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Abstract. To develop vaccines it is mandatory yet challenging to account for inter-individual variability during immune
responses. Even in laboratory mice, T cell responses of single individuals exhibit a high heterogeneity that may come from
genetic backgrounds, intra-specific processes (e.g. antigen-processing and presentation) and immunization protocols.

To account for inter-individual variability in CD8 T cell responses in mice, we propose a dynamical model coupled to a
statistical, nonlinear mixed effects model. Average and individual dynamics during a CD8 T cell response are characterized
in different immunization contexts (vaccinia virus and tumor). On one hand, we identify biological processes that generate
inter-individual variability (activation rate of naive cells, the mortality rate of effector cells, and dynamics of the immunogen).
On the other hand, introducing categorical covariates to analyze two different immunization regimens, we highlight the steps
of the response impacted by immunogens (priming, differentiation of naive cells, expansion of effector cells and generation
of memory cells). The robustness of the model is assessed by confrontation to new experimental data.

Our approach allows to investigate immune responses in various immunization contexts, when measurements are scarce
or missing, and contributes to a better understanding of inter-individual variability in CD8 T cell immune responses.

Keywords: ODE dynamical model, nonlinear mixed effect models, inter-individual variability, immune response, CD8 T
cells

1. Introduction

The immune response is recognized as a robust sys-
tem able to counteract invasion by diverse pathogens
[1, 2]. However, as a complex biological process,
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the dynamical behavior of its cellular components
exhibits a high degree of variability affecting their dif-
ferentiation, proliferation or death processes. Indeed,
the abundance of antigen-specific T cells and their
location relative to pathogen invasion will affect
the dynamics of the response [2–4]. Similarly, the
pathogen load and virulence as well as the host innate
response will affect the T cell response [5]. Finally, at
the cellular level, between-cell variations in protein
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Fig. 1. CD8 T cell counts after vaccinia virus (VV) immunization in mice. Naive CD44-Mki67-Bcl2+ cell counts (upper left), Early Effector
CD44+Mki67+Bcl2- cell counts (upper right), Late Effector CD44+Mki67-Bcl2- cell counts (lower left), and Memory CD44+Mki67-Bcl2+
cell counts (lower right) are measured in 59 individuals over 47 days. Measurements of three different mice are highlighted in blue, green
and red, whenever they are available. All other measurements are in grey.

content can also generate heterogeneous responses
[6]. Genetic variability of the numerous genes con-
trolling the immune response will also be a source of
variability among individuals [1]. Even among genet-
ically identical individuals, the response to the same
infection can result in highly heterogeneous dynam-
ics [7–9].

Cytotoxic CD8 T cells play an essential role in the
fight against pathogens or tumors as they are able to
recognize and eliminate infected or transformed cells.
Indeed, following encounter of antigen-presenting
cells loaded with pathogen or tumor derived antigens,
in lymphoid organs, quiescent naive CD8 T cells will
be activated. This leads to their proliferation and dif-
ferentiation in effector cells that have acquired the
capacity to kill their targets, and to their ultimate dif-
ferentiation in memory cells [10, 11]. The CD8 T
cell immune response is yet a highly variable pro-
cess, as illustrated by experimental measurements of
cell counts: dynamics of the responses (timing, cell
counts) may differ from one individual to another
[4, 12, 13], but also depending on the immunogen
[3, 7, 9].

The role of genome variability in explaining inter-
individual variations of T cell responses has been
recently investigated [14, 15] but provided limited

understanding of the observed heterogeneity. Li et
al. [15] have focused on correlations between gene
expression and cytokine production in humans, and
have identified a locus associated with the produc-
tion of IL-6 in different pathogenic contexts (bacteria
and fungi). Ferraro et al. [14] have investigated inter-
individual variations based on genotypic analyses of
human donors (in healthy and diabetic conditions)
and have identified genes that correlate with regula-
tory T cell responses.

To our knowledge, inter-individual variability
characterized by heterogeneous cell counts has been
mostly ignored in immunology, put aside by focusing
on average behaviors of populations of genetically
similar individuals. The use of such methodology,
however, assumes that variability is negligible among
genetically similar individuals, which is not true [7,
10, 16], see Figure 1. Experimental measurements of
in vivo immune responses are often limited, due to tis-
sue accessibility. For instance, mice have to be killed
to count CD8 T cell numbers in organs, restricting
the follow-up of one individual to blood sampling.
Also, ethics do not allow everyday bleeding of ani-
mals. Hence measurements in peripheral blood are
often performed on a restricted number of time points
per individual, which probably led to focus more
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on average dynamics rather than on heterogeneous
individual dynamics.

In this work, we propose to model and character-
ize inter-individual variability based on CD8 T cell
counts using nonlinear mixed effects models [17–19].
In these models, instead of considering a unique set of
parameter values as characteristic of the studied data
set, a so-called population approach is used based
on distributions of parameter values. All individuals
are assumed to be part of the same population, and
as so they share a common behavior (average behav-
ior) while they keep individual behaviors (random
effects). Nonlinear mixed effects models are well
adapted to repeated longitudinal data. They aim at
characterizing and understanding “typical behaviors”
as well as inter-individual variations. T cell count
measurements, obtained over the course of a response
(few weeks), and the large variability they exhibit
represent a case study for this approach (see Figure 1).

Nonlinear mixed effects models have been used to
analyze data in various fields [20], especially in phar-
makokinetic studies, and more recently to model cell
to cell variability [21, 22] or to study tumor growth
[23, 24]. In immunology, Keersmaekers et al. [25]
have recently studied the differences between two
vaccines with nonlinear mixed effects models and
ordinary differential equation (ODE) models for T
and B cells. Jarne et al. [26] and Villain et al. [27] have
used the same approach to investigate the effect of IL7
injections on HIV+ patients to stimulate the CD4 T
cell response. None of these works aimed at iden-
tifying immunological heterogeneous processes or
characterizing the between-individual variability in
CD8 T cell responses, rather nonlinear mixed effects
models have been used to characterize the average
behavior of the cell populations and explain the data.

In order to characterize inter-individual variabil-
ity based on experimental cell counts, other methods
could be considered. First, one could try to estimate
individual parameter values by fitting a mathemati-
cal model to individual experimental data. The nature
of the data we consider here, illustrated in Fig-
ure 1, makes this option unrealistic (not enough
data per individual). Another approach could be to
use individual-based models, yet such models also
require to estimate a lot of parameters and individual
data in our case do not provide enough information
per se. Consequently, nonlinear mixed effects models
appear to be the most appropriate method to handle
sparse individual data.

A number of models of the CD8 T cell response
based on ODEs have been proposed over the years.

Of particular relevance here is the work of De Boer
et al. [28], where the model accounts for activated
and memory cell dynamics but the influence of the
immunogen is imposed. Antia et al. [29] proposed
a model based on partial differential equations, that
includes immunogen effects and dynamics of naive,
effector and memory cells. These works describe dif-
ferent subpopulations of CD8 T cells, however most
of the time only total CD8 T cell counts are avail-
able to validate the models. In Crauste et al. [10], the
authors generated cell counts for four subpopulations
of CD8 T cells in mice that they used to identify the
most likely differentiation pathway of CD8 T cells
after immunogen presentation. This approach has led
to a model of the average CD8 T cell dynamics in mice
after immunization and its representation as a set of
nonlinear ODEs. The model consists in a system of
ODEs describing the dynamics of naive, early effec-
tor, late effector, and memory CD8 T cell subsets and
the immunogen.

The goal of this article is to propose, analyze and
validate a mathematical methodology for describing
individual behaviors and the inter-individual variabil-
ity observed in CD8 T cell responses, in different
immunization contexts. We will rely on a dynamical
description of CD8 T cell dynamics, based on a non-
linear model, where parameter values are drawn from
probability distributions (nonlinear mixed effects
model). Starting from the model introduced and vali-
dated in [10], we first select a model of the CD8 T cell
immune response dynamics accounting for variabil-
ity in cell counts by using synthetic then experimental
data, generated in different immunization contexts.
Second we characterize the main biological processes
contributing to heterogeneous individual CD8 T cell
responses. Third, we establish that the immunogen-
dependent heterogeneity influences the early phase
of the response (priming, activation of naive cells,
cellular expansion). Finally, we show that besides
its ability to reproduce CD8 T cell response dynam-
ics our model is able to predict individual dynamics
of responses to similar immunizations, hence pro-
viding an efficient tool for investigating CD8 T cell
dynamics and inter-individual variability.

2. Results

CD8 T cell counts have been previously
experimentally measured and characterized in 4 sub-
populations in Crauste et al. [10]: naive (N), early
effector (E), late effector (L) and memory (M) cells
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(see Section 4.2). Additionally, a mathematical model
has been proposed for the description of these data
and validated in [10]. Therein, System (3) has been
shown to be able to describe average dynamics of
CD8 T cell immune responses, when CD8 T cells go
through the 4 above-mentioned differentiation stages.
In order to describe individual CD8 T cell counts
we couple System (3) to a nonlinear mixed effects
model that accounts for both population and indi-
vidual dynamics. This results in a model of CD8 T
cell response dynamics that includes more param-
eters, consequently when fitting this model to new
data sets it is mandatory to determine whether all
model parameters can be correctly estimated or if
some parameters have to be removed and the ini-
tial model modified. We first perform this analysis
on ideal data, called “synthetic data”, to determine
the minimal number of parameters required to fit the
model to the data. Synthetic data are generated from
simulations of the model, so true parameter values are
known and the estimation procedure is performed in a
controlled framework. Then, in a second time, we per-
form again the analysis on real, experimental data, in
order to adapt our procedure to realistic data. Finally,
we characterize the biological processes depending
on the immunization, and we identify model param-
eters and their corresponding biological processes
that vary the most between individuals. Details of
the methodology are presented in Sections 4.3 to 4.7.

2.1. Model selection on synthetic data

In [10], System (3) introduced in Section 4.3 has
been shown to be able to describe average dynamics
of CD8 T cell immune responses, when CD8 T cells
go through 4 differentiation stages: naive, early- then
late- effector cells, and memory cells (see Section
4.2). Here System (3) is coupled to a nonlinear mixed
effects model, leading model parameters to be drawn
from a probability distribution. Initially we assume
that any parameter can carry inter-individual vari-
ability, then the number of parameters is reduced to
ensure correct estimations on ideal data. Ideal data are
generated by simulating System (3), so parameter val-
ues are known (probability distributions). These data
sets enable to evaluate the potential of the model with-
out data availability-related limitations: we call them
“synthetic data”. Here, synthetic data account for 100
individuals (mice) and measurements are available
every day from D4 to D10, then every 2 days from
D10 to D20, and finally on D25 and D30 pi, see Table
1 and Section 4.6 for details.

Table 1
Data sets (details in Sections 4.2, 4.3 and 4.6)

Short Name Description
VV data
set 1

CD8 T cell counts of 59 individual mice
inoculated intra-nasally with 2 × 105 pfu of a
vaccinia virus (VV) expressing the NP68 epitope
; naive, early and late effector, and memory cell
counts have been measured up to day 47pi (days
4, 6, 7, 8, 11, 13, 15, 18, 22, 27, 28, 32, 47pi
with maximum 15 measurements per time point)

VV data
set 2

Similar to VV data set 1 (15 individual mice) ;
CD8 T cell counts of naive, early and late
effector, and memory cells have been measured
following VV immunization, up to day 42pi
(days 4, 6, 7, 8, 11, 13, 15, 21, 28, 42pi with
maximum 4 measurements per time point)

Tumor data
set 1

CD8 T cell counts of 55 individual mice
subcutaneously inoculated with 2.5 × 106 EL4
lymphoma cells expressing the NP68 epitope ;
naive, early and late effector, and memory cell
counts have been measured up to day 47pi (days
4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 18, 22, 27, 32, 46,
47pi with maximum 15 measurements per time
point)

Tumor data
set 2

Similar to Tumor data set 1 (20 individual mice);
CD8 T cell counts of naive, early and late
effector, and memory cells have been measured
following Tumor immunization, up to day 42pi
(days 6, 7, 8, 11, 13, 15, 21, 28, 42pi with
maximum 5 measurements per time point)

Synth data
sets 1 to 4

Synthetic data sets generated with System (3)
and its subsequent simplifications (see Section
4.6), consisting in CD8 T cell counts of naive,
early and late effector, and memory cells on days
4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30pi for
all 100 individuals

We use Synth data sets 1 to 4 (Table 1) to validate
the parameter estimation procedure. True parameter
values are known and given in Section A1. Parameter
estimation is performed with the SAEM algorithm
implemented in Monolix software [30]. Using a
model selection procedure, based in particular on the
use of the relative standard error (RSE) defined in (4)
that informs on the confidence in the estimation, we
iteratively remove parameters:

μEI (estimated value = 0.2 vs true value = 1.8
cell−1 day−1, RSE = 61%),
μEL (estimated value = 0.3 vs true value = 3.6
cell−1 day−1, RSE = 17%), and
μI (estimated value = 0.013 vs true value =
0.055 day−1, RSE = 9%).

Details of the procedure are explained in Sections 4.5,
4.6, A2 and Table A2.

All removed parameters are related to death rates,
of late effector cells (μEL) and of the immunogen
(μI, μEI ). In each case, the model still accounts for
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Fig. 2. Schematic CD8 T cell differentiation diagram following
immunization. (A) Schematic representation of System (1). (B)
Schematic representation of System (2). Dashed black lines rep-
resent individual-dependent parameters, while straight black lines
(only in (B)) represent parameters fixed within the population.
Grey round-ended dotted lines represent feedback functions (see
systems of equations).

death of late effector cells and of the immunogen,
via parameters μLL and μLI . Nonlinear mixed effects
models avoid redundancy in the description of bio-
logical processes, thus they allow reliable parameter
estimation using synthetic data.

This leads to a reduction of the initial 12-
parameters System (3) to the 9-parameters Sys-
tem (1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + ρEIE − [μEE + δEL]E,

L̇ = δELE − [μLL+ δLM]L,

Ṁ = δLML,

İ = [ρII − μIL] I.

(1)

where all parameters still account for individual vari-
ability (drawn from probability distributions). For the
sake of simplicity the parameters are renamed in Sys-
tem (1): μLL = μL and μLI = μI . Figure 2A displays
a schematic representation of System (1).

2.2. A model of CD8 T cell dynamics accounting
for in vivo inter-individual heterogeneity

Biological data from VV data set 1 (see Section 4.2
and Table 1) are confronted to System (1). Parameter
estimation is performed using the SAEM algorithm
[30] and, following the procedure described in Sec-
tion 4.7, leads to further reduction of the model. Using
in vivo data to estimate parameter values provides a
priori less information than synthetic data: there are
59 individuals instead of 100 for synthetic data, and at
most 15 measurements (15 individuals) at each time
point are available whereas almost all measurements
are available for the 100 individuals in synthetic data.
Hence, it might be necessary to simplify the model
to ensure correct parameter estimations, either mean
values or random effects, similarly to what has been
done in the previous section.

The first step in the model reduction procedure
leads to an estimated value of parameter μL close
to zero (2 × 10−8 cell−1 day−1), with a RSE >

100%, see Table 2, Step 1. Hence parameter μL is
removed, and the estimation is performed again with
the updated model. We observe that all mean value
parameters have now RSE < 30%, so we conclude
that their estimations are reliable (Table 2, Step 2).

In the second step of the procedure however,
several random effects have large RSE and high
shrinkages (Table 2, Step 2 to Step 5). The shrink-
age is defined in (5) as a measure of the difference
between the estimated variance of a parameter and
the empirical variance of its random effect. Parame-
ter δLM has the worst RSE and the largest shrinkage
(99%), so we remove the random effect of δLM . Esti-
mating parameter values with the updated reduced
model leads to removing successively random effects
of δEL (RSE = 138%, shrinkage = 95%), ρE (shrink-
age = 97%), and μN (shrinkage = 84%). At each
step, RSE of mean value parameters are low, and
quality of individual fits is preserved.

The resulting model, System (2) (see Figure 2B),
comprises 8 parameters, 4 of them vary within the
population (δNE, μE, ρI , μI ) and 4 are fixed within
the population (μN , ρE, δEL, δLM):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + [
ρEI − μEE − δEL

]
E,

L̇ = δELE − δLML,

Ṁ = δLML,

İ = [ρII − μIL] I.

(2)
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Table 2
Steps in estimating parameter values using VV data set 1 and System (1). The procedure is detailed in Section 4.7. At Step 1, the procedure
leads to removing parameter μL. At Step 2, the random effect of δLM is removed. At Step 3, the random effect of δEL is removed. At Step 4,
the random effect of ρE is removed. At Step 5, the random effect of μN is removed. At Step 6, no other action is required. Values used to
take a decision are highlighted in bold at each step. In the first column, ‘m.v.’ stands for mean value, RSE is defined in (4), ‘r.e.’ stands for
random effect, and the shrinkage is defined in (5). Note that values (mean values and random effects) of parameters μE, μL, and μI have to

be multiplied by 10−6 (for μE and μL) and 10−5 (for μI ). Units are omitted for the sake of clarity

μN δNE ρE μE δEL μL δLM ρI μI
Step 1
m.v. 0.59 0.002 0.9 5.2 0.13 0.02 0.09 0.08 1.9
RSE 5 30 2 21 11 207 8 7 28
r.e. 0.16 0.8 0.04 0.67 0.1 1.9 0.05 0.2 1.3
RSE 66 36 44 35 567 220 103 25 18
shrinkage 82 76 97 77 98 99 100 62 45
Step 2
m.v. 0.60 0.003 0.9 4.8 0.12 - 0.10 0.09 2.3
RSE 5 29 3 21 10 - 8 6 25
r.e. 0.15 0.8 0.06 0.73 0.2 - 0.05 0.2 1.2
RSE 69 34 71 29 150 - 103 25 17
shrinkage 83 78 94 74 96 - 99 64 47
Step 3
m.v. 0.60 0.001 1.00 5.0 0.12 - 0.10 0.08 2.0
RSE 5 32 1 20 10 - 8 7 29
r.e. 0.16 0.8 0.04 0.67 0.2 - - 0.2 1.3
RSE 55 35 20 31 138 - - 25 18
shrinkage 81 75 98 77 95 - - 63 45
Step 4
m.v. 0.59 0.002 0.9 5.2 0.12 - 0.10 0.09 2.1
RSE 5 29 2 20 11 - 8 6 24
r.e. 0.12 0.9 0.04 0.74 - - - 0.2 1.2
RSE 102 32 47 29 - - - 24 16
shrinkage 89 75 97 72 - - - 63 49
Step 5
m.v. 0.59 0.004 0.8 4.5 0.12 - 0.10 0.09 2.7
RSE 5 32 4 21 11 - 8 6 21
r.e. 0.15 0.8 - 0.85 - - - 0.2 1.0
RSE 72 32 - 24 - - - 23 16
shrinkage 84 73 - 65 - - - 61 57
Step 6
m.v. 0.60 0.001 1.0 5.3 0.12 - 0.10 0.08 1.9
RSE 5 29 0 20 11 - 8 7 27
r.e. - 0.9 - 0.69 - - - 0.2 1.3
RSE - 29 - 28 - - - 23 17
shrinkage - 72 - 75 - - - 62 46

Bars highlight fixed parameters within the popula-
tion. This system enables to describe VV data set 1
and its inter-individual variability (see Figure 3). The
inter-individual variability is entirely contained in the
activation rate of naive cells (δNE), the mortality-
induced regulation of effector cells (μE), and the
dynamics of the immunogen (ρI and μI ).

Figure 3A shows the good agreement between
model predictions and individual measurements for
each CD8 T cell subpopulation. Model predic-
tions are obtained from numerical simulations of
System (2) performed with estimated individual
parameter values. Despite over- or under-estimation
of some individual observations, the 90th percentile

of the difference between observed and predicted
values (dashed line) shows that most experimental
cell counts are efficiently predicted (estimated errors
are relatively small for all subpopulations: aN =
aM = 0.3 log10(cells), aE = aL = 0.4 log10(cells)).
Parameter values are given in Table 3.

Figure 4 shows the estimated dynamics of early-
and late-effector and memory cells of two individuals.
One individual (Figure 4A) was monitored on days
7, 15 and 47pi leading to three measurements points
for late effector cells and two for early effector and
memory cells. Despite missing measurements (mem-
ory cell counts on D7pi, and early effector cell counts
on D47pi), estimated dynamics are in agreement with
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Fig. 3. Experimental and simulated individual cell counts for VV data set 1 (logarithmic scale). (A) Observed vs predicted values. For each
CD8 T cell count experimental point, the prediction is obtained by simulating System (2). Naive (blue), early effector (red), late effector
(green), and memory (purple) cell counts are depicted. Dashed lines represent the 90th percentile of the difference between observed and
predicted values, and the solid black line is the curve y = x. (B) Naive (upper left, blue), early effector (upper right, red), late effector (lower
left, green) and memory (lower right, purple) cell counts up to D47pi. Experimental measurements are represented by colored dots (same
color code), simulated individual trajectories by grey lines, and the average population dynamics by a straight colored line (same color
code).

what is expected, especially regarding the time and
height of the peak of the response and the following
contraction phase. The other individual (Figure 4B)
had cell count measurements only on day 8pi, yet the
estimated dynamics correspond to an expected behav-

ior. This could not have been obtained by fitting this
individual alone. Hence we are able to simulate likely
dynamics even with a small amount of data points and
missing cell count measurements at some time points,
thanks to the use of nonlinear mixed effects models
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Table 3
Estimated parameter values for VV and Tumor data sets 1 (median of log-normal distribution for parameters with random effects, RSE (%)
in parentheses), obtained with System (2), and estimated parameter values from [10] (VV immunization). Estimations have been performed

independently

Parameters Units Estimated Values (RSE%) Values from
VV Tumor Crauste et al.

data set 1 data set 1 [10]
Parameters fixed within the population
μN day−1 0.60 (5) 0.32 (15) 0.75
ρE day−1 1.02 (0) 0.43 (4) 0.64
δEL day−1 0.12 (9) 0.10 (3) 0.59
δLM day−1 0.10 (8) 0.07 (14) 0.03
Parameters varying within the population
δNE day−1 0.001 (29) 0.063 (22) 0.009
ωδNE day−1 0.9 (29) 0.4 (54) -
μE 10−6 cell−1 day−1 5.3 (20) 4.9 (18) 21.5
ωμE 10−6 cell−1 day−1 0.7 (28) 0.2 (78) -
ρI day−1 0.08 (6) 0.11 (3) 0.64
ωρI day−1 0.23 (23) 0.06 (58) -
μI 10−5 cell−1 day−1 1.9 (26) 2.4 (18) 1.8
ωμI 10−5 cell−1 day−1 1.3 (17) 0.6 (22) -
Residual errors
aN cell counts (log10) 0.3 (15) 0.5 (14) -
aE cell counts (log10) 0.4 (10) 0.5 (9) -
aL cell counts (log10) 0.4 (9) 0.6 (8) -
aM cell counts (log10) 0.3 (10) 0.5 (10) -

and the parameter estimation procedure. By focusing
first on the population dynamics (based on a collec-
tion of individual dynamics), the method enables to
recover the whole individual dynamics. This is a huge
advantage when data sampling frequency is low.

Similar good results are obtained for Tumor
data set 1 (see Figure 5 and parameter values in
Table 3). Therefore System (2) enables to describe
inter-individual variability in different immunization
contexts, here VV and Tumor immunizations, and
with only few data points per individual.

Estimated parameter values obtained with Sys-
tem (2) for VV or Tumor data sets are in the same
range as in the estimation previously performed on
average cell counts on a similar experimental set (VV
immunization [10]), see Table 3. Some differences
are observed for estimated values of differentiation
rates, yet for the 3 estimations (VV data set 1, Tumor
data set 1, [10]) parameter values remain in the same
order of magnitude, indicating consistency between
the two studies. Estimated values of parameter δNE
show the largest relative differences. Yet, the largest
difference is observed between VV and Tumor data
sets obtained with System (2), rather than between
these values and the one obtained in [10]. This may
highlight a potential difference in the capacity of the
two immunogens (VV and Tumor) to activate naive
cells. This is investigated in the next section.

2.3. Immunization-dependent parameters

Parameter comparison between immunizations. VV
and Tumor induced immunizations differ in many
aspects. VV immunizations are virus-mediated, use
the respiratory tract to infect cells, and trigger an
important innate response. Tumor immunizations
involve eukaryotic cells bearing the same antigen,
use subcutaneous routes, and induce a reduced innate
response.

From the independent estimations on VV and
Tumor data sets (Table 3), we compute differences
between estimated values of fixed effects. Differences
are large for parameters – in decreasing order – δNE
(62%), ρE (60%), μN (47%), ρI (37%), and δLM
(30%). These large differences may result from bio-
logical processes involved in the CD8 T cell response
that differ depending on the immunogen.

Consequently, combining both data sets (VV and
Tumor) as observations may highlight which parame-
ters have to be significantly different to describe both
data sets.

Parameters depending on immunization. To perform
this analysis, we combine VV and Tumor data sets 1
and we include a categorical covariate into the
model to estimate parameter values (see Section 4.5).
Covariates allow to identify parameter values that are
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Fig. 4. The dynamics of three subpopulations (early effector -
red, late effector - green, memory - purple) are simulated with
System (2) for two individuals. Experimental measurements are
represented by dots, simulations of the model by straight lines.
(A) Individual cell counts have been measured on days 7, 15 and
47pi. (B) Individual cell counts have been measured on day 8pi
only. Although each individual is not characterized by enough
experimental measurements to allow parameter estimation on sin-
gle individuals, nonlinear mixed effects models provide individual
fits by considering a population approach.

significantly different between two CD8 activation
conditions (tumors vs virus).

A covariate is added to the fixed effects of the five
parameters that showed the larger differences in the
initial estimation: δNE, ρE, μN , ρI and δLM . This
results in the estimation of two different parameter
values for parameters ρE,μN and δLM (that are fixed
within the population) and two probability distribu-
tions with different mean values for parameters δNE
and ρI (that vary within the population).

One may note that adding a covariate increases the
number of parameters to estimate. However, the num-
ber of parameters is not doubled, since we assumed
that parameters without covariates are shared by both
immunization groups. In addition, the data set is
larger, since it combines VV and Tumor measure-

ments. Hence the number of parameters with respect
to the amount of data remains reasonable.

From this new estimation, we conclude that among
the five selected parameters the covariates of only
four of them are significantly different from zero:
δNE, ρE, μN , and δLM (Wald test, see Section 4.5).
The estimation is therefore performed a second
time assuming ρI distribution is the same in both
groups. Then the Wald test indicates that the remain-
ing covariates are significantly different from zero
(Table 4).

Figure 6 shows the estimated distribution for
parameter δNE that varies within the population
and for which we included a covariate. Histograms
display the estimated individual parameter values
of δNE. They show two distinct distributions of
δNE values, corresponding to VV (red)- and Tumor
(green)-associated values. The histograms and the
theoretical distributions are in agreement.

Table 4 gives the estimated values of all parame-
ters in both groups. Regarding parameters that do not
vary within the population, it is required for param-
eters μN , δLM and ρE to be different to describe
each data set, and this difference is accounted for
with a covariate parameter. Noticeably, using cate-
gorical covariates mostly improves the confidence in
the estimation, as highlighted by either RSE values
in the same range (μN , ρE) or improved (all other
parameters) RSE values (Tables 3 and 4).

In summary, we identified parameters whose
values are significantly different according to the
immunogen used to activate CD8 T cells. These
parameters correspond to the dynamics of naive cells
(μN ), their activation (δNE), the proliferation of early
effector cells (ρE), and differentiation to memory
cells (δLM). We hence conclude that different immu-
nizations affect the CD8 T cell activation process in
the first phase of the response (priming, activation
of naive cells, expansion of the CD8 T cell popu-
lation) as well as the development of the memory
population. Different immunizations also induce var-
ious degrees of variability in the responses through
the activation of naive cells, and our mathematical
approach quantitatively estimates these degrees of
variability.

2.4. Predicting dynamics following VV and
Tumor immunizations

To challenge System (2) and the estimated param-
eters (Table 4), we compare simulated outputs to an
additional data set, not used for data fitting, of both
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Fig. 5. Experimental and simulated individual cell counts for Tumor data set 1 (logarithmic scale). (A) Observed vs predicted values. For
each CD8 T cell count experimental point, the prediction is obtained by simulating System (2). Naive (blue), early effector (red), late effector
(green), and memory (purple) cell counts are depicted. Dashed lines represent the 90th percentile of the difference between observed and
predicted values, and the solid black line is the curve y = x. (B) Naive (upper left, blue), early effector (upper right, red), late effector (lower
left, green) and memory (lower right, purple) cell counts up to D47pi. Experimental measurements are represented by colored dots (same
color code), simulated individual trajectories by grey lines, and the average population dynamics by a straight colored line (same color
code).

VV and Tumor immunizations, VV data set 2 and
Tumor data set 2 (Table 1 and Section 4.8).

We already know the probability distribution of
parameters (Table 4), so we only estimate individ-
ual parameters in order to fit individual dynamics.
Results are shown in Figure 7, for both VV and Tumor

data sets 2. Individual fits are available in Section
A3. It is clear that estimated individual dynamics are
consistent with previous individual dynamics esti-
mations. Hence, we validate System (2) and values
estimated in both VV and Tumor immunization con-
texts by showing that estimated parameter values



C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice 23

Table 4
Estimated parameter values using combined VV and Tumor data sets 1. Parameters that do not vary within the population are shown in the
upper part of the table, whereas individual-dependent parameters are shown in the central part (mean and standard deviation values). RSE
(%) are indicated in parentheses. Parameters whose values depend on the immunogen (VV, Tumor) are highlighted in grey, and the p-value

characterizing the covariate non-zero value is shown in the last column

Parameters Units VV (RSE%) Tumor (RSE%) p-value
Parameters fixed within the population

μN day−1 0.59 (7) 0.34 (24) 10−5

ρE day−1 0.69 (2) 0.46 (17) 10−9

δEL day−1 0.11 (4) 0.11 (4) -

δLM day−1 0.10 (10) 0.07 (10) 0.01
Parameters varying within the population

δNE day−1 0.006 (24) 0.047 (17) 10−9

ωδNE day−1 0.6 (31) 0.6 (31) -
μE 10−6 cell−1 day−1 4.1 (17) 4.1 (17) -
ωμE 10−6 cell−1 day−1 0.7 (26) 0.7 (26) -
ρI day−1 0.1 (3) 0.1 (3) -
ωρI day−1 0.1 (17) 0.1 (17) -
μI 10−5 cell−1 day−1 2.9 (18) 2.9 (18) -
ωμI 10−5 cell−1 day−1 0.9 (15) 0.9 (15) -
Residual errors
aN cell counts (log10) 0.5 (10) 0.5 (10) -
aE cell counts (log10) 0.5 (7) 0.5 (7) -
aL cell counts (log10) 0.5 (6) 0.5 (6) -
aM cell counts (log10) 0.4 (8) 0.4 (8) -

Fig. 6. Probability distribution of parameter δNE defined with a
covariate. Estimated distributions of VV-associated (left, red) and
Tumor-associated (right, green) values are plotted. Histograms of
estimated individual parameter values are also plotted (red for VV-
associated values, green for Tumor-associated values).

allow to characterize individual CD8 T cell counts
obtained in similar contexts (Figure 7 and Section
A3).

3. Discussion

When following an in vivo immune response,
experimental measurements are often limited by

either ethical issues or tissue accessibility. Conse-
quently, one often ends up measuring cell counts in
peripheral blood on a restricted number of time points
per individual, over the duration of a response (see
Figure 4). Among measurements of a single individ-
ual, cell counts are often missing for one or more
cell subpopulations. With such data, estimation of all
model parameters becomes unlikely. Using nonlin-
ear mixed effects models, we propose a dynamical
model of CD8 T cell dynamics that circumvents this
difficulty by assuming that all individuals within a
population share the main characteristics. Using this
framework, we propose an accurate description of
individual dynamics, even though individual mea-
surements are scarce. Indeed, we are able to obtain
both good fits and relevant dynamics for individuals
with only few cell count measurements, as illustrated
in Figure 4. These results indicate that knowledge
of population dynamics parameters and numerical
simulations complement information given by exper-
imental measurements.

Starting from the model described in Crauste et al.
[10] that could efficiently describe CD8 T cell dynam-
ics, at the level of average population cell-counts in
peripheral blood, we built and validated this nonlinear
mixed effects model in a step-wise fashion. The sys-
tem was first modified to ensure correct parameter
estimation when confronted to ideal, highly infor-
mative data. In a second step, the model was again
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Fig. 7. Observed vs estimated values of individual CD8 T cell
counts for (A) VV data set 2 and (B) Tumor data set 2. Individual
parameter values have been estimated with System (2) and pop-
ulation parameter values and distributions previously defined on
VV and Tumor data set 1. In both figures, naive (blue), early effec-
tor (red), late effector (green), and memory (purple) cell counts
are depicted. Grey points correspond to individual values from
Figure 3A and Figure 5A. The black straight line is y = x.

modified and parameter values estimated by using
experimental measurements generated through a VV
immunization. We next identified parameters – hence
biological processes – that vary between individuals
and explain the between-individual variability, and
other parameters that can be fixed within the popula-
tion to explain biological data (measured in VV and
Tumor immunization contexts). Finally, by includ-
ing a categorical covariate we additionally identified
immunization-dependent parameters.

In order to determine the contribution of each
parameter to inter-individual variability, one could

argue that performing a sensitivity analysis would
shed light on the more sensitive parameters. Even
though model’s output sensitivity to parameters and
contribution of each parameter to individual vari-
ability may be partly related, they are nonetheless
different concepts. Sensitivity analysis would high-
light the influence of a parameter on the population
dynamics, whereas our objective is to reproduce sev-
eral individual outputs (individual dynamics) which
exhibit more or less variability than the average pop-
ulation behavior. Therefore the use of classical tools
like Sobol indices [31] or generalized sensitivity
functions [32] is not adapted to handle the current
question. Hence, we proposed a procedure, based on
estimated errors and the shrinkage, to identify a min-
imal set of parameters (fixed and random effects)
required to describe the data sets. It can be noticed
that the shrinkage, expressed as a ratio of variances
(see (5)), provides an information similar to the one
given by Sobol indices.

Noteworthy, from a biological point of view, the
removal of one parameter during model reduction
(for example, the death rate of late effector cells)
must not be understood as if the corresponding pro-
cess is not biologically meaningful. Rather, based on
the available data, our methodology found that some
processes are non-necessary in comparison with the
ones described by the system’s equations.

Similarly, parameters characterizing immunogen
dynamics vary within the population whereas model
reduction led to remove the variability of equiva-
lent processes (proliferation for instance) in CD8 T
cell dynamics. It is likely that this is due to a lack
of experimental measures on immunogen dynamics
(whether virus load evolution or tumor growth), and
one cannot conclude that inter-individual variability
mostly comes from immunogen dynamics. Informa-
tion on immunogen dynamics, when available, could
significantly improve parameter estimation and help
refining the information on inter-individual variabil-
ity during CD8 T cell responses.

In our biological data, inter-individual variability
is explained only by variability in the activation rate
of naive cells, the mortality rate of effector cells, and
dynamics (proliferation and death) of the immuno-
gen. The former is actually in good agreement with
the demonstration that in diverse infection condi-
tions the magnitude of antigen-specific CD8 T cell
responses is primarily controlled by clonal expansion
[33].

Two of the three differentiation rates (early effec-
tor cell differentiation in late effector cells, and late



C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice 25

Fig. 8. Positive side-effect of using covariates. For two illustrative individuals, accounting for covariates allows to better estimate early
effector cell dynamics: red plain curve with covariate, blue dashed curve without covariate.

effector cell differentiation in memory cells) do not
need to vary to describe our data sets. This robustness
of the differentiation rates is in good agreement with
the auto-pilot model that shows that once naive CD8
T cells are activated their differentiation in memory
cells is a steady process [34, 35].

Eventually, using nonlinear mixed effects models
and an appropriate parameter estimation procedure,
we were able to quantitatively reproduce inter-
individual variability in two different immunization
contexts (VV and Tumor) and provide predictive pop-
ulation dynamics when confronted to another data
set (for both immunogens). This demonstrates the
robustness of the model.

The addition of a categorical covariate allowed
us to identify parameters that are immunization-
dependent. Interestingly they control the activation of
the response (priming, differentiation of naive cells,
expansion of effector cells) as well as the generation
of memory cells. This is again in good agreement with
the biological differences that characterize the two
immunogens used in this study. Indeed, pathogen-
associated molecular patterns (PAMP) associated
with vaccinia virus will activate a strong innate
immune response that will provide costimulatory
signals that in turn will increase the efficiency of
naive CD8 T cell activation [5]. In contrast, when
primed by tumor cells CD8 T cells will have access to
limited amounts of costimulation derived from dam-
age associated molecular patterns [36]. The amount
of costimulation will also control the generation
of memory cells [37]. Focusing on average CD8
T cell behaviors (not shown) highlights stronger
responses following VV immunization, character-
ized by a faster differentiation of naive cells and
a higher peak of the response (at approximately
3 × 105 cells compared to 105 cells for the Tumor

induced response). Also, in average, more memory
cells are produced following VV immunization.
Hence the addition of covariates to the model param-
eters has allowed to identify biologically relevant,
immunogen-dependent parameters.

Using covariates has additional advantages. First,
they allow to consider a larger data set (in our case,
the combination of two data sets) without adding
too many parameters to estimate (4 covariates in our
case). This is particularly adapted to situations where
only some parameters are expected to differ depend-
ing on the data set (here, the immunogen). Second,
and as a consequence, model fits may be improved
compared to the situation where data sets generated
with different immunogens are independently used to
estimate parameters. Figure 8 illustrates this aspect:
dynamics of two individuals are displayed, with and
without covariate. In both cases using the covari-
ate (and thus a larger data set) improved the quality
of individual fits, and in the case of Individual 1
generated more relevant dynamics with a peak of
the response occurring earlier, before day 10pi. No
individual fit has been deteriorated by the use of a
covariate (not shown).

Finally, CD8 T cell response dynamics to both VV
and Tumor immunogens were well captured for data
sets that had not been used to perform parameter esti-
mation (Section 2.4). The behavior of each individual
was estimated with the prior knowledge acquired
on the population (i.e. fixed parameter values and
variable parameter distributions) and proved consis-
tent with previous estimated individual behaviors.
The correct prediction of individual behaviors by the
model, in a simple mice experiment, paves the way
to personalized medicine based on numerical simu-
lations. Indeed, once the population parameters are
defined, numerical simulation of individuals can be
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performed from a few measurements per individual
and consequently would allow to adapt personalized
therapies.

4. Material, methods and models

4.1. Ethics statement

CECCAPP (Lyon, France) approved this research
accredited by French Research Ministry under project
#00565.01.

Mice were anesthetized either briefly by placement
in a 3% isoflurane containing respiratory chamber
or deeply by intraperitoneal injection of a mix of
Ketamin (70 mg/kg) and Xylazin (9 mg/kg). All ani-
mals were culled by physical cervical disruption.

4.2. Data

All data used in this manuscript are available at
https://osf.io/unkpt/?view only=ff91bd89bc32421d
bcbb356c3509ca55.

Experimental Models. C57BL/6 mice (C57BL6/J)
and CD45.1+ C57BL/6 mice (B6.SJL-PtprcaPepcb/
BoyCrl) were purchased from CRL. F5 TCR-tg
mice recognizing the NP68 epitope were crossed to
a CD45.1+ C57BL/6 background (B6.SJL-Ptprca

Pepcb/BoyCrl-Tg(CD2-TcraF5,CD2-TcrbF5)1Kio/
Jmar) [38]. They have been crossed at least 13
times on the C57BL6/J background. All mice were
homozygous adult 6-8-week-old at the beginning of
experiments. They were healthy and housed in our
institute’s animal facility under Specific Pathogen-
Free conditions.

Age- and sex-matched litter mates or provider’s
delivery groups, which were naive of any exper-
imental manipulation, were randomly assigned to
4 experimental groups (of 5 mice each) and co-
housed at least for one week prior to experimentation.
Animals were maintained in ventilated enriched
cages at constant temperature and hygrometry with
13hr/11hr light/dark cycles and constant access to
21 kGy-irradiated food and acid (pH = 3 ± 0.5)
water.

Vaccinia Virus (VV) Immunization. 2 × 105 naive
CD8 T cells from CD45.1+ F5 mice were transferred
by retro-orbital injection in 59, 6-8-week-old, con-
genic CD45.2+ C57BL/6 mice briefly anaesthetized

with 3% isoflurane. The day after deeply Xylazin/
Ketamin-anaesthetized recipient mice were inocu-
lated intra-nasally with 2 × 105 pfu of a vaccinia
virus expressing the NP68 epitope (VV-NP68) pro-
vided by Pr. A.J. McMichael [38].

Tumor Immunization. 2 × 105 naive CD8 T cells
from CD45.1+ F5 mice were transferred by retro-
orbital injection in 55, 6-8-week-old, congenic
CD45.2+ C57BL/6 mice briefly anaesthetized with
3% isoflurane. The day after, recipients were subcu-
taneously inoculated with 2.5 × 106 EL4 lymphoma
cells expressing the NP68 epitope (EL4-NP68) pro-
vided by Dr. T.N.M. Schumacher [39].

Phenotypic Analyses. Mice were bled at intervals of
at least 7 days. Blood cell suspensions were cleared
of erythrocytes by incubation in ACK lysis solution
(TFS). Cells were then incubated with efluor780-
coupled Fixable Viability Dye (eBioscience) to
label dead cells. All surface stainings were then
performed for 45 minutes at 4◦C in PBS (TFS) sup-
plemented with 1% FBS (BioWest) and 0.09% NaN3
(Sigma-Aldrich). Cells were fixed and permeabi-
lized with the Foxp3-fixation and permeabilization
kit (eBioscience) before intra-cellular staining for
one hour to overnight. The following mAbs(clones)
were utilized: Bcl2(BCL/10C4), CD45.1(A20) and
CD45(30-F11) from Biolegend, Mki67(SolA15) and
CD8(53.6.7) from eBioscience, and CD44 (IM7.8.1)
from Miltenyi. Samples were acquired on a FACS
LSR Fortessa (BD biosciences) and analyzed with
FlowJo software (TreeStar).

CD8 T Cell Differentiation Stages. For both immu-
nizations (VV and Tumor), phenotypic cell subsets
based on Mki67-Bcl2 characterization [10] have been
identified and the corresponding cell counts measured
in blood, from day 4 post-inoculation (pi) up to day
47pi (VV and Tumor data sets 1, Table 1). Naive cells
are defined as CD44-Mki67-Bcl2+ cells, early effec-
tor cells as CD44+Mki67+Bcl2- cells, late effector
cells as CD44+Mki67-Bcl2- cells, and memory cells
as CD44+Mki67-Bcl2+ cells [10].

4.3. Models of CD8 T cell dynamics

Initial model. The following system (3) is made of
ODE and describes individual behaviors. This is the
model in [10], it describes CD8 T cell subpopula-
tion dynamics (see Section 4.2, Paragraph CD8 T
Cell Differentiation Stages) as well as the immunogen

https://osf.io/unkpt/?view_only=ff91bd89bc32421dbcbb356c3509ca55
https://osf.io/unkpt/?view_only=ff91bd89bc32421dbcbb356c3509ca55
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load dynamics in primary immune responses, as fol-
lows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + ρEIE − [μEE + δEL]E,

L̇ = δELE − [
μLLL+ μELE + δLM

]
L,

Ṁ = δLML,

İ = [
ρII − μEI E − μLI L− μI

]
I.

(3)

The variables N, E, L and M denote the four
CD8 T cell subpopulation counts, naive, early effec-
tor, late effector, and memory cells respectively (see
Section 4.2), and I is the immunogen load. For
details regarding the construction and validation of
this model we refer the readers to [10]. We hereafter
briefly discuss this model.

The immunogen load dynamics are normal-
ized with respect to the initial amount [10, 40],
so I(0) = 1. The initial amounts of CD8 T cell
counts areN(0) = 104 cells,E(0) = 0,L(0) = 0 and
M(0) = 0.

Parameters δk are the differentiation rates, with
k = NE, EL or LM for differentiation from naive
to early effector cells, from early effector to late
effector cells and from late effector to memory cells,
respectively.

Death parameters are denoted byμk, where k = N,
E and I for the death of naive cells, early effector
cells and the immunogen respectively. Notations μYX
for some mortality-related parameters refer to param-
etersμXY in [10]: the subscriptX refers to the CD8 T
cell population or the immunogen that dies, and the
superscript Y to the CD8 T cell population responsi-
ble for inducing death.

Early and late effector cells are cytotoxic, GrzB+
cells [10], so due to competition for limited resources
(such as cytokines) and fratricidal death [41, 42] we
assumed fratricide killing by CD8 T cells. Conse-
quently the model accounts for effector-cell regulated
death rates of both effector cells and the immunogen
[10, 40]. Natural mortality rates are considered for
naive and memory cells (μN , μI ).

Proliferation parameters of early effector cells
and the immunogen are respectively denoted by ρE
and ρI . Proliferation of both CD8 T cells and the
immunogen are partially controlled by the immuno-
gen, so proliferation rates are assumed to depend on
I. Noticeably, among CD8 T cells only early effec-

tor cells are Mki67+ cells so they are the only cells
assumed to proliferate and divide [10].

System (3) has been introduced and validated on a
similar VV data set in [10]. To account for individual
behavior, parameters will be complexified assuming
they are drawn from probability distributions and in
the same time this system will be simplified through a
model selection procedure to ensure the correct esti-
mation of parameter values with available data sets
(see Sections 4.6 and 4.7).

Model selected on synthetic data. Model (3) has been
obtained by fitting average dynamics of a CD8 T
cell immune response [10]. When confronting this
model to heterogeneous data of individual CD8 T
cell dynamics and using mixed effects modeling, it
is mandatory to verify that assumptions of the mixed
effects model (see Section 4.4) are valid. To inves-
tigate this mathematical property, we will rely on
synthetic data that are highly informative compared
to experimental data and, additionally, for which
we know the parameter values behind data genera-
tion so we possess an explicit control on parameter
estimations. Using synthetic data and the procedure
described in Section 4.6 leads to the selection of the
System (1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + [ρEIE − μEE − δEL]E,

L̇ = δELE − [μLL+ δLM]L,

Ṁ = δLML,

İ = [ρII − μIL] I.

This model is dynamically similar to System (3), but
in order to correctly fit synthetic data and to satisfy
the assumptions of mixed effects modeling, parame-
ters μEL , μEI and μI have been removed: it was not
possible to accurately estimate them to non-zero true
values. For the sake of simplicity the parameters are
renamed in System (1):μLL = μL andμLI = μI . Sys-
tem (1) is defined by 9 parameters.

Model selected on biological data. When using bio-
logical, in vivo experimental data instead of synthetic
data, not as many measurements per individual can
be obtained (see Table 1) so the dynamical model
may easily be over-informed (too many parameters
compared to the size of the sampling). Using Sys-
tem (1), the confrontation with VV data set 1 leads
to the modified System (2),
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + [
ρEIE − μEE − δEL

]
E,

L̇ = δELE − δLML,

Ṁ = δLML,

İ = [ρII − μIL] I.

System (2) has 8 parameters (μL has been removed
from System (1)): 4 parameters are fixed within the
population (μN ,ρE, δEL, δLM) and 4 parameters have
a random effect (δNE, μE, ρI , μLI ).

4.4. Nonlinear mixed effects models

Nonlinear mixed effects models allow a descrip-
tion of inter-individual heterogeneity within a
population of individuals (here, mice). The main
idea of the method is to consider that since all indi-
viduals belong to the same population they share
common characteristics. These common character-
istics are called “fixed effects” and characterize an
average behavior of the population. However, each
individual is unique and thus differs from the aver-
age behavior by a specific value called “random
effect”.

This section briefly describes our main hypotheses.
Details on the method can be found in [17–19, 43].

Each data set {yi,j, i = 1, ..., Nind, j = 1, ..., ni}
is assumed to satisfy

yi,j = f (xi,j, ψi) + aεi,j,

where yi,j is the jth observation of individual i, Nind
is the number of individuals within the population and
ni is the number of observations for the ith individual.

The function f accounts for individual dynamics
generated by a mathematical model. In this work f
is associated with the solution of a system of ODE,
see Section 4.3. The function f depends on known
variables, denoted by xi,j , and parameters of the ith

individual, denoted by ψi.
Individual parameters ψi are assumed to be

split into fixed effects (population-dependent effects,
average behavior) and random effects (individual-
dependent effects). If ψki denotes the k-th parameter
characterizing individual i, then it is assumed that

log(ψki ) = log(pkpop) + ηki ,

where the vector of parameters ppop = (pkpop)k mod-
els the average behavior of the population, and ηi =
(ηki )k represents how the individual i differs from this

average behavior. Variables ηki∼N(0, ω2
k), and they

are assumed independent and identically distributed.
The variance ω2

k quantifies the variability of the k-
th parameter within the population. From now on
we will denote by ω2 the vector of variances (ω2

k)k.
Parameters ψi are assumed to follow a log-normal
distribution to ensure their positivity.

The residual errors, combining model approxima-
tions and measurement noise, are denoted by aεi,j .
They quantify how the model prediction is close to
the observation. Residual errors are assumed inde-
pendent, identically and normally distributed, i.e
εi,j ∼ N(0, 1). Moreover, the random effects ηi and
the residual errors aεi,j are mutually independent. In
this work, we assume a constant error model, with a
constant a, for all cell populations, since they are all
observed in log10 scale. The error parameter is esti-
mated for each subpopulation (naive cells - aN ; early
effector cells - aE ; late effector cells - aL ; memory
cells - aM). When data on the immunogen dynam-
ics are available (only when using synthetic data),
we assume a proportional error for the immunogen
which is observed, so that aI = bIf .

We will write that a parameter is fixed within the
population if all individuals have the same value for
this parameter. On the contrary, if the variance ω2

k

of a parameter is non-zero, then this parameter will
account for inter-individual variability within the
population.

4.5. Parameter estimation

Parameter values are estimated with the Stochastic
Approximation Expectation-Maximization (SAEM)
algorithm. This algorithm is adapted to nonlinear
mixed effects models [18] and has been shown
to quickly converge under general conditions [17].
Moreover, an implementation of the SAEM algorithm
is available in Monolix [30], a freely available soft-
ware that provides different indicators to quantify the
quality of estimations and fit. We used the SAEM
algorithm and Monolix in this work.

Population and individual parameters. Under the
previous assumptions (Section 4.4), cell population
dynamics (average behavior and inter-individual vari-
ability) are described by parameters: ppop, ω2 and a.
These parameters are estimated by maximizing the
likelihood with the SAEM algorithm.

Once these parameters have been estimated, each
individual vector of parameters ψi is estimated
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by maximizing the conditional probabilities
P(ψi|yi,j; p̂pop, ω̂2, â), where x̂ denotes the
estimated value of x.

Both estimations are performed with Monolix
software [30]. Files to run the algorithm (includ-
ing all algorithm parameters) are available at
https://plmlab.math.cnrs.fr/audebert/cd8-responses.

Covariates. In order to study whether differences
observed in parameter values between VV and Tumor
data sets (Table 1) are only related to random sam-
pling or if they can be explained by the immunogen,
we use categorical covariates (Section 2.3).

To tackle this question, we first pool together VV
and Tumor data sets 1. Second, using this full data
set, we estimate parameter values by assuming that
fixed effects of some Tumor-associated parameters
are different from those of the corresponding VV-
associated parameters.

To introduce categorical covariates in our mixed
effects model, we assume that if an individual is either
in Tumor or VV data set then the probability dis-
tribution of its individual parameter vector ψi has a
different mean. We write

log(ψki ) = log(pkpop) + βkci + ηki ,

where ci equals 0 if individual i is in VV data set
1 and 1 if it is in Tumor data set 1, and β = (βk)k
is a vector of covariate parameters. We test whether
the estimated covariate parameter β̂ is significantly
different from zero with a Wald test, using Monolix
software [30], and we use ap-value threshold at 0.05.

Parameters (ppop, ω2, a, β) are then characteriz-
ing cell population dynamics for both VV and Tumor
immunogens. If the estimated vector β̂ is significantly
different from zero, then part of the experimen-
tally observed variability could be explained by the
immunogen.

4.6. Model selection on synthetic data

Model selection relies on criteria that allow to
evaluate to which end a model appropriately satis-
fies a priori assumptions. For instance, one usually
requires a model to correctly fit the data, and uses
so-called quality of fit criteria, and/or requires that
initial modeling assumptions are satisfied.

Here, we do not use quality of fit criteria to select
a model because all models correctly fit data due to
a priori over-informed models that have too many
parameters compared to available data (see Paragraph

Model selection below). Instead, we focus on the
capacity of the parameter estimation procedure to
correctly estimate model parameters and to the a pos-
teriori validation of statistical assumptions. To do so,
we first use synthetic data (see Paragraph Generation
of synthetic data below). We take advantage of the
fact that we know the exact parameter values used
to generate synthetic data, so in order to evaluate the
correctness of estimated parameter values we rely on:

- the relative difference between the estimated
parameter value and the true value,

- the relative standard error (RSE), defined as
the ratio between the standard error (square
root of the diagonal elements of the variance-
covariance matrix) and the estimated value of
the parameter [19],

RSE = s.e.(θ̂)

θ̂
, θ a parameter,

θ̂ its estimated value. (4)

A large RSE indicates a poor estimation of the
parameter.

- the η-shrinkage value (denoted throughout this
manuscript as the shrinkage value), defined as

η-shrinkage = 1 − var(ηi)

ω2 , (5)

where var(ηi) is the empirical variance of the
random effect ηi and ω2 the estimated variance
of the parameter; Large values of the shrink-
age characterize individual estimates shrunk
towards the conditional mode of the parameter
distribution.

We decided not to consider the mathematical notion
of identifiability here. Indeed, studying identifiability
in nonlinear mixed effect models is a complicated,
open question that has been discussed for instance
in [44]. Approaches based on the Fisher Information
Matrix (RSE) have been proposed and are often used
for evaluating identifiability of population param-
eters, while analysis of the shrinkage allows to
investigate individual parameters identifiability, and
we used such methods in this work.

Generation of synthetic data. Using a dynamical
model (here System (3)), we generate a set of data
associated to solutions of the model, where all the
parameters are drawn from known log-normal dis-
tributions. Parameters pk varying in the population
satisfy log(pk)∼N(log(mk), 0.12). The standard

https://plmlab.math.cnrs.fr/audebert/cd8-responses
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deviation is fixed to the value 0.1 to generate
heterogeneity, and values of medians mk are given
in Table A.1. A multiplicative white noise modifies
model’s outputs in order to mimic real measurements
(we consider a white noise with standard deviation
0.2).

These data consist of time points and measure-
ments for the 4 subpopulations of CD8 T cell counts
(in log10 scale) and the immunogen load. These
are called synthetic data, and these sets of data are
referred to as Synth data set X, with X= 1, . . . , 4
(Table 1).

We generate synthetic data for 100 individuals, cell
counts are sampled at days 4, 5, 6, 7, 8, 9, 10, 12, 14,
16, 18, 20, 25, 30pi (cf. Figures A1 to A4). In agree-
ment with real biological data, we assume that all cell
counts below 100 cells are not measured, and remove
the data. For the immunogen load, values lower than
0.1 are also not considered.

Model selection. Model selection on synthetic data
is performed in 4 steps:

Step 1 Select an initial model
Step 2 Estimate parameter values using SAEM [30]
Step 3 Remove (priority list):

- parameters whose estimated value is
different from their true value, and the
RSE is larger than 5%

- random effects of parameters with
shrinkage larger than 30%.

Step 4 Select a model with all parameters correctly
estimated

In Step 1, model (3) is used, with all parameters
varying within the population. This makes 29 param-
eters to estimate: 12 mean values, 12 random effects,
5 error parameters.

In Step 3, based on the estimations performed in
Step 2, we iteratively remove parameters that are not
correctly estimated. To do so, we first focus on param-
eters that are not estimated to their true value (which
is known) and whose RSE is larger than 5% (this
threshold corresponds to a 5% error on the estimated
value, see (4)). We consider that the estimated value
is different from the true value if Err > 10%, with

Err = |true value − estimated value|
true value

.

Once all parameters are correctly estimated accord-
ing to the two first criteria, we remove random effects
of parameters with shrinkage larger than 30% (Savic

and Karlsson [45] have shown that shrinkage can
generate false correlations between random effects,
or mask the existing correlations, starting from 30%
shrinkage).

One must note that every time a parameter is
removed from the model (mean value or random
effect) then new synthetic data are generated using
the same protocol as described above, and Step 2 is
performed again.

Errors are known when using synthetic data: since
a normal noise, proportional to the observation, mod-
ifies each observation then there is a constant error
on observations of cell counts in log10 scale, and a
proportional error on the immunogen load. As men-
tioned in Section 4.4, we assume a constant error for
all cell populations and a proportional error for the
immunogen load. Diagnostic tools in [30] show that
error models are correct (not shown here).

Quality of fit criteria do not provide relevant
information in our case: the Bayesian Information
Criterion (BIC) reaches very low values, even for the
initial model (3), whereas observations vs prediction
graphs show that the number of outliers is not mod-
ified by simplifications of the model. Hence, we do
not use quality of fit criteria to select a model. In Step
4, we select a model based on the chosen criteria that
insures the correct estimation of all its parameters
and its reduced shrinkage when confronted to a set of
synthetic data.

4.7. Model selection on biological data

Biological data are the ones introduced in Section
4.2. Compared to synthetic data, we do not know the
parameter values that would characterize them and
they provide less observations, hence it may not be
possible to correctly estimate as many parameters as
in the synthetic data case.

Model selection on biological data is also per-
formed in 4 steps:

Step 1 Select an initial model
Step 2 Estimate parameter values using SAEM [30]
Step 3 Remove (priority list):

- parameters whose RSE is larger than
100%

- random effects of parameters with
shrinkage larger than 75%

Step 4 Select a model with RSE and shrinkages low

In Step 1, model (1) is used, with all parame-
ters varying within the population. This makes 23



C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice 31

parameters to estimate: 9 mean values, 9 random
effects, 5 error parameters. This model is the one
selected on synthetic data (see Section 2.1).

In Step 3, we iteratively remove parameters that are
not correctly estimated. We first focus on parameters
that are not estimated with a high confidence, that
is RSE > 100%. Once all parameters are correctly
estimated, we remove random effects of parameters
with shrinkage larger than 75%. Noticeably, we can-
not use the same threshold values for the RSE and
the shrinkage when using either synthetic or real
data, because measurement errors are different: con-
trolled and known for synthetic data, uncontrolled
and a priori unknown for real data, with measurement
uncertainties.

The error model is not known, so we use the same
error model as for synthetic data: a constant error for
all cell populations (note that no data on immunogen
is available, so the error parameter for the immunogen
is not estimated). Diagnostic tools in [30] show that
assuming constant error models is acceptable (not
shown here).

4.8. A posteriori model validation on biological
data

In Section 2.4, the model selected on biological
data is compared to data that were not used for param-
eter estimation. These data are presented hereafter.

In order to assess the model ability to characterize
and predict immune response dynamics we compare
our results to additional experiments, VV data set 2
and Tumor data set 2 (see Table 1 and Section 4.2),
similar to the ones used to estimate parameters (VV
and Tumor data sets 1). CD8 T cell counts of naive,
early and late effector, and memory cells have been
measured following VV and Tumor immunizations,
on days 4, 6, 7, 8, 11, 13, 15, 21, 28, 42pi.

The probability distribution of parameters (mean
values, random effects) are known since we have
estimated them on VV and Tumor data sets 1 (Sec-
tion 4.7). These parameters are not estimated on the
validation data. We use them to estimate the individ-
ual parameter values that fit individual behaviors of
these new data sets (see Section 4.5).
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A. Appendices

A1 Parameter values used to generate synthetic data sets

Table A1 lists parameter values used to generate Synth data sets 1 to 4 (see Table 1). Figures A1 to A4 illustrate
Synth data sets 1 to 4 kinetics.

Table A1
Parameter values of fixed effects (median values) used to generate Synth data sets 1 to 4 from System (3) and its subsequent reductions:
removal of μEI (column 4), of μEL (column 5), and of μI (column 6). Notations μYX for some mortality-related parameters refer to parameters
μXY in [10]: the subscript X refers to the CD8 T cell population or the immunogen that dies, and the superscript Y to the CD8 T cell

population responsible for inducing death

Parameter Unit Synth data set
1 2 3 4

μN day−1 0.75 0.75 0.75 0.75
δNE day−1 0.009 0.009 0.009 0.009
ρE day−1 0.64 0.64 0.64 0.64
μEE 10−6 cell−1 day−1 21.5 21.5 21.5 21.5
δEL day−1 0.59 0.59 0.59 0.59
μLL 10−6 cell−1 day−1 7.5 7.5 7.5 7.5
μEL 10−8 cell−1 day−1 3.6 3.6 - -
δLM day−1 0.025 0.025 0.025 0.025
ρI day−1 0.1 0.1 0.1 0.1
μEI 10−7 cell−1 day−1 1.8 - - -
μLI 10−5 cell−1 day−1 1.8 1.8 1.8 1.8
μI day−1 0.055 0.055 0.055 -



C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice 35

Fig. A1. Synth data set 1. These data have been obtained by simulating System (3) with parameter values in Table A1 and using a
multiplicative white noise, as detailed in Section 4.6. 100 individuals are simulated and first observations are on day 4 pi for cell populations
and the immunogen. Then measurements are on days 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, and 30 pi. All cell counts below 100 cells are
not measured. For the immunogen load, values lower than 0.1 are also not considered.
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Fig. A2. Synth data set 2. These data have been obtained by simulating a reduced System (3), with parameter values in Table A1, and using
a multiplicative white noise, as detailed in Section 4.6. See Figure A1 for details.
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Fig. A3. Synth data set 3. These data have been obtained by simulating a reduced System (3), with parameter values in Table A1, and using
a multiplicative white noise, as detailed in Section 4.6. See Figure A1 for details.
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Fig. A4. Synth data set 4. These data have been obtained by simulating a reduced System (3), with parameter values in Table A1, and using
a multiplicative white noise, as detailed in Section 4.6. See Figure A1 for details.
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A2 Parameter value estimation using Synth data sets 1 to 4

Table A2 presents the different steps in estimating parameter values using Synth data sets 1 to 4 and System
(3). The procedure is detailed in Section 4.6.

Table A2
Steps in estimating parameter values using Synth data sets 1 to 4 and System (3). The procedure is detailed in Section 4.6. True values of
parameters (fixed effects) are given on the second line, true values of random effects all equal 0.1. At Step 1, the procedure leads to removing
parameter μEI . At Step 2, the procedure leads to removing parameter μEL . At Step 3, the procedure leads to removing parameter μI . At
Step 4, no other action is required. Values used to take a decision are highlighted in bold at each step. In the first column, ‘m.v.’ stands for
mean value, RSE is defined in (4), ‘r.e.’ stands for random effect, and the shrinkage is defined in (5). Note that values (mean values and
random effects) of parameters μEE, μLL, μEL , μEI and μLI have to be multiplied by 10−5 (for μLI ), 10−6 (for μEE and μLL), 10−7 (for μEI ), and

10−8 (for μEL). Units are omitted for the sake of clarity

Parameters μN δNE ρE μEE δEL μLL μEL δLM ρI μEI μLI μI

True values 0.75 0.009 0.64 21.5 0.59 7.5 3.6 0.025 0.1 1.8 1.8 0.055

Step 1
m.v. 0.75 0.009 0.60 15.8 0.59 7.5 0.9 0.024 0.07 0.2 1.8 0.012
RSE 1 2 2 4 2 2 21 3 2 61 3 11
r.e. 0.1 0.2 0.2 0.3 0.2 0.2 0.7 0.3 0.2 2 0.3 0.9
RSE 7 7 7 8 7 7 23 7 8 21 7 11
shrinkage -1 8 12 18 13 1 100 -1 39 96 4 82
Step 2
m.v. 0.76 0.009 0.59 17.2 0.58 7.9 0.3 0.024 0.07 - 1.9 0.012
RSE 1 2 2 4 2 2 17 3 2 - 3 11
r.e. 0.1 0.2 0.2 0.3 0.2 0.2 0.5 0.3 0.2 - 0.3 0.9
RSE 7 7 7 8 7 7 26 7 8 - 7 10
shrinkage -1 10 12 20 15 1 100 -1 46 - 4 80
Step 3
m.v. 0.75 0.01 0.59 17.0 0.58 7.8 - 0.025 0.07 - 1.8 0.013
RSE 1 2 2 3 2 2 - 3 3 - 3 9
r.e. 0.1 0.2 0.2 0.3 0.2 0.2 - 0.3 0.2 - 0.3 0.7
RSE 7 7 7 8 7 7 - 7 8 - 7 10
shrinkage -1 8 11 17 13 1 - -1 34 - 2 82
Step 4
m.v. 0.76 0.009 0.66 21.2 0.61 7.3 - 0.024 0.1 - 1.8 -
RSE 1 2 1 2 1 2 - 3 1 - 2 -
r.e. 0.1 0.2 0.1 0.2 0.1 0.2 - 0.3 0.1 - 0.2 -
RSE 7 7 7 7 7 7 - 7 7 - 7 -
shrinkage -1 3 6 6 7 -1 - -1 0 - 1 -

4.9. A3. Predicted individual dynamics from VV and Tumor data sets 2

Predicted individual dynamics from VV and Tumor data sets 2, discussed in Section 2.4, are available at
https://plmlab.math.cnrs.fr/audebert/cd8-responses.

https://plmlab.math.cnrs.fr/audebert/cd8-responses

