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Calculating changes in protein stability (DDG) has been shown to be central for predicting the conse-
quences of single amino acid substitutions in protein engineering as well as interpretation of genomic
variants for disease risk. Structure-based calculations are considered most accurate, however the tools
used to calculate DDGs have been developed on experimentally resolved structures. Extending those cal-
culations to homology models based on related proteins would greatly extend their applicability as large
parts of e.g. the human proteome are not structurally resolved. In this study we aim to investigate the
accuracy of DDG values predicted on homology models compared to crystal structures. Specifically,
we identified four proteins with a large number of experimentally tested DDGs and templates for homol-
ogy modeling across a broad range of sequence identities, and selected three methods for DDG calcula-
tions to test. We find that DDG-values predicted from homology models compare equally well to
experimental DDGs as those predicted on experimentally established crystal structures, as long as the
sequence identity of the model template to the target protein is at least 40%. In particular, the Rosetta
cartesian_ddg protocol is robust against the small perturbations in the structure which homology
modeling introduces. In an independent assessment, we observe a similar trend when using DDGs to cat-
egorize variants as low or wild-type-like abundance. Overall, our results show that stability calculations
performed on homology models can substitute for those on crystal structures with acceptable accuracy as
long as the model is built on a template with sequence identity of at least 40% to the target protein.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The vast majority of functions in a cell are carried out by pro-
teins. These biomolecules typically need to fold into a stable ter-
tiary structure in order to be functional. Experimental structure
determination can provide us with high-resolution details of the
arrangement of atoms in the folded protein, however it does not
directly reveal the forces holding them together. These have histor-
ically been derived from mutagenesis experiments and measure-
ments of their energetic consequences [1–3]. From these studies
we know that many changes are detrimental for protein stability
[4], although stabilizing mutations have also been observed [5].
In the absence of experimental data, the stability of variant pro-
teins is commonly determined by computational means with so-
called assessment of the change in thermodynamic stability upon
mutation (DDG). These calculations have many practical applica-
tions, from protein engineering [6] to identification of disease-
causing mutations [7,8]. Hence, a number of methods forDDG pre-
diction have been developed. Among the most widely used ones
are FoldX [9–11] and Rosetta [12–14].

These methods require a structure of the wild-type protein as
input, which in combination with molecular force fields or energy
functions in principle allows for the generation of accurate and
high-resolution models of the mutant protein. At the same time,
though, this requirement represents an important limiting factor
for their application. Recent advances in sequencing technology
particularly highlight the gap between known sequences and
known structures; many new protein families have been found
in large-scale sequencing experiments for which no structural
information is available, and there are vast differences in coverage
between species [15]. For proteins where the structure of another
family member is known, homology modeling can be employed to
provide a computationally-derived structure model. Briefly, this
approach relies on using the solved structure of a homologue of
the protein of interest as a template for the backbone of the target
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sequence, and using loop modeling and refinement of intramolec-
ular interactions by either physics-based or empirical force fields
to generate a high-resolution model [16]. For template-target pairs
with sequence identity >70 %, models are typically fairly accurate
(1 Å–2 Å RMSD), whereas pairs below 30 % sequence identity are
in the so-called ‘‘twilight zone” and often have different 3D struc-
tures and distinct functions [16]. However, calculations of the
change in thermodynamic stability upon mutation require accu-
rate backbone as well as side chain placement, and the latter
may require a higher identity between template and target of
around 50 % [17]. Model quality depends on the template-target
sequence identity. A number of tools have been developed to
assess the quality of an individual homology model based on sim-
ilarity to experimentally resolved structures in terms of torsion
angles, core packing and other high-resolution properties [18,19].

If DDG calculations could be performed reliably on computa-
tionally generated models of protein structure, this would greatly
extend the scope of their applicability, and open up e.g. possibili-
ties of structure-based re-engineering of proteins without an
experimentally determined structure. Only about 15 % of the
human proteome is covered by experimental structures, but with
inclusion of homology models, coverage could be doubled or even
quadrupled, depending on whether templates with down to 50 %
or 20 % sequence identity are chosen, respectively [20]. Both FoldX
[11] and Rosetta [7,16], tools widely used in the community, how-
ever, were developed and benchmarked for use with experimen-
tally determined structures so the question remains how
applicable they are to computationally-derived structures.

On one hand, stability effects have been shown to be largely
consistent when introducing a particular mutation into different
homologs in the same family [21]. On the other hand, DDG predic-
tions have been shown to suffer from challenges in reversibility,
i.e., the predicted DDG of a V? A mutation is not the inverse of
the corresponding A? V mutation, revealing gaps in capturing
the underlying biophysical forces and a substantial dependency
on the structural input model [22,23].

Here we set out to assess whether DDGs can be accurately pre-
dicted using homology models, and to what extent the accuracy is
dependent on the sequence identity between template and target.
To assess the dependence on target-template similarity systemat-
ically, we chose four proteins for which a substantial number of
biophysical DDG measurements as well as template protein struc-
tures across a range of sequence identities are available. From
those four proteins we established a dataset of 344 mutations.
For an independent comparison, we also calculate full-saturation
DDGs for �3,500 single amino acid variants of a protein assayed
for cellular abundance [24], again using experimental structures,
close and distant homology models as starting points. Overall, we
find that all tools work well on experimentally resolved structures,
and that Rosetta cartesian_ddg performance appears robust on
homology models with at least 40 % sequence identity.
2. Results and discussion

Our goal was to determine the accuracy of predicted stability
changes in proteins calculated using homology models instead of
experimentally determined structures. To this end, we compare a
set of experimentally-determined stability changes (DDG) to pre-
dictedDDG values calculated on either experimentally determined
structures or homology models.

For the experimental data we used a curated database of 2971
experimentally-determined stability changes (DDG) [25] which is
largely based on the Protherm database [2]. From this set we
selected four different proteins based on the following criteria:
First, each protein should have a large number of experimentally
67
determined single point DDG values. Second, a high-resolution
crystal structure of the wild-type protein should be available.
Finally, we required that for each protein a number of homologues
with varying degrees of sequence identity existed, which them-
selves had experimentally-resolved structures. This latter criterion
is central to our objective as it enables us to build homology mod-
els of the four proteins using templates with varying degrees of
sequence identity. With these criteria we selected human lyso-
zyme (PDB ID 1LZ1), the barley chymotrypsin inhibitor CI2
(2CI2), E. coli RNAseH (2RN2) and sperm whale myoglobin
(1BVC) which together have 344 experimentally-determined
DDG-values.

For the computationally-derived data, homology models with
increasing divergence from the wild-type protein were needed.
We divided the range from 100 % to 25 % sequence identity into
15 % intervals and obtained the following five bins: bin1:
(100 %,85 %]; bin2: (85 %,70 %]; bin3: (70 %,55 %]; bin4:
(55 %,40 %]; bin5: (40 %,25 %]. For each protein and each bin we
searched the PDB for homologues and picked the one with a
sequence identity closest to the middle of the bin. For example,
in the case of sperm whale myoglobin, bin2 was populated using
an elephant myoglobin (PDB ID: 1EMY) with a sequence identity
of 81 % to the sperm whale protein. In this way we populated the
full matrix of structures/sequences covering all four proteins and
all five bins, apart from bin3 for CI2 for which we could not find
a suitable template (Suppl. Table S1).

We used Modeller [26] to build homology models for all four
proteins using the 19 different templates. Modeller is widely used
and, importantly, allows for direct selection of the template, which
ensures that the resulting model’s quality was not influenced by
the availability of a crystal structure of the wild-type protein. We
show the modeling results for sperm whale myoglobin in Fig. 1
(top row) where we overlay the models to the structure of the
wild-type protein; corresponding plots for the remaining proteins
can be found in the supporting online material (Suppl. Figs. S1-S3).
As expected, the agreement between the crystal structure of the
wild-type protein and the template-based models decreases as
the sequence of the template diverges from that of the wild-type
protein.

We then calculated DDG values with three different structure-
based methods: FoldX, Rosetta ddg_monomer and Rosetta carte-

sian_ddg. All three methods are widely used for DDG-predictions
but, to our knowledge, have never been benchmarked for use with
template-based models. For each method and protein we ran DDG
calculations on each sequence identity bin plus the wild-type crys-
tal structures and thus predicted the 344 DDG-values correspond-
ing to the protein variants we have experimental data for.

We compared predicted and experimental DDG-values using
the Pearson correlation coefficient (r) and the mean absolute error
(MAE). For MAEs to be comparable across methods, we first calcu-
lated a scaling factor to bring the predictedDDG values to kcal/mol
(see Methods). The results are illustrated in Fig. 1 with sperm
whale myoglobin as an example. First, we find that all three meth-
ods give a comparable agreement to the experimental data when
we use a high-resolution crystal structure of the wild-type protein
as input for stability predictions (row 1). As expected, we also see
that the predicted DDG-values correlate less with experimental
data as the sequence identity of the template used to build the
homology model decreases (following columns). For example,
when we use FoldX on either the crystal structure of sperm whale
myoglobin (wild-type structure) or the homology model built on
wild boar myoglobin (bin1; 86 % sequence identity), we obtain
r � 0.7 between the predicted and experimental DDG-values. This
drops to r � 0.6 for bin2 (Asian elephant myoglobin; 81 %) and bin3
(Sea turtle myoglobin; 65 %) and further for bins 4 and 5. A similar
trend was observed for all three methods and all four proteins
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(Fig. 1 and S1–S3), though with apparent differences in robustness
towards using homology models.

As a baseline for minimal expected DDG prediction perfor-
mance, we developed two simple null models, which are designed
to be independent of protein structure and the specific sequence.
Both null models are based on the curated experimentalDDG data-
base mentioned above [25]. The first null model simply assigns the
average over all of these experimental measurements,
DDG = 1.15 kcal/mol, to anymutation. Since most stability changes
in the set of 344 mutations that we examine are of this order of
magnitude, this model achieves a MAE = 1.1 kcal/mol to the exper-
imentalDDG-values. However, the Pearson correlation is very poor
(r = 0) since this model assigns the same value to all mutations. To
introduce more specificity, we designed a second null model in
which we again use the average DDG over the entire database,
but split up by wild-type and mutant residue, so that we obtain
380 averages corresponding to the 380 possible pairs of the 20 dif-
ferent wild-type amino acids with their 19 possible substitutions
(Fig. 2). Before applying this null model to our set of mutations,
we in practice make two modifications. First, since the 344 DDG-
values we use for validation are a subset of the 2971 values in
the full dataset and went into the averages, we leave out all the
DDG-values pertaining to a protein when we apply that null model
to that protein. This is particularly important for the many fields in
the null model’s 20x19 matrix that include only very few muta-
tions. Second, we use the global average of DDG = 1.15 kcal/mol
for any mutations that are not present in the original dataset after
leaving out the mutations in the protein that we apply the model
to, such as histidine to methionine. When we use this modified null
model to predict the stability outcome of the 344 mutations we
achieve MAE = 1.1 kcal/mol and r = 0.42.

With the (second) null model in hand, we then compared the
results from all three structure-based methods and aggregated
the results over all four proteins (Fig. 3). As observed for myoglobin
(Fig. 1), we find that all three methods perform comparably when
using the crystal structure of the wild-type proteins as input. Look-
ing at the correlation coefficients, however, we also find that the
methods appear to display different levels of sensitivity to the
input structure. Both FoldX and Rosetta ddg_monomer appear
more sensitive to the input structure than cartesian_ddg since
the correlation of DDG-values from homology models with the
experimental values is substantially lower than when using the
wild-type crystal structures. In particular, when using the homol-
ogy models from bins 4 and 5 (which in practice corresponds to
sequence identities <45 %) both FoldX and Rosetta ddg_monomer

give results that are at most only slightly better than the (second)
structure-independent null model. This decrease in accuracy is also
reflected in an increase in the MAE, though we focus less on this
value as it is less sensitive to the variation in structure and is also
well-captured by the null models. In contrast to that, the results
from Rosetta cartesian_ddg appear substantially more robust
against changes in the input structure. Both the correlation coeffi-
cient and MAE vary little across bins 1 to 4 and are comparable to
those obtained when using the wild-type crystal structures as
3

Fig. 1. Comparison of computationally-derived DDG values with experimental values
either the crystal structure or a homology model. Each field shows a scatter plot compa
correlation coefficient (r) and the mean absolute error (MAE; kcal/mol). If present, values
of each plot. First row: DDG values computed on the crystal (xtal, 1BVC) structure of the w
decreasing sequence identity between target and template. First column (turquoise): DD
predicted by Rosetta ddg_monomer. Third column (violet): DDG values predicted by Fold
homology model. Agreement between the crystal structure and the model deteriorates as
(100%,85%]; bin2: (85%,70%]; bin3: (70%,55%]; bin4: (55%,40%]; bin5: (40%,25%]). (For inte
web version of this article.)
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input. To summarize, in practice we find that at least for the muta-
tion dataset we used, Rosetta cartesian_ddg predicts stability
changes with similar accuracy on homology models as when using
crystal structures of the actual proteins so long as the template
sequence identity is >40 %.

The results detailed above depend on the availability of the
crystal structures and homology models of the four proteins, as
well as the experimental DDG measurements. As an alternative
approach, and to check for robustness, we also calculated correla-
tion coefficients using the DDG values calculated from the crystal
structures as the reference instead of the experimental ones
(Fig. S4). Per definition, the crystal structures have r = 1, and hence
the correlation coefficients from this analysis are higher than those
using the experimental data as reference. This observation is
expected given remaining biases in stability prediction methods,
and in line with a recent study analyzing DDG predictions on dif-
ferent homology models, also observing a drop <40 % sequence
identity, as well as dependency on the model quality [27]. The
results we obtain here confirm the previous results, namely (i) a
general decrease in the accuracy of stability predictions as homol-
ogy models are based on increasingly distant templates and (ii)
Rosetta cartesian_ddg appearing less sensitive than the other
two methods.

The key result obtained above is that the Rosetta carte-

sian_ddg approach to predict stability changes appears to be rel-
atively insensitive to minor differences in the input structure so
that it gives fairly accurate results also when applied to
template-based models from Modeller. The analyses are, however,
based on a biased set of mutations with many mutations being
hydrophobic deletion mutations and a high proportion of muta-
tions to alanine or glycine (similar to Fig. 2). For a more unbiased
set of single substitutions, we turned to recent data from a type
of multiplexed assay of variant effects (MAVE) experiment termed
VAMP-seq, performed on a protein called TPMT [24]. Briefly
explained, a MAVE involves creating a library of variants and
selecting for a property of interest such as cell growth or fluores-
cence of a reporter protein [28]. In a VAMP-seq experiment the
library of protein variants are fused to green fluorescent protein
(GFP) and expressed in cell culture. The brightness of each cell’s
GFP fluorescence will be a function of the abundance of the protein
variant [24]. By sorting cells based on their fluorescence, and using
DNA sequencing to determine the frequency of every variant
before and after sorting, a single experiment provides abundance
data for thousands of variants. Since destabilized proteins are
degraded by the protein quality control apparatus, a variant pro-
tein that has high abundance is expected to have little changes
or only stabilizing changes to its thermodynamic stability (DDG).
Vice versa, a variant protein with low cellular abundance may have
large changes in its thermodynamic stability compared to the wild-
type protein, which is supported by good correlation of melting
temperatures for several variants (though proteins can also have
low abundance or be degraded for other reasons). We use this rela-
tion to evaluate whether DDG values calculated on either the crys-
tal structure or the homology models behave in accordance with
on sperm whale myoglobin using three different DDG-prediction methods and
ring predicted and experimental DDG values, including the corresponding Pearson’s
outside the [-4,8] kcal/mol range on either axis are listed in red in the top left corner
ild-type protein. Following rows: DDG values computed on homology models with
G values predicted by Rosetta cartesian_ddg. Second column (blue): DDG values
X. Last column: Superimposition of the wild-type protein crystal structure with the
the sequence identity between template and target decreases (top to bottom, bin1:
rpretation of the references to color in this figure legend, the reader is referred to the



Fig. 2. Mutations in the curated ProTherm dataset split by wild-type and target amino acid. These data are used in the null models and are a superset of the test data. Each
entry lists the number of mutations of that type, and the color indicates the average change in stability (in kcal/mol).

Fig. 3. Correlation of ddGs calculated on the original crystal structure as well as homology models with decreasing sequence identity to the experimentally determined
values. Turquoise, Rosetta cartesian_ddg, blue, Rosetta ddg_monomer, violet, FoldX. The dashed line indicates the average performance on the original crystal structures.
Note that bin2 contains two models based on NMR structures, see also Suppl. Fig. S4. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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the experimental abundance data. In principle the VAMP-seq
results are semi-quantitative, but we only use the information
whether variants were low- or high-abundance.
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In addition to the crystal structure of wild-type TPMT (PDB ID
2BZG) we built homology models of TPMT using templates
with 80 % identity (2 GB4) and 32 % identity (3LCC and 1PJZ).



Fig. 4. Receiver Operating Characteristic (ROC) curve of classifying variants of
human thiopurine methyltransferase (TPMT) into high and low abundance based on
the DDG calculated using Rosetta cartesian_ddg, compared to experimentally
determined abundance by VAMPseq [24]. DDG values were calculated on a crystal
structure of TPMT (2BZG, gray, AUC = 0.873), a homology model built on a template
with 80 % sequence identity (2 GB4, orange, AUC = 0.877), and two homology
models built on templates with 32 % sequence identity each (3LCC, blue,
AUC = 0.778; 1PJZ, cyan, AUC = 0.768). Performance of a random classifier is
indicated by the diagonal line (AUC = 0.5). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Unfortunately no templates with identities between those values
were available. Since the VAMP-seq experiment does not directly
probe thermodynamic stability, we instead used a ‘receiver operat-
ing characteristic’ (ROC) curve analysis to relate DDG values and
abundance classification [29]. Specifically, we vary a cut-off for
the predicted DDG values, and assess how well it divides the vari-
ant proteins into low and high-abundance in terms of true positive
rate (sensitivity) and false positive rate (specificity). The ‘area
under the curve’ (AUC) statistic assesses how well the predicted
DDG values balance sensitivity and specificity across different
thresholds. A ROC curve along the diagonal corresponds to a ran-
dom prediction method and has AUC = 0.5, whereas a method that
can perfectly separate low- and high-abundance variants would
have AUC = 1. Our results show that DDG values from Rosetta
cartesian_ddg achieve a rather high accuracy both when using
the wild-type TPMT structure (AUC = 0.87) and the model based
on 2 GB4 (AUC = 0.88) (Fig. 4). Also, as expected we find decreased
prediction accuracies when using the two models based on tem-
plates with 32 % sequence identity (AUC = 0.78 and 0.77, for 3lcc
and 1pjz respectively). Thus, the results obtained using these
VAMP-seq data confirm the previous observation from the com-
parison to experimental DDG values, namely that Rosetta carte-

sian_ddg provides relatively accurate predictions, and that there
is little deterioration when the input structure is based on a close
homologue. As the VAMP-seq library was designed to target every
possible single amino acid substitution, it is much more balanced
than data from ProTherm, which is dominated by alanine scanning
results [7].

3. Conclusions

The ability to predict changes in thermodynamic stability upon
single amino acid substitutions in proteins is important in a wide
range of practical and scientific problems. FoldX and the two
71
Rosetta applications ddg_monomer and cartesian_ddg are
widely used for that. These methods were parameterized and
benchmarked using high-resolution crystal structures, and are rec-
ommended to be used with such structures as input. Many pro-
teins of interest however do not have crystal structures available
and here template-based (homology) modeling provides an
appealing alternative. We asked how accurate the three methods
are when used on homology models, and how the results depend
on the sequence identity of the template used in model building.
While the template-dependency of homology modeling is well-
studied, it has to our knowledge not been investigated how sensi-
tive computational stability prediction methods are to the struc-
tural noise induced by such models.

We therefore devised and applied a strategy to test how well
these three methods work outside their normally recommended
application range. Specifically, we chose four proteins for which
we have extensive experimental stability measurements, crystal
structures of the wild-type protein and templates of varying
sequence identities to build homology models. Our analyses show
that all three methods perform comparably well when applied to
the crystal structures of the four proteins (Fig. 3). Further, the
Rosetta cartesian_ddg method appears to be relatively robust
to structural noise and errors introduced by homology modeling,
at least for models based on templates with sequence identities
>40 % to the target protein (Fig. 3). This observation was corrobo-
rated by analysis of the influence of local sequence similarity,
and further by using a ROC analysis to relate predicted stability
measurements to high-throughput abundance measurements from
VAMP-seq on the protein TPMT, though in this case we could only
apply the analysis to a smaller number of templates (Fig. 4).

We further devised two simple null models for stability predic-
tions that effectively require a look-up in a table of average exper-
imental values. While we do not recommend using this model to
perform predictions in practical applications, we suggest that it is
a useful baseline for DDG benchmark evaluation in general.

Overall, our results suggest that it should be possible to extend
the range of applicability of structure-based protein stability pre-
dictions to homology models and thus to a much larger number
of sequences. For example, about 15 % of the human proteome is
covered by experimental structures, however the SWISS-MODEL
repository contains structural information for �30 % of the human
proteome if one includes homology models with template
sequence identities >40 % [20].

In our work, we only considered single amino acid substitu-
tions, though the ability to model multiple substitutions is impor-
tant for protein engineering purposes. Previous results suggest that
it is difficult to predict non-additive effects of multi-mutants even
when using crystal structures as input to for example FoldX
[30,31], whereas more computationally demanding free energy
calculations achieve better accuracy [31]. Thus, a first step is to
achieve higher accuracy for multi-mutants using the faster compu-
tational methods, and then examine the accuracy using homology
models as input.

We conclude by suggesting that these kinds of analyses should
be applied more broadly, and to a wider range of data and proteins,
and point out a recent assessment of performance of multiple
methods on AlphaFold2 [32] models, compared to measurements
fromMAVE experiments [33]. Also, it is our hope that future devel-
opments of stability prediction methods, as well as other methods
to analyze protein structures, will be developed with applications
on homology models or predicted structures in mind. Thus, we
suggest it should be possible to develop methods that are even
more robust to structural noise and possibly supported by
structure-independent methods. The first step in such a develop-
ment would be to better understand the structural origins of
why the predictions become less accurate as the sequence identity
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diverges, and why the different methods have different sensitivi-
ties to the structural accuracy. If we can increase robustness down
to templates with about 30 % sequence identity we should be able
to analyze about half of the human proteome with these methods.
4. Methods

4.1. Homology modeling

Homology models for human lysozyme, chymotrypsin inhibitor
CI2, E. coli RNAseH and sperm whale myoglobin were generated
using Modeller’s automodel class [26]. The target sequences for
the four proteins were obtained from Uniprot [34]. Templates were
obtained from a search of the pdball database (obtained from
https://salilab.org/modeller/supplemental.html). The search
results were binned according to sequence identity in 15 % inter-
vals and we selected the template closest to the middle of the
interval for each respective bin. For the model building, all settings
and parameters were left at their default value. 20 models were
generated for high sequence identity bins (>55 %) and 1000 models
for low sequence identity bins (<55 %). Three models were selected
by the lowest DOPE scores in each sequence identity bin.

4.2. DDG calculations: FoldX

FoldX version 3.0b4 was used with default and standard param-
eters. Prior to ddg prediction, the structures were run through the
RepairPDB function, as recommended in the FoldX documentation.
The FoldX ddg predictions were performed using the BuildModel
command of FoldX [10]. For crystal structures, 5 iterations were
used as recommended. For homology models, 2 BuildModel itera-
tions were carried out on each of the top 3 models, and the average
across those 6 DDGs is reported.

4.3. DDG calculations: Rosetta ddg_monomer

We used Rosetta from October 2018 with git SHA1
ce9cb339991a7e8ca1bc44efb2b2d8b0a3d557f8. We ran ddg_-

monomer with the global repacking option (protocol 16, [13]) and
the talaris2013 energy function, which has been shown to improve
DDG calculation performance [25,35]. We carried out initial con-
strained minimization as recommended [13]. Average ddGs of 50
iterations are reported for the crystal structure. For homology
models, the top 3 models were chosen, 20 DDG iterations were
performed on each, and the overall average is reported.

Flags for constrained minimization:
�in::file::fullatom.
�ignore_unrecognized_res.
�fa_max_dis 9.0.
�ddg::harmonic_ca_tether 0.5.
�ddg::constraint_weight 1.0.
�ddg::sc_min_only false.
Flags for ddg_monomer:
�ddg::weight_file soft_rep_design.
�ddg::local_opt_only false.
�constraints::cst_file ca_dist_restraints.cst.
�fa_max_dis 9.0.
�ddg::min_cst true.
�ddg::iterations 20.
�ddg::mean false.
�ddg::min true.
�ddg::sc_min_only false.
�ddg::output_silent true.
�ddg::ramp_repulsive true.
�ddg::mut_only.
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4.4. DDG calculations: Rosetta cartesian_ddg

We used Rosetta from October 2018 with git SHA1
ce9cb339991a7e8ca1bc44efb2b2d8b0a3d557f8. For carte-

sian_ddg [12,14] we first performed constrained relaxation, then
carried out 3 iterations of the cartesian_ddg protocol, and reported
average DDGs over these. For homology models, we carried out
one iteration each over the 3 top homology models, and reported
the average over these.

Flags for relax:
�relax::constrain_relax_to_start_coords.
�ignore_unrecognized_res.
�missing_density_to_jump.
�ex1 � ex2.
�relax::min_type lbfgs_armijo_nonmonotone.
�flip_HNQ � no_optH false.
�relax::coord_constrain_sidechains � relax::cartesian.
�beta.
�score::weights beta_nov16_cart.
Flags for cartesian_ddg:
�fa_max_dis 9.0.
�ddg::dump_pdbs false.
�ddg::iterations 1.
�score::weights beta_nov16_cart.
�missing_density_to_jump.
�ddg::mut_only.
�ddg::bbnbrs 1.
�beta_cart.
�ex1 � ex2.
�ddg::legacy false.
�optimize_proline.

4.5. Scaling to kcal/mol

For each method a scaling factor was established to describe the
relationship between the energy units reported by the method and
kcal/mol. This was done by comparing the values predicted on the
high quality crystal structures of the wild-type proteins against the
experimental values and then forcing a linear fit through 0. The
slope of this fit is the method’s scaling factor which was applied
to all predictions made by the method. We obtained the following
scaling factors:

FoldX: 1/1.039.
Rosetta cartesian_ddg: 1/2.469 - note that a factor of 1/2.9

has previously been reported [14].
Rosetta ddg_monomer: 1/1.233.

4.6. Null models

Data was extracted from a curated version of ProTherm [25]. In
addition to the published curation, we noticed two apparent self-
mutations with non-zero DDG, T53T in protein G and K33K in
ubiquitin. We traced both back to articles reporting the DDG with
reference to the stability of the sequence with alanine at the posi-
tion of interest [36,37] as opposed to the more common conven-
tion of reporting with respect to wild-type. We removed entries
from both articles from the dataset before creating the null models.

For the null models we used the average experimental DDG
value of the given amino acid substitution across all the proteins
in ProTherm, excluding the values from the protein itself.

4.7. ROC curves

ROC curves were drawn and AUCs calculated with the R pack-
age ROCR, directly using DDG values obtained from running
Rosetta cartesian_ddg on the homology models as predictor

https://salilab.org/modeller/supplemental.html
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variables and low and high abundances classes from [24] as the
two underlying true classes.
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