
Retinol-binding protein 4 (RBP4) is a novel adipokine 
(adipose-derived cytokine) that is clinically associated 
with obesity, insulin resistance, type 2 diabetes (T2DM), 
and cardiovascular disease [1-11]. In addition, patients with 
proliferative diabetic retinopathy (DR) have increased serum 
RBP4 levels compared to diabetic patients with mild or no 
retinopathy [12,13], which raises the possibility that RBP4 
is somehow involved in the pathogenesis of DR. We demon-
strated previously that RBP4 elevation induces inflamma-
tion in primary human retinal microvascular endothelial 
cells (HRECs) and human umbilical vein endothelial cells 

(HUVECs) by increasing the expression of proinflammatory 
cytokines, chemokines, and adhesion molecules, including 
interleukin 6 (IL-6), monocyte chemoattractant protein 
(MCP-1), endothelial cell selectin (E-selectin), vascular cell 
adhesion molecule 1 (VCAM-1), and intracellular adhesion 
molecule 1 (ICAM-1) [14]. We have also shown that RBP4-
induced endothelial inflammation is retinol independent and 
involves activation of nuclear factor κB (NF-κB) [14]. In the 
present study, we used HRECs as a model system to learn 
more about the cell receptor and signaling pathways that 
modulate the proinflammatory activity of RBP4.

The upstream mechanisms of RBP4-induced endo-
thelial (HREC) inflammation are unclear. We have shown 
that the primary RBP4 receptor, stimulated by retinoic acid 
gene 6 (STRA6), is not expressed in HRECs or HUVECs 
[14]. Therefore, RBP4 must activate an alternative receptor 
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Purpose: Elevation of serum retinol-binding protein 4 (RBP4) induces inflammation in primary human retinal mi-
crovascular endothelial cells (HRECs) via a retinol-independent mechanism; thus, it may play a causative role in the 
development and progression of vascular lesions in diabetic retinopathy (DR). Since HRECs do not express the classical 
RBP4 receptor, stimulated by retinoic acid gene 6 (STRA6), this study focuses on identifying the endothelial cell receptor 
and signaling that mediate RBP4-induced inflammation.
Methods: HRECs were treated with a toll-like receptor 4 (TLR4) small molecule inhibitor (Cli95, also known as 
TAK-242), TLR4 neutralizing antibody, or mitogen-activated protein kinase (MAPK) inhibitors before treatment with 
purified recombinant RBP4. The HREC inflammatory response was quantified by in vitro leukostasis assays, western 
blotting, and enzyme-linked immunosorbent assay (ELISA). To understand how the serum binding partner for RBP4, 
transthyretin (TTR), may affect RBP4 activity, we also measured RBP4 and TTR levels in serum and retinal lysates 
from RBP4-Tg and wild-type mice.
Results: TLR4 inhibition significantly reduced RBP4-induced expression of pro-inflammatory proteins and in vitro 
leukostasis. RBP4 treatment significantly increased phosphoactivation of p38 and c-Jun N-terminal protein kinase (JNK). 
The p38 inhibitor (SB203580) attenuated RBP4-stimulated vascular cell adhesion molecule 1 (VCAM-1), intracellular 
adhesion molecule 1 (ICAM-1), monocyte chemoattractant protein (MCP-1), and interleukin 6 (IL-6) production, while 
the JNK inhibitor (SP600125) reduced RBP4-stimulated sICAM-1, endothelial cell selectin (E-selectin), and MCP-1 
production. The MAPK inhibitors only showed partial (50–70%) suppression of the RBP4-stimulated proinflamma-
tory response. Moreover, TLR4 inhibition did not decrease RBP4-induced MAPK phosphoactivation, suggesting that 
RBP4-mediated MAPK activation is TLR4 independent and occurs through a secondary unknown receptor. We also 
found that the RBP4/TTR molar ratio was exceptionally high in the retina of RBP4-Tg mice, indicating an abundance 
of TTR-free RBP4.
Conclusions: RBP4-induced inflammation is largely mediated by TLR4, and in part, through JNK and p38 MAPK 
signaling. The high TTR/RBP4 molar ratio in serum likely protects the endothelium from the proinflammatory effects 
of RBP4 in vivo, whereas elevation of serum RBP4 causes a significant increase in TTR-free RBP4 in retinal tissue. This 
offers insight into how RBP4-Tg mice can develop retinal neurodegeneration without coincident retinal microvascular 
pathology.
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signaling pathway to induce endothelial inf lammation. 
Others have shown that RBP4 impairs insulin signaling in 
adipocytes indirectly by inducing proinflammatory cyto-
kines in macrophages through retinol-independent, toll-like 
receptor 4 (TLR4)- and c-Jun N-terminal protein kinase 
(JNK)-dependent signaling pathways [15]. Moreover, in 
mice overexpressing RBP4 (Gene ID: 5950, OMIM 180250; 
RBP4-Tg), RBP4 triggers adipose tissue inflammation and 
insulin resistance via the activation of antigen-presenting 
cells in adipose tissue through a JNK-dependent pathway 
that does not involve STRA6 [16]. Thus, the present study 
investigated whether TLR4 mediates RBP4-induced endothe-
lial inflammation by using a selective TLR4 antagonist small 
molecule inhibitor (Cli95, also known as TAK-242), TLR4 
neutralizing antibody, and specific inhibitors targeting the 
p38, JNK, and extracellular signal-regulated kinase (ERK) 
mitogen-activated protein kinases (MAPKs) to evaluate the 
effect of blocking TLR4 and its downstream signaling on 
RBP4-induced endothelial inflammation.

METHODS

Purified RBP4: Recombinant human histidine (His)-tagged 
RBP4 was expressed in Escherichia coli and purified as 
described previously [14], with some modifications to 
improve protein yield and quality. The cDNA encoding 
human RBP4 was subcloned into a pBAD-His expression 
vector (Invitrogen, ThermoFisher Scientific, Waltham, MA) 
to ensure tight induction control of RBP4 expression. E. coli 
strain BL21-A1 cells, transformed with the pBAD-His-RBP4 
expression vector, were induced by addition of 0.2% (w/v) 
arabinose in working volumes of 2–4 l and grown overnight. 
His-tagged RBP4 was purified as described previously [14]. 
Briefly, cells were harvested by centrifugation at 4,000 ×g.  
Cell pellets were resuspended in lysis buffer (50 mM Tris, pH 
7.5, 2 mM EDTA, 1 mM 4-(2-aminoethyl)benzenesulfonyl 
fluoride hydrochloride (AEBSF), 0.1% Triton X-100).  The 
cell suspension was sonicated 5 times for 20 seconds, freeze-
thawed twice and centrifuged at 10,000 ×g for 25 min to pellet 
the insoluble fraction. The insoluble pellet fraction was solu-
bilized in 5 M guanidine hydrochloride containing 10 mM 
dithiothreitol with vigorous stirring at room temperature 
(RT) for 6 h and then batch bound overnight at 4 °C to nickel 
resin. Following purification of His-RBP4 by nickel affinity 
chromatography, the protein underwent oxidative refolding, 
as previously described [14]. For purification of retinol-bound 
(holo) RBP4 (holo-RBP4), an approximately 10-fold molar 
excess of retinol was included in the refolding buffer, and all 
steps after the addition of retinol were performed in a dark 
room lit by dim red light. After refolding, the protein was 

exchanged through dialysis into PBS (1.8 mM KH2PO4, 10 
mM Na2HPO4, 137 mM NaCl, 2.7 mM KCl) and purified by 
size exclusion chromatography (SEC) to select fractions of 
properly folded His-RBP4, which constituted approximately 
80% of the nickel-purified protein. Samples were concen-
trated before SEC using a 50-ml stirred cell (Amcion catalog 
no. 5122, Millipore; Billerica, MA) with an Ultracel 10 kDa 
Ultrafiltration Disk (Millipore catalog no. 13622, Millipore), 
to a final volume of approximately 10 ml under 30 psi N2. All 
SEC was performed on a Hitachi Chromaster system using a 
SuperDex 200 10/300GL column (GE Healthcare catalog no. 
17517501, GE Healthcare Life Sciences, Marlborough, MA) 
and following ultraviolet (UV; 260 nm, 280 nm, and 330 nm) 
and refractive index signals. Retinol-free (apo) His-tagged 
RBP4 (His-apo-RBP4) was used for the studies illustrated 
in Figure 1, Figure 2, and Figure 3 to ensure that all RBP4 
activity was retinoid independent, although similar results 
were obtained with retinol-bound His-holo-RBP4 protein. 
As in our previous study, we tested the level of endotoxin 
contamination in purified RBP4 protein and found that it 
was below the level of endotoxin present in the PBS solvent 
used for dissolving RBP4 and negative control protein bovine 
serum albumin (BSA).

HREC culture: Primary HRECs were obtained from the 
Cell Systems Corporation (Kirkland, WA) and cultured in 
EGM-MV (Promocell, Germany) at 37 °C in 5% CO2 and 
95% air. The cells were grown and maintained on collagen 
I–coated tissue culture plates from Corning Life Sciences 
(Kennebunk, ME). For the experiments, HREC confluent 
monolayers were incubated in endothelial cell basal media 
with 2% (v/v) fetal bovine serum (FBS) for 8–16 h to induce 
quiescence. All experiments were conducted using HRECs 
at passages 4 to 11, as we confirmed that cells maintained 
similar viability up to passage 11 (data not shown). TLR4 
receptor inhibitor and MAPK inhibitor studies were 
conducted by preincubating cells with the inhibitors for 2 h 
before the addition of RBP4 at 100 µg/ml. TLR4 chemical 
inhibitor Cli95 (aka TAK-242), TLR4 neutralizing antibody 
TLR4 neutralizing monoclonal antibody (mAb), and control 
immunoglobulin G (IgG) were purchased from InvivoGen 
(San Diego, CA). The MAPK inhibitors SP600125, SB203580, 
and U0126 were purchased from Cell Signaling Technology 
Inc. (Danvers, MA).

Culture of THP-1 cells and in vitro leukostasis assay: The 
human monocytic cell line (THP-1) was obtained from 
the American Type Culture Collection (Manassas, VA) 
and cultured in Roswell Park Memorial Institute (RPMI) 
1640 medium containing 10% (v/v) FBS and 0.05  mM 
β-mercaptoethanol. Leukocyte adhesion assay was performed 
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Figure 1. Chemical inhibition of toll-like receptor 4 (TLR4) blocks retinol-binding protein 4 (RBP4)-induced endothelial inflammation. 
A: TLR4 expression in human retinal microvascular endothelial cells (HRECs) with and without treatment with 100 µg/ml RBP4 or the 
molar equivalent of bovine serum albumin (BSA) for 24 h. B: Interaction between TLR4 and adaptor molecule MyD88 in HRECs with and 
without RBP4 treatment for 30 min was analyzed with immunoprecipitation (IP) and immunoblotting. Expression of TLR4 and MyD88 was 
analyzed by immunoblotting using total cell lysates. C and D: Western blot and densitometry analyses of vascular cell adhesion molecule 
1 (VCAM-1) protein expression in HRECs treated with RBP4 in the absence or presence of a 2-h preincubation of TLR4 chemical inhibitor 
Cli95. Bar graph data represent the mean ± standard deviation (SD) of three independent experiments. E-I: Enzyme-linked immunosorbent 
assay (ELISA)-based quantification of soluble extracellular levels of (E) VCAM-1, (F) intracellular adhesion molecule 1 (ICAM-1), (G) 
endothelial cell selectin (E-selectin), (H) monocyte chemoattractant protein (MCP-1), and (I) interleukin 6 (IL-6) in HREC media. J: 
Representative phase-contrast images of leukocyte adhesion to HRECs after the indicated treatment. Data are representative of four separate 
experiments. Magnification: 20×. K: The number of leukocytes adhering to HRECs was counted in four randomly selected visual fields (20× 
objective) for each treatment group. **, p<0.01; ***, p<0.001 versus BSA; #, p<0.05; ##, p<0.01; ###, p<0.001 versus RBP4; $$$, p<0.001 
versus lipopolysaccharide (LPS) by one-way analysis of variance (ANOVA) with Tukey’s post hoc test.
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Figure 2. Neutralizing antibody against toll-like receptor 4 (TLR4) reduces retinol-binding protein 4 (RBP4)-induced endothelial inflamma-
tion. A-E: Human retinal microvascular endothelial cells (HRECs) were exposed to TLR4 neutralizing antibody (mAb) or control immuno-
globulin G (IgG) at 10 µg/ml for 2 h, followed by RBP4 treatment for 24 h. Cell media were collected for enzyme-linked immunosorbent 
assay (ELISA)-based quantification of soluble extracellular levels of (A) vascular cell adhesion molecule 1 (VCAM-1), (B) intracellular 
adhesion molecule 1 (ICAM-1), (C) endothelial cell selectin (E-selectin), (D) monocyte chemoattractant protein (MCP-1), and (E) interleukin 
6 (IL-6). F: Representative images of monocyte adherence to HRECs after the indicated treatment. Data are representative of three separate 
experiments. Magnification: 20×. G: Adherent monocytes were counted in four randomly selected visual fields (20× objective) for each 
treatment group. ***, p<0.001 versus bovine serum albumin (BSA); #, p<0.05; ##, p<0.01; ###, p<0.001 versus RBP4 by one-way analysis 
of variance (ANOVA) with Tukey’s post hoc test.
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Figure 3. Activation of p38 and c-Jun N-terminal protein kinase (JNK) at least partially mediates the effects of retinol-binding protein 4 
(RBP4) on cytokine production in human retinal microvascular endothelial cells (HRECs). A-C: RBP4 triggers phosphoactivation of (A) 
p38, (B) JNK, and (C) extracellular signal-regulated kinase (ERK) in HRECs for the indicated times from 10 min to 2 h. SFM: serum-free 
media only. D-F: Quantification of experiments shown in panel A-C. Phosphorylated proteins in each immunoblot are normalized to total 
protein content of the respective protein. Values are means ± standard error of the mean (SEM), n=3. *, p<0.05; **, p<0.01; ***p<0.001, versus 
SFM by one-way analysis of variance (ANOVA) with Tukey’s post hoc test. G-K: HRECs were pretreated with U0126 (ERK1/2 inhibitor, 10 
μM), SB203580 (p38 inhibitor, 10 μM), and SP600125 (JNK inhibitor, 50 μM) for 2 h before incubating with RBP4 for 24 h; culture media 
were then collected for enzyme-linked immunosorbent assay (ELISA) -based quantification of soluble extracellular levels of (G) vascular 
cell adhesion molecule 1 (VCAM-1), (H) intracellular adhesion molecule 1 (ICAM-1), (I) endothelial cell selectin (E-selectin), (J) monocyte 
chemoattractant protein (MCP-1), and (K) interleukin 6 (IL-6). *, p<0.05; **, p<0.01; ***p<0.001, versus bovine serum albumin (BSA); 
#, p<0.05; ##, p<0.01; ###, p<0.001 versus RBP4 by one-way ANOVA with Tukey’s post hoc test. L: HRECs were pretreated with Cli95 
(0.5 µM) for 2 h before addition of RBP4 or LPS as a positive control for 24 h. Cell lysates were analyzed by western blotting as indicated.
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as previously described [14]. Briefly, HRECs were grown to 
confluence in six-well plates and treated in serum-starved 2% 
(v/v) FBS medium with BSA or RBP4 for 20 h with or without 
a 2 h preincubation with TLR4 inhibitors. THP-1 monocytes 
were seeded at 1.25 million cells/well and co-cultured with 
HRECs for 3 h. Unbound THP-1 monocytes were thoroughly 
removed by gently washing 3X with PBS, and cells were 
fixed in 4% (v/v) paraformaldehyde for 10 min. Adherent 
monocytes were photographed using phase-contrast micros-
copy at a magnification of 20×, and they were counted/scored 
in at least four random fields for each treatment.

ELISAs: HREC culture media were collected after the 
indicated treatments, centrifuged at 10,000 ×g for 2 min 
to remove cell debris, and stored at −80 °C. Expression of 
proinflammatory molecules in cell culture supernatant was 
determined by sandwich enzyme-linked immunosorbent 
assay (ELISA) according to the manufacturer’s instructions. 
ELISA kits from R&D Systems, Inc. (Minneapolis, MN) 
were used to measure soluble extracellular levels of VCAM-1 
(catalog no. DY809), ICAM-1 (catalog no. DY720), MCP-1 
(catalog no. DY279), IL-6 (catalog no. DY206), and E-selectin 
(catalog no. DY724).

Immunoprecipitation and western blot analysis: Cell extracts 
were prepared by homogenization in lysis buffer containing 
50 mM Tris, pH 7.4, 40 mM NaCl, 1 mM EDTA, 50 mM 
NaF, 10 mM Na4P2O7, 10 mM sodium β-glycerol phosphate, 
0.5% (v/v) Triton X‐100, and 100× phosphatase and protease 
inhibitor cocktail, as described previously [17]. Cell debris 
was removed by centrifugation, the supernatant was collected, 
and protein concentration was determined by Bradford assay. 
A total of 1 mg of protein was incubated with the MyD88 
antibody (catalog no. 4283, Cell Signaling Technology; 
Danvers, MA). Immunoprecipitates were washed 5X with 
lysis buffer, boiled in Laemmli buffer (100 mM Tris, pH 6.8 
RT, 200 mM dithiothreitol, 4% (w/v) sodium dodecyl sulfate 
[SDS], 0.2% (w/v) bromophenol blue, 1 mM 4-(2-aminoethyl)
benzenesulfonyl fluoride hydrochloride (AEBSF), 20% (v/v) 
glycerol) for 5 min, and analyzed by western blotting.

For western blot analysis, cells or tissues were lysed 
in Laemmli buffer, resolved by SDS–polyacrylamide gel 
electrophoresis (PAGE), and subjected to immunoblotting 
analysis with the indicated antibodies. The following anti-
bodies were used: from from Santa Cruz Biotechnology 
(Dallas, TX), TLR4 (catalog no. sc-293072), β-actin (catalog 
no. sc-47778), and VCAM-1 (catalog no. SC-8304); from 
Cell Signaling Technology, JNK (catalog no. 9258), (P) JNK 
(phospho-Thr183/Tyr185; catalog no. 4668), p38 (catalog no. 
8690), (P) p38 (phosphor-Thr180/Tyr182; catalog no. 4511), 
ERK, (catalog no. 4695), and (P) ERK (phosphor-Thr202/

Tyr204; catalog no. 4370); and from Novus Biologicals 
(Littleton, CO), GAPDH (catalog no. NB300–221). Band 
intensities were normalized to β-actin or GAPDH and quanti-
fied using UVP analyzing software (BioSpectrum® Imaging 
System, UVP, Upland, CA).

Mice: RBP4-Tg mice, which overexpress human RBP4 under 
control of the mouse muscle creatine kinase (MCK) promoter 
on a C57BL/6J background, have been described previously 
[18], and the animals were kindly provided by Loredana 
Quadro. All animal studies were approved by the Institu-
tional Animal Care and Use Committee of the University of 
Oklahoma Health Sciences Center (OUHSC) and adhered to 
the Association for Research in Vision and Ophthalmology 
(ARVO) Statement for the Use of Animals in Ophthalmic 
and Vision Research. Mice were fed a standard chow diet 
(Labdiet 5001) ad libitum. This diet contained a sufficient 
amount of vitamin A (15 IU g−1). All studies were performed 
on age-, sex-, and strain-matched wild-type controls. Both 
sexes were used in all studies, and no sex-dependent differ-
ences in phenotype were observed.

Mouse serum was collected by superficial temporal 
vein puncture from live mice that had fasted for 6 h. Retinal 
tissue was dissected after mice were euthanized by CO2 
asphyxiation and quickly perfused with PBS at a flow rate 
of 8 ml/min for 3 min to remove blood cells. Retinas were 
rapidly collected using Winkler’s method, snap frozen, and 
stored at −80 °C. The retinas were suspended in lysis buffer 
(50 mM Tris-HCl, pH 7.8, 0.1 M NaCl, 5 mM EDTA, 0.1% 
[w/v] SDS, 1 mM 4-(2-aminoethyl) benzenesulfonyl fluoride 
hydrochloride, 0.1% (w/v) Triton X-100, 2.5% [v/v] glycerol) 
and sonicated on ice at a 20% intensity for two rounds of 5 
s each. Insoluble material was removed by centrifugation, 
and the protein concentration was determined by Bradford 
colorimetric assay. ELISA kits for mouse TTR (catalog no 
IRKTAH1161; Innovative Research, Novi, MI), mouse RBP4 
(catalog no MRB400; R&D Systems, Minneapolis, MN), 
and human RBP4 (catalog no DRB400; R&D Systems) were 
used to quantify target molecules in serum and retina lysates. 
RBP4 and TTR levels in retina lysates were normalized 
according to the total retinal protein content in each sample.

Statistical analysis: Data are presented as mean ± standard 
deviation (SD). Statistical analyses were conducted using 
Prism 4 software (La Jolla, CA) with one-way analysis 
of variance (ANOVA) using Tukey’s post hoc analysis to 
compare differences among three or more groups. A value of 
p<0.05 was accepted as significant.
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RESULTS

RBP4-induced endothelial inflammation is TLR4-dependent: 
We first examined TLR4 protein expression in HRECs by 
western blot. We observed abundant expression of TLR4 in 
HRECs, and RBP4 treatment did not change the expression 
level of TLR4 protein (Figure 1A). Next, we sought to deter-
mine whether RBP4 activates TLR4 signaling in HRECs. 
TLR4 is known to signal via binding interaction with an 
adaptor protein, MyD88 [19,20]. Therefore, we performed 
coimmunoprecipitation (co-IP) to assess whether RBP4 
treatment promotes MyD88 binding to TLR4. We observed 
increased interaction between TLR4 and MyD88 in HREC 
lysate at 30 min after RBP4 treatment (Figure 1B), suggesting 
that RBP4 activates MyD88-dependent TLR4 signaling in 
HRECs. To further address whether TLR4 is the membrane 
receptor that mediates RBP4-induced inf lammation in 
HRECs, we applied a specific chemical inhibitor of TLR4, 
Cli95, which is a small molecule that binds to the intracel-
lular domain of TLR4 at cysteine-747 and inhibits TLR4 
adaptor protein–protein interaction and signaling [21,22]. 
Cli95 significantly decreased RBP4-mediated induction of 
cellular VCAM-1 protein (Figure 1C,D) and reduced extracel-
lular soluble protein levels of VCAM-1, ICAM-1, E-selectin, 
MCP-1, and IL-6 (Figure 1E-I). Similarly, pretreatment with 
TLR4 neutralizing antibody, but not control IgG, significantly 
blocked RBP4-mediated induction of proinf lammatory 
factors (Figure 2A-E).

We previously showed by in vitro leukostasis assays that 
RBP4-induced expression of proinflammatory genes leads 
to increased monocyte adherence on HREC monolayers [14]. 
Herein, we performed in vitro leukostasis assays to quantify 
the net effect of TLR4 inhibition on RBP4-induced inflamma-
tion. Consistent with our previous findings, HRECs treated 
with RBP4 (100 µg/ml), or lipopolysaccharide (LPS) as a 
positive control, showed significantly increased leukostasis 
compared to negative controls (Figure 1J,K; p<0.001; n=4). 
RBP4-induced leukostasis was significantly inhibited in 
HRECs pretreated with TLR4 chemical inhibitor (Figure 
1J,K) or TLR4 neutralizing antibody (Figure 2F,G), demon-
strating that RBP4-induced HREC inflammation is largely 
TLR4-dependent.

RBP4 induces proinf lammatory molecules through the 
activation of JNK and P38 signaling: Previous studies have 
shown that stimulation of TLR4 can initiate phosphorylation 
of three MAPKs, namely JNK, p38, and ERK, which leads 
to subsequent cytokine secretion [23]. Other studies have 
revealed that RBP4 causes insulin resistance in adipocytes 
by inducing proinflammatory cytokines in macrophages 
through a JNK- and TLR4-dependent mechanism [15]. To 

determine whether RBP4 activates the MAPK signaling 
pathway to promote inflammation in HRECs, we measured 
the phosphoactivation of MAPKs by western blot. Within 
30–120 min of RBP4 treatment, HRECs exhibited signifi-
cantly increased phosphoactivation of p38 (Figure 3A,D) and 
JNK (Figure 3B,E). Phosphorylated ERK1/2 showed a trend 
toward increased expression at 10–30 min, but this did not 
reach statistical significance (Figure 3C,F).

To further investigate the role of MAPK signaling path-
ways in RBP4-mediated cytokine production, we employed 
specific inhibitors of p38, JNK, and ERK. The p38 inhibitor 
(SB203580) attenuated RBP4-stimulated sVCAM-1, sICAM-1, 
MCP-1, and IL-6 production, while the JNK inhibitor 
(SP600125) reduced RBP4-stimulated sICAM-1, E-selectin, 
and MCP-1 production (Figure 3G-K). The ERK inhibitor 
(U0126) only showed inhibitory effect on sICAM-1 produc-
tion (Figure 3H). The MAPK inhibitors only showed partial 
(50–70%) suppression of the RBP4-stimulated proinflam-
matory response (Figure 3G-K). Moreover, TLR4 inhibition 
does not decrease RBP4-induced MAPK phosphoactivation 
(Figure 3L), suggesting that RBP4-mediated MAPK activa-
tion is TLR4 independent and occurs through a secondary 
unknown receptor. Taken together, these results suggest that 
RBP4-induced endothelial inflammation is mediated in part 
through the activation of the JNK and p38 pathways.

The RBP4 level exceeds the binding capacity of transthyretin 
in neuronal retinal tissue: Our previous study found no 
retinal microvascular pathology in RBP4-Tg mice aged up to 
6 months [24], which is perplexing, as the data herein and in 
our previous study [14] clearly showed that RBP4 can induce 
endothelial inflammation in cultured HRECs. In plasma, 
RBP4 (95%) is mostly found in a complex with its carrier 
transthyretin (TTR), which increases its molecular mass, 
thereby preventing its removal by glomerular filtration [25]. 
Previous studies reported that association with TTR can 
stabilize RBP4 and block receptor binding and subsequent 
activation of cell signaling [26,27]. TTR is normally present 
in three- to fivefold molar excess to RBP4 in human [26,28] 
and rodent serum [24]. We speculated that the high molar 
ratio of TTR/RBP4 in serum, which is maintained even in 
RBP4-Tg mice (Figure 4B), facilitates TTR-mediated inhibi-
tion of RBP4 pro-inflammatory activity to protect endothe-
lium, including the retinal microvasculature, in vivo.

Intriguingly, our previous study found that RBP4-Tg mice 
have early-onset progressive retinal neurodegeneration [24]. 
We have previously shown that RBP4-Tg mice have a ~7-fold 
increase in retinal RBP4 level relative to wild-type mice [24]. 
Thus, to address whether TTR-mediated inhibition of RBP4 
proinflammatory activity is possible in the neuronal retina, 
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we measured the level of TTR present in perfused retinal 
neuronal tissue lysates from wild-type and RBP4-Tg mice. 
The TTR levels in RBP4-Tg retinas were similar to those in 
wild-type mice (Figure 4A), meaning that retinal tissue has an 
extremely high RBP4/TTR molar ratio (about 70) in RBP4-Tg 
mice (Figure 4B). This suggests that the increased levels of 
RBP4 present in the retina of RBP4-Tg mice may promote 
retinal neurodegeneration due to the lack of TTR-mediated 
inhibition of RBP4.

DISCUSSION

Recent studies revealed that RBP4 is a proinflammatory 
adipokine associated with obesity [1,2], insulin resistance 
[1-6], cardiovascular disease [7-11], and T2DM and its micro-
vascular complications [2,6,13,29]. While a proinflammatory 
effect of RBP4 has been implicated in these diseases, the 
underlying cellular mechanisms are not understood. TLR4 
and other receptors involved in the innate immune response 
recognize damage-associated molecule patterns (DAMPs) 
from endogenous proteins that are elevated due to stress, 
inflammation, and cell death. Recent studies have shown that 
the retinol-independent proinflammatory activity of RBP4 in 
adipose tissue is mediated through TLR4 activation [15,16]. 
The data herein showed that TLR4 inhibition significantly 
blocked RBP4-induced expression of proinflammatory genes, 
including VCAM-1, ICAM-1, IL-6, MCP-1, and E-selectin, 
in HRECs. We also observed phosphoactivation of MAPK 

signaling in response to RBP4 treatment, and MAPK inhibi-
tors significantly reduced RBP4-mediated expression of 
proinflammatory genes. Thus, this is the first study to show 
that RBP4-induced inflammation in HRECs is largely medi-
ated by TLR4, and in part, through JNK and p38 MAPK 
signaling.

RBP4 induces phosphoactivation of p38 and JNK, and 
inhibitors of p38 and JNK activation can partially inhibit 
RBP4-induced inflammation in HRECs. However, p38 and 
JNK inhibitors were not as effective in reducing RBP4-
induced production of proinflammatory molecules as TLR4 
inhibitors were. Moreover, inhibition of TLR4 did not block 
RBP4-mediated phosphoactivation of p38 and JNK (Figure 
3L). These data indicate that p38 and JNK phosphoactivation 
is mediated through an alternative receptor to TLR4, and 
that this signaling pathway acts secondarily to the TLR4-
dependent pathway to promote inflammation in HRECs. The 
receptor for advanced glycation end-products (RAGE) is a 
likely candidate for this alternative RBP4 receptor in HRECs. 
RAGE is expressed in endothelial cells [30] and activates p38 
and JNK signaling to induce inflammation [31-33]. More-
over, RAGE is known to interact and crosstalk with TLR4 
(reviewed in [34]). Therefore, it may be that maximal RBP4 
proinflammatory action is mediated by cooperative binding 
and activation of the RAGE/TLR4 complex. Indeed, this 
could explain why the chemical TLR4 inhibitor Cli95 was 
more effective at blocking RBP4-induced inflammation 

Figure 4. The retinol-binding protein 4 (RBP4)/transthyretin (TTR) molar ratio is extremely high in neuronal retina tissue. A: TTR levels 
in perfused retinal neuronal tissue lysates from wild-type and RBP4-Tg mice were measured by enzyme-linked immunosorbent assay 
(ELISA). B: RBP4/TTR molar ratio in mouse serum versus retina. RBP4-Tg and WT mice aged 10 weeks (serum samples) and 6 months 
(retinal lysate) was used to measure RBP4 and TTR levels by ELISA. Values are mean ± standard deviation (SD); n≥5 mice per genotype. 
Student’s t-test confirms that the means in panel B have a statistical difference between wild-type and RBP4-Tg of p< 0.01 for the retina, 
and p <0.001 for serum.
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(Figure 1C-K) compared to the TLR4 neutralizing antibody 
(Figure 2), since Cli95 blocks cellular signaling activation 
[21,22], whereas the antibody can only block ligand-mediated 
activation of TLR4, but ligand activation of a TLR4/RAGE 
complex through binding to RAGE may still be intact.

A substantial body of research has shown that TLR4 is 
expressed in a variety of ocular tissues and plays an important 
role in protection against microbial infection [35-38]. In the 
retina, TLR4 is primarily expressed in microglial cells, but 
it can also be detected in photoreceptors and Müller cells 
[39-41]. TLR4 activation promotes retinal degeneration by 
increasing neuroinflammation, oxidative stress, and mito-
chondrial DNA damage [42-44]. Moreover, TLR4 deficiency 
can reduce retinal degeneration [45]. We have previously 
shown that RBP4-Tg mice have early-onset progressive 
retinal degeneration that features neuroinflammation [24]. 
Thus, RBP4 may be activating TLR4 in the retina to promote 
neurodegeneration. Most retinal cells also express RAGE, 
and RAGE is involved in the pathogenesis of DR, including 
retinal neurodegeneration [46-48]. Thus, future studies in 
RBP4-Tg mice should investigate whether TLR4 or RAGE 
contributes to RBP4-induced retinal neurodegeneration.

Interestingly, our previous study found no retinal 
vascular pathology in RBP4-Tg mice aged up to 6 months, 
despite significant retinal neurodegeneration [24]. Under 
normal physiological conditions, most RBP4 (95%) circulates 
in plasma in a complex with TTR at a 1:1 molar ratio, and 
only a small fraction can be found in serum as TTR-free 
RBP4 [26]. In addition, serum TTR levels exceed RBP4 
levels, even in RBP4-Tg mice (Figure 4B). Thus, the high 
TTR/RBP4 molar ratio in serum likely inhibits RBP4 proin-
flammatory activity in the retinal vasculature. However, we 
showed that increased serum RBP4 levels in RBP4-Tg mice 
result in an increased level of TTR-free RBP4 in the neuronal 
retina (Figure 4B). Therefore, TTR-mediated inhibition of 
RBP4 activity is largely restricted to the vascular compart-
ment, whereas in peripheral tissues, such as the retina, 
TTR-free RBP4 is likely more active. This may explain why 
RBP4-Tg mice have early-onset retinal neurodegeneration 
but no detectable retinal microvascular abnormalities up to 
6 months of age.

It is well documented that retinal neurodegeneration 
precedes retinal microvascular disease in DR [49-74]; there-
fore, future studies in aged RBP4-Tg mice should determine 
whether retinal microvascular pathology occurs subsequent 
to retinal neurodegeneration during aging, since RBP4-
mediated retinal neurodegeneration could act as an initial 
trigger to promote both neuronal and vascular damage in DR. 
Moreover, since elevated RBP4 levels have been clinically 

linked to proliferative DR [12,13], as well as cardiovascular 
disease [7-9,75], it may be that additional factors, such as 
hyperglycemia, dyslipidemia, or systemic inflammation, can 
enhance RBP4 proinflammatory action on the endothelium. 
Notably, RBP4-Tg mice have normal bodyweight, blood 
glucose, and triglyceride levels [24]. Thus, RBP4-Tg mice 
may develop more severe retinal microvascular disease than 
wild-type mice in response to a high-fat diet or genetically 
or experimentally induced diabetes, although this requires 
further investigation. Surprisingly, we found that neither db/
db nor streptozotocin (STZ)-induced diabetic mice develop 
elevated serum RBP4 levels by 6 months of age (unpublished 
data, not shown). This finding reveals that elevation of RBP4 
is not essential for the development of DR, since both db/db 
and STZ mice develop characteristics of DR before 6 months 
of age in the absence of RBP4 elevation [76-86]. However, 
it is unclear how an elevated serum RBP4 level, which is 
present in a large portion of diabetic patients based on clinical 
studies [1-6], may affect the progression of DR. Thus, further 
studies should utilize db/db and STZ mice in conjunction 
with RBP4-Tg mice to investigate how elevated serum RBP4 
affects the progression and severity of DR.
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