
potential landscape. Different components (parameters) in the
network have different effects on the threshold of the switch.
However, in our work, we find that the time delay also adjusts the
troughs' depth remarkably. Although the delay in our simulation
is artificially added, an experiment by Dong et al. pointed out
that there is a delay between E2F transcriptional and activity
dynamics [65]. Our work may be helpful to explain some future
experimental results intricacies related to the cell cycle.
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