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Abstract

To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small
intestine. In order to do so, the bacterium needs to successfully travel through the stomach
and withstand the presence of agents such as bile and antimicrobial peptides in the intesti-
nal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the
epithelium and attach and proliferate on its surface. In this review, we discuss recent devel-
opments and known aspects of the early stages of V. cholerae intestinal colonization and
highlight areas that remain to be fully understood. We propose mechanisms and postulate a
model that covers some of the steps that are required in order for the bacterium to efficiently
colonize the human host. A deeper understanding of the colonization dynamics of V. cho-
lerae and other intestinal pathogens will provide us with a variety of novel targets and strate-
gies to avoid the diseases caused by these organisms.

Introduction

The gram-negative bacterium Vibrio cholerae O1 is the etiological agent of epidemic cholera, a
severe diarrheal disease. Cholera has devastated civilizations throughout history, and, to date,
seven pandemics have been recorded. The most recent pandemic still affects millions of people
and causes more than 100,000 deaths every year. In recent times, the bacterium has become en-
demic in places that had been cholera-free for centuries [1]. For instance, since the introduc-
tion of V. cholerae in Haiti after the 2010 earthquake, more than 700,000 people have
contracted cholera, resulting in more than 8,500 deaths [2,3].

V. cholerae is a natural inhabitant of aquatic environments, such as rivers, estuaries, and
oceans, where it can be found as free-living cells or attached to biotic or abiotic surfaces [4,5].
Epidemic cholera is transmitted to humans by consumption of water or food contaminated
with virulent strains of V. cholerae O1 [1,6]. Recently, there have been significant advances in
the understanding of some key steps in the early stages of colonization of the small intestine
(SI) by V. cholerae. Here, we review these developments and propose a model for the coloniza-
tion dynamics of V. cholerae (Fig 1), suggesting mechanisms to fill the gaps in our
current knowledge.
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Fig 1. Model for intestinal colonization dynamics of V. cholerae. V. cholerae may be ingested as free-living cells (i), as forming microcolonies (ii), or as
part of a biofilm (iii) (A). Cells in the lumen will first come in contact with the mucus layer (B). The bacterium must reach the intestinal epithelium by penetrating
through the viscous mucus layer covering it (C). Once the bacterium reaches the intestinal epithelium, we hypothesize that noncommitted (reversible)
attachment occurs, mediated by adhesins such as GbpA or Mam7 (D). Subsequently, specific attachment adhesins might be produced that would allow V.
cholerae to bind in a committed fashion (E), the cells multiply (F), and, once a certain concentration of cells has been reached, the toxin coregulated pilus is
produced, allowing for microcolony formation and toxin production (G).

doi:10.1371/journal.ppat.1004787.9001

Initial Stages of Colonization
Relying on and then relinquishing protection

V. cholerae has a complex acid tolerance response involving numerous factors such as the
ToxR-regulated porin, OmpU, the transcriptional regulators CadC and HepA, the gluthatione
synthetase GshB, and the DNA repair and recombination enzyme RecO, among others [7-9].
To date, the roles of OmpU and CadC have been corroborated by in-frame deletions [8,10].
Free-living V. cholerae cells are very sensitive to the low pH of the stomach, and the dose re-
quired to cause infection in healthy volunteers, 10'" cells, is perhaps unrealistically high [11].
However, when the pH of the stomach is buffered, the number of cells required to cause the
symptoms of the disease can be reduced by several orders of magnitude, between 10*~10° cells
(Fig 1A) [11,12]. Furthermore, in endemic regions, some cholera patients have been found to
have low gastric acid production, indicating that these individuals might be more susceptible to
free-living V. cholerae than others [13-15]. With further respect to the physiological state of
the bacteria, V. cholerae might also enter the human host in a dormant state called viable but
nonculturable (VBNC) [16-19]. VBNC cells in other species have been shown to have in-
creased acid tolerance [20]. V. cholerae VBNC cells were given to human volunteers, and these
cells were able to effectively colonize the SI and were shed as culturable free-living cells [18].

V. cholerae might also be ingested as microcolonies or in a hyperinfectious state [21-23].
Once shed after intestinal colonization, V. cholerae cells can be found in a hyperinfectious state
that is thought to lower the infectious dose required to colonize secondary individuals [21].
Furthermore, after infection, subpopulations of V. cholerae keep expressing the gene encoding
TcpA, a major component of the toxin-coregulated pilus (TCP), an essential intestinal coloni-
zation factor [22,23]. Microcolonies are TCP-mediated clusters of V. cholerae cells that confer
numerous properties to the bacterium (See section “Final Stages of Colonization™). It is possible
that microcolonies shed from cholera patients might confer resistance to the low pH of the
stomach to V. cholerae. However, to our knowledge, the role of microcolonies in low pH

PLOS Pathogens | DOI:10.1371/journal.ppat.1004787 May 21,2015 2/11



@’PLOS | PATHOGENS

tolerance and how the bacterium relinquishes them upon arrival in the SI remain to be deter-
mined (Fig 1A).

Biofilms are bacterial communities that collectively produce a protective exopolysaccharide
matrix, which facilitates survival during stress-inducing environmental changes such as low
pH or the presence of antimicrobials [24]. V. cholerae that are ingested as part of a biofilm can
successfully survive the low pH of the human stomach [25]. Cells within a biofilm may reach
the stomach either attached to a substrate or as conditionally viable environmental cells
(CVEC)—clumps of dormant cells embedded in a biofilm matrix that can be recovered using
enriched culturing techniques (Fig 1A) [25]. Furthermore, while forming biofilm, V. cholerae
can be found in a hyperinfectious physiological state [26]. The infectious dose for biofilm-
derived V. cholerae is orders of magnitude lower than that of planktonic cells regardless of
whether the biofilm is intact or dispersed [26]. The relationship between bile and biofilm re-
mains contested [27,28]. Hung and Mekalanos showed that bile stimulates biofilm formation
in V. cholerae as biofilms increase the resistance of the bacterium to bile acids [27]. Conversely,
it was recently found that taurocholate, a component of bile, induces the degradation of V. cho-
lerae biofilms [28]. The authors suggested that contact with bile components upon reaching
the intestinal lumen might allow for the dispersal of the bacterium in the early stages of coloni-
zation (Fig 1A) [28]. Once in the lumen, the bacterium must withstand the presence of antimi-
crobial agents. It has been shown that OmpU protects against bile acids [29] and antimicrobial
peptides [30] among others.

Overall, it is possible that in the early stages of cholera epidemics, V. cholerae might be pri-
marily ingested attached to surfaces while forming biofilms, such as the chitinaceous shell of
copepods, as CVEC or as VBNC [4,5,31-34]. However, once the cholera epidemic begins, the
bacterium might be predominantly consumed as part of microcolonies shed by other cholera
patients or in a hyperinfectious state [21].

Contact with and Swimming through the Mucus Layer
Directionality towards the epithelium

Motility has been shown to be a crucial element in order for V. cholerae to colonize the epitheli-
um and cause a successful infection of the human host (Fig 1C) [35,36]. Early studies by Guent-
zel et al. suggested that motility could enable V. cholerae to penetrate the mucus layer covering
the intestinal epithelium, as nonmotile mutants showed reduced virulence [37]. Nonetheless, it
was recently shown that, even though motility is critical for colonization of the proximal SI,
motility is not required for the colonization of the distal section of the SI [38]. It is possible that
motility enables the dissemination of V. cholerae throughout the lumen of the ST and other
nonflagellum-based processes might control its penetration into the intervillous space [38,39].
The possible role of chemotaxis in establishing a productive infection remains debated. Mo-
tile, but nonchemotactic, mutants of V. cholerae outcompete wild-type V. cholerae in the infant
mouse model [36,38,40]; 10-fold fewer nonchemotactic V. cholerae are required for infection
than wild type [41]. It appears that the competitive advantage of the nonchemotactic mutants
is the result of an alteration in the bias of flagellar rotation from clockwise to counterclockwise
[41]. Whereas wild-type V. cholerae predominantly colonizes the distal half of the SI, nonche-
motactic mutants are distributed throughout the SI [36]. A recent study by Millet et al. demon-
strated that the specific localization in the SI of nonchemotactic mutants does not differ from
that of wild type [38]. Thus, it is possible that chemotaxis plays a more prevalent role in the
overall distribution of V. cholerae across the length of the intestine than in the penetration
from the lumen to the intestinal epithelium. Recent transposon-sequencing (Tn-seq) studies
using the infant rabbit show contrasting results with regards to the role of chemotaxis of V.
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cholerae in this animal model [42,43]. Fu et al. found that mutants for genes that have chemo-
taxis-related functions, such as vspR, pomA, or cheA, cause hypercolonization of the infant rab-
bits [42]. On the other hand, Kamp et al. found that the overwhelming majority of chemotaxis
genes are dispensable for infection but played a significant role in the survival of V. cholerae in
pond water [43]. Further work is needed in order to determine the precise role of chemotaxis
during V. cholerae infection.

Bile is a bactericide that appears to act as a chemorepellant driving V. cholerae out of the in-
testinal lumen and towards the mucus layer covering the epithelium (Fig 1B and 1C) [44].
V. cholerae has evolved a very strong avoidance response to bile, as bile significantly increases
V. cholerae motility even at concentrations too low to cause any bactericidal effect (Fig 1B and
1C) [45]. ToxT is a master virulence regulator of V. cholerae that controls the expression of
TCP and the cholera toxin (CT), the main source of the watery diarrhea that causes dehydra-
tion [46-50]. Fatty acids found in bile inhibit ToxT activity by binding to its regulatory do-
main, which prevents ToxT from associating with DNA [45,51-55]. ToxT inhibition by bile
suggests a mechanism by which the expression of the virulence cascade would be prevented
until the bacterium reaches the appropriate environment. Oppositely, bicarbonate has a posi-
tive effect on the virulence cascade of V. cholerae by increasing the affinity of ToxT for DNA
[56-58]. Furthermore, the concentration of bicarbonate lumen versus mucosa is contrary to
bile (Fig 1) [56,59,60]. The sum of these factors might allow the proper spatiotemporal pattern
of virulence gene expression in the human host.

Movement through the mucosa

In order to reach the epithelium and deliver CT, V. cholerae must penetrate a highly viscous
mucus layer approximately 150 um thick, or roughly 50-75 times the body length of V. cho-
lerae (Fig 1C) [61]. Recent developments support the idea that host mucins act as a physical
barrier that V. cholerae needs to overcome in order to reach the intestinal epithelium [38]. N-
acetyl-L-cysteine, a mucolytic agent, facilitates V. cholerae colonization in vivo [38]. In order to
break down mucins, V. cholerae might rely on a mucinase complex, degrading polysaccharide
and protein components of mucin in a manner analogous to known processes during V. cho-
lerae departure from the intestine after infection [62-65]. For example, V. cholerae produces a
soluble mucinase, called haemagglutinin/protease (Hap), which is encoded by hapA [62]. In a
column assay, expression of hapA positively correlates with the capacity of V. cholerae to move
through the mucus layer [63]. As hapA is expressed late in infection, it has been suggested that
it facilitates detachment from the host epithelium and removal from the mucosa post-infection
[66]. However, because mucin induces hapA promoter activity [63], it is possible that Hap also
facilitates initial penetration of the mucus layer. In addition, some as-yet-undiscovered muci-
nases might be involved in the early stages of colonization of V. cholerae.

While a general protease seems to be involved in initial migration through the mucus,
V. cholerae may express specific mucinases near the location where the bacterium preferentially
colonizes the intestinal epithelium. Whereas Hap is a metalloprotease that cleaves a wide varie-
ty of substrates, TagA, another metalloprotease, may specifically modify mucin glycoproteins
attached to the host cell surface [65]. TagA, which is encoded within the Vibrio pathogenicity
island (VPI), is expressed and secreted by V. cholerae under virulence-inducing conditions
[65]. As the protein is positively coregulated with TCP and other virulence genes, TagA may
play an important role in colonization during the later stages of movement through the intesti-
nal mucosa. Another V. cholerae virulence factor, neuraminidase (NanH) [67], is an extracellu-
lar enzyme that cleaves two sialic acid groups from the GM, ganglioside, a sialic-acid
containing oligosaccharide on the surface of epithelial cells, thereby unmasking receptors for
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CT [68]. As a mucinase with a specific role in infection, NanH may be important in aiding
movement through the mucus to the specific site of infection.

Reversible and Irreversible Attachment
Finding the preferred site for infection

Once V. cholerae has penetrated the mucus layer and reached the epithelium, attachment to
the epithelial cells likely occurs, since V. cholerae strains with deletions in genes encoding adhe-
sins show colonization defects in the infant mouse model and in vivo studies demonstrate that
V. cholerae physically interacts with the intestinal epithelium from the early stages of coloniza-
tion (Fig 1D) [38,69-71]. V. cholerae produces various nonspecific adhesins that, upon initial
contact with the host epithelium, seem to allow the bacterium to determine whether it has
reached the appropriate niche without committing to attachment. To our knowledge, adhesins
that have been identified in vivo and/or in vitro in V. cholerae include the flagellum (in addi-
tion to its function in motility) [72], Mam?7 [73], GbpA [70], OmpU [74], and FrhA (Fig 1D)
[71].

Outer membrane adhesion factor multivalent adhesion molecule 7 (Mam?7) is one possible
example of a nonspecific adhesin involved in V. cholerae colonization. Loss of Mam?7 decreases
attachment of V. cholerae by about 50% in cultured fibroblast cells [73]. Various results suggest
the adhesin is nonspecific [73]; Mam?7 does not bind to a specific receptor or molecule but in-
stead can establish protein—protein as well as protein—lipid interactions, and Mam?7 has been
shown to mediate binding to diverse host cells by many gram-negative bacteria. Across patho-
genic species, Mam?7 is a general adhesion factor that facilitates attachment to various sub-
strates; it is possible that each species also encodes specific adhesins that play a greater role in
promoting attachment to unique host cells [73]. Overall, in V. cholerae, Mam?7 likely plays a
role in initial attachment to the epithelium (Fig 1D).

Another example of a nonspecific adhesin for V. cholerae is GIctNAc-binding protein
(GbpA), which facilitates attachment to the intestinal epithelium and the chitinaceous surfaces
of copepods [70]. GbpA binds specifically to GIcNAc molecules that are attached to glycopro-
teins and lipids on intestinal epithelial cells and mucus [75,76]. Furthermore, GbpA increases
the production of intestinal secretory mucins (MUC2, MUC3, and MUC5AC) in HT-29 intes-
tinal epithelial cells through up-regulation of corresponding genes [75]. However, similar to
Mam?7, loss of GbpA only decreases attachment in an epithelial cell assay by 50% as compared
to wild type [70].

Bacterial outer membrane proteins, which are involved in a wide variety of functions, some
of which include attachment, require further investigation as potential nonspecific adhesins in
V. cholerae. In the genus Vibrio, outer membrane porins aid in attachment to both biotic and
abiotic surfaces [74,77,78]. OmpU plays a role in the attachment of Vibrio fischeri, symbiont of
the Hawaiian squid Euprymna scolopes, to the epithelium of the light organ, and plays a cell
line-specific role in the attachment of V. cholerae to epithelial cells [74,78]. Nonetheless, the
possibility that OmpU might play a role in the attachment of V. cholerae Ol in vivo remains to
be determined.

It was recently found, through the use of atomic force microscopy, that V. cholerae O1 inter-
acts physically with the GM1 ganglioside [79]. The cells show a 5-fold increase in attachment
to lipid bilayers coated with GM1 gangliosides compared to control bilayers [79]. Thus, this
raises the possibility of NanH and the GM1 ganglioside having several roles in V. cholerae O1
pathogenesis: (A) NanH releases a carbon source, N-acetylneuraminic acid, that confers a com-
petitive advantage to the bacterium in the intestine while unmasking the GM1 ganglioside
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[80], and (B) the GM1 ganglioside acts as the receptor of CT [67,68] and (C) might act as re-
ceptor of a nonspecific adhesin or adhesins.

Attachment to epithelial cells appears to be required in order for V. cholerae to successfully
colonize the SI [70,71,81]. Deletion strains for the adhesins gbpA and frhA have deficient intes-
tinal colonization in the infant mouse model [70,71]. The effect on colonization of GbpA is
particularly striking as, even though it shows just a 50% decrease in attachment in vitro, the
mutants show 1-log decrease in colonization of the infant mouse [70]. To date, the effect of
Mam-7 in the intestinal colonization of V. cholerae remains to be elucidated; nonetheless, re-
cent Tn-seq studies did not identify it in their screenings [42,43]. It is possible that nonspecific
adhesins such as Mam-7 or GbpA, given their low individual affinity, could act synergistically
and that the intestinal colonization defect shown by strains with multiple deletions would
be augmented.

The use of transient nonspecific adhesins as early attachment factors in colonization could
confer V. cholerae the advantage of being able to detach from a substrate if it is not conducive
to prolonged attachment (e.g., because of the lack of specific nutrients). It is possible that once
V. cholerae attaches to a preferred substrate with nonspecific adhesins, the bacterium could
subsequently produce specific adhesins that would allow for committed attachment in a man-
ner analogous to the early stages of biofilm formation on nutrient-rich substrates in the aquatic
environment (Fig 1E).

Committed attachment in chemically favorable conditions

Entering a committed attachment stage remains a possibility in the intestinal colonization of
V. cholerae. Nonetheless, if the bacterium transitions from noncommitted to committed at-
tachment, V. cholerae must be able to sense specific host signals, such as preferred carbon
sources, that would indicate that V. cholerae has reached the appropriate niche. Recent studies
provide evidence for preferential use of specific carbon sources by V. cholerae. For instance, the
ability to utilize two amino sugars abundant in the gut, sialic acid (N-acetylneuraminic acid)
and GlcNAc (N-acetylglucosamine), confers V. cholerae with a competitive advantage in the
infant mouse model of infection [80,82]. Furthermore, ToxT controls the expression of a small
RNA, TarA, which influences glucose uptake through its effect on the transcript encoding the
glucose transporter PtsG [83]. When the virulence cascade is being expressed, TarA decreases
the uptake of glucose because of its negative effect on ptsG mRNA [83]. Together, these find-
ings suggest that V. cholerae has evolved mechanisms to utilize certain carbon sources in the
gut mucosa (sialic acid and GIcNAc) in a preferential manner over others (glucose). Although
evidence indicates favored use of certain carbon sources by V. cholerae and thus supports the
notion that the bacterium would delay committed attachment until reaching chemically favor-
able conditions for virulence, no adhesins involved in committed attachment are known in

V. cholerae, and the existence of this stage during intestinal colonization remains hypothetical.
Once the virulence cascade is activated, the attachment of V. cholerae to intestinal epithelial
cells increases [69]. A possible way to identify specific adhesins involved in committed attach-
ment might be to ectopically express toxT in different mutant strains and identify those that at-
tach similarly to the control strains and thus do not experience an increase in their attachment
to epithelial cells.

Final Stages of Colonization
Proliferation and microcolony formation

After attachment to the intestinal epithelium, the bacterium decreases motility [84], begins to
proliferate, and initiates the virulence cascade (Fig 1F). V. cholerae forms TCP-mediated
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clusters of bacterial cells called microcolonies (Fig 1G). It was recently shown that microcolo-
nies originate from single cells after reaching the intestinal epithelium (Fig 1G) [38]. To date,
several roles of the pilus have been determined: TCP enhances attachment to intestinal epithe-
lial cells and facilitates bacteria—bacteria interactions, visualized in vitro as autoagglutination,
by tethering the cells together; the ability to form microcolonies correlates with the ability to
colonize the infant mouse and humans [23,85]. TCP acts as the receptor of the CTX phage, a
filamentous bacteriophage that encodes CT [86]. Interestingly, an in-frame deletion mutant for
tcpA shows highly reduced expression of the gene encoding the major subunit of CT in vivo,
indicating that the presence of an intact TCP apparatus appears to be essential for effective reg-
ulation of the virulence cascade [81]. TCP is also required for the secretion of the soluble colo-
nization factor TcpF [87]. In vivo, a fcpF mutant is severely defective for colonization, a
reduction equivalent to the effect seen with a tcpA mutant, which encodes the major pilin sub-
unit [87]. Although T'cpF mutants are still able to form microcolonies, they are loosely packed
and have decreased adherence around the edges; thus, it appears that TcpF functions as an en-
hancer of microcolony formation in vitro [69].

Forming microcolonies within the host may also be beneficial to V. cholerae for other rea-
sons, including more efficient nutrient uptake and protection from antimicrobials like bile or
bactericidal compounds produced near the intestinal epithelium [69,85]. Furthermore, it is
thought that microcolonies might protect V. cholerae from being shed [38]. In strains with
functional quorum-sensing systems, virulence is repressed at high cell density [66]. However,
quorum sensing does not seem to play an essential role in virulence, as various toxigenic strains
of V. cholerae have a naturally occurring frameshift mutation in the hapR gene, which encodes
the master regulator of quorum sensing [66].

Synthesis and Next Steps

The detailed mechanisms facilitating intestinal colonization of bacterial pathogens are begin-
ning to be understood. In this perspective, we provide a comprehensive model that draws upon
recent findings in the field and proposes a series of steps that appear to be necessary for V. cho-
lerae to effectively colonize the intestinal epithelium (Fig 1). Models such as the one described
here might provide researchers with ways to generate testable hypotheses, furthering the
knowledge of the field. Some areas of the intestinal colonization dynamics of V. cholerae cov-
ered in this model that need further exploration include the roles of the chemical gradients of
bile and bicarbonate on V. cholerae virulence gene expression, the variable distribution of com-
ponents of the mucus throughout the SI and the enzymes involved in its degradation, the spe-
cific role, if any, of chemotaxis during infection, the conditions necessary for prolonged
attachment, and the confirmation and identification of specific adhesins.
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