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Abstract

An average mouse in midlife weighs between 25 and 30 g, with about a gram of tissue in the

largest adipose depot (gonadal), and the weight of this depot differs between inbred strains.

Specifically, C57BL/6ByJ mice have heavier gonadal depots on average than do 129P3/J

mice. To understand the genetic contributions to this trait, we mapped several quantitative

trait loci (QTLs) for gonadal depot weight in an F2 intercross population. Our goal here was

to fine-map one of these QTLs, Adip20 (formerly Adip5), on mouse chromosome 9. To that

end, we analyzed the weight of the gonadal adipose depot from newly created congenic

strains. Results from the sequential comparison method indicated at least four rather than

one QTL; two of the QTLs were less than 0.5 Mb apart, with opposing directions of allelic

effect. Different types of evidence (missense and regulatory genetic variation, human adi-

posity/body mass index orthologues, and differential gene expression) implicated numerous

candidate genes from the four QTL regions. These results highlight the value of mouse

congenic strains and the value of this sequential method to dissect challenging genetic

architecture.

Introduction

An average mouse at six months of age weighs about 25 to 30 g. Some of this weight is due to

adipose tissue located in several depots, the largest of which is the gonadal (Fig 1). In rodents,

depots can differ in weight up to 20-fold, depending on the particular strain, and while adipose

depot weight is highly heritable [1, 2], specific genetic determinants for each depot reflect its

specialized functions [3]. Investigators have interbred specific strains and looked for chromo-

somal regions that affect the weight of individual adipose depots, and this procedure has iden-

tified hundreds of influential genomic regions, or quantitative trait loci (QTLs), which curators

catalog in the Mouse Genome Database [4]. While it has been difficult to identify the underly-

ing genetic variants for many complex traits, including adiposity [5], it remains an important
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scientific goal because this knowledge may better explain genetic risks and suggest new biologi-

cal pathways and therapeutic targets [6].

Our specific goal here was to map QTLs for gonadal adipose depot weight in mice and to

identify the underlying genetic variants using a pair of contrasting inbred strains. We began

Fig 1. Gonadal adipose depot. Anatomical location of the gonadal adipose depot in a male mouse.

https://doi.org/10.1371/journal.pone.0188972.g001
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QTL mapping by intercrossing the C57BL/6ByJ (B6) strain with the 129P3/J (129) strain [7–9]

and found a QTL on chromosome 9, which we originally called Adip5 (at ~50 Mb) but was

renamed Adip20. Chromosomal mapping using intercross populations did not provide suffi-

cient resolution to narrow the genomic interval to specific candidate genes, so our next step

was to refine the location of this QTL by creating and studying mouse congenic strains. We

assayed or imputed genotypes for a common set of markers on mouse chromosome 9 and ana-

lyzed the genotype-phenotype associations using several computational approaches, including

a sequential method of strain comparison [10]. Maternal effects and imprinting affect body

composition, including adipose depot weight, so we incorporated several experimental design

features to control these influences. After the mapping studies, we used several methods to

identify candidate genes.

Method

Animal husbandry

We bred all mice in the animal vivarium at the Monell Chemical Senses Center, located in

Philadelphia, Pennsylvania (USA), except for the inbred B6 and 129 mice used for the first

stages of breeding, purchased from the Jackson Laboratory. During this time, husbandry prac-

tices were stable, owing in part to having the same vivarium personnel and in part to using a

consistent type of bedding (Aspen Shavings, Northeastern Products Corp, Warrensburg, NY).

We fed mice Rodent Diet 8604 (Harlan Teklad, Madison, WI), and they lived in a 12:12 light

cycle, with lights off at 6 pm, barring unusual circumstances (e.g., weather-related power out-

ages). The NCBI Taxon ID for the mice used in these experiments is 10090. The Monell Insti-

tutional Animal Care and Use Committee approved these procedures.

We started branching congenic mice by backcrossing N6 (F1 x B6) males (from heterozy-

gous consomic B6.129-Chr9 mice [11] with a partial donor region from chromosome 9) with

B6 females to produce mice with 129-derived donor chromosomal regions of various lengths.

We named the strains with codes that reflect their lineage; for instance, all strains with the pre-

fix 1 (e.g., 1.1) descended from the same male. The breeding goal was to identify male breeders

with a donor region that overlapped the QTL location discovered in the original F2 intercross.

We bred congenic mice that had either zero or one copy of the 129-derived donor region

by mating inbred B6 female mice with heterozygous congenic males. This approach reduced

maternal effects (all mothers were the same genotype) and reduced imprinting effects (only

fathers contributed the donor region). Each congenic mouse was potentially genetically unique

(because the paternal donor region could shorten due to meiotic recombination). Therefore,

we genotyped each congenic mouse to ensure we could define the donor region breakpoints.

While most mice had full-length donor regions, some had shorter regions, which we refer to as

“partial.”

Genotyping

We evaluated simple sequence-length polymorphism markers (e.g., D9Mit2) by polyacryl-

amide gel electrophoresis after polymerase chain reaction amplification by locus-specific prim-

ers [12] in our laboratories. We assayed single nucleotide polymorphisms (SNPs) at three

locations: at the Genotyping and RNA Analysis Core at the Monell Chemical Senses Center;

at the Center for Inherited Disease Research (see Electronic Resources) as part of an NIH-

funded genotyping supplement; or by a commercial vendor (LGC, Beverly, MA; formerly

KBiosciences) as a fee-for-service. When assaying variants in the Monell genotyping core, we

used primers and allele-specific dye-labeled probes (Life Technologies, Carlsbad, CA). Irre-

spective of genotype location, controls (blank samples, and genomic DNA from inbred
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progenitors and their F1 hybrids) were included in all genotyping assays, and we retested

unlikely genotypes as needed. We list all markers tested and their base pair positions in S1

Table. We imputed missing data by tracing the parental origin of the marker alleles and assum-

ing that no double recombination occurred between markers 26 Mb or less apart. We selected

this 26 Mb criterion as the smallest distance between two observed recombinant events in the

most densely genotyped populations we have studied [11]. We also genotyped 12 representa-

tive congenic mice to evaluate residual genetic background using the Mouse Universal Geno-

typing Array (www.neogen.com) with 7,851 SNP markers built on the Illumina platform. We

tallied the numbers of heterozygous markers in the genetic background (excluding the targeted

donor regions) and expressed them as a fraction of the total valid markers for an estimate of

residual heterozygosity.

Phenotyping measures

After euthanasia by carbon dioxide asphyxiation, we weighed the body of each mouse to the

nearest 0.1 g. During necropsy, we removed the gonadal adipose depot using anatomic land-

marks [13, 14] and weighed the wet tissue to the nearest 0.1 g.

Gonadal adipose depot gene expression

We conducted two microarray experiments to quantify gonadal depot adipose tissue gene

expression between congenic mice with and without the donor region (Experiments 1 and 2).

In Experiment 1, we selected tissue from male mice from congenic strain 4. We chose this

strain because the donor region captured the Adip20 peak we previously identified [15] (42.6

to 58.3 Mb). Half of the mice were heterozygous for the donor region (129/B6; N = 7), and half

were littermates homozygous for the donor region (B6/B6; N = 7). Experiment 2 replicated

Experiment 1 except there were N = 6 mice in each genotype group, for a total of 12 mice. We

isolated RNA from each gonadal adipose depot and measured genome-wide exon-by-exon

expression using the Affymetrix Mouse Gene 1.0 ST Array. Members of the University of

Pennsylvania Microarray Core facility prepared the RNA, performed the chip hybridization,

and did preliminary quality control steps following manufacturer directions.

Data analysis

We took three steps to prepare for the statistical analysis of the gonadal adipose depot weights.

First, we eliminated data from mice that (a) appeared to be sick (e.g., hunched posture) or

(b) had tumors or other obvious gross morphology found during necropsy (S2 Table). Second,

we determined whether the data were normally distributed using the fitdistrplus R package

[16], log-transformed the data (S1 Fig) if needed, and confirmed this transformation was effec-

tive using the Kolmogorov-Smirnov test (S3 Table). Third, we evaluated the importance of

body weight and age as covariates using Pearson correlation coefficients. We observed that

body weight was highly correlated with adipose depot weight but that age, owing to the tight

range (measured in days), was not (S2 Fig). Therefore, we used body weight but not age as a

covariate for the subsequent analyses:

Marker association analysis. We treated all congenic mice as one mapping population

and conducted a general linear model analysis of the log-transformed gonadal adipose depot

weight for each marker, using marker genotype and strain as fixed factors and body weight as

a covariate, and using a type 1 (sequential) sum of squares. For the presentation of the data, we

(a) computed marker association test statistics and converted the associated p-values to the

negative logarithm with base 10, (b) calculated the genotype mean, and (c) calculated the effect

sizes using Cohen’s D [17] for the peak linked marker in the mapping population. We defined
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a ‘significant’ statistical threshold as an α level of 0.05 after Bonferroni correction for the

number of markers (N = 148;–log10(α/N) = 3.47) and a suggestive threshold as an α level of

0.63 (–log10(α/N) = 2.37) [18].

Common segment method. The common segment method is based on the assumption

that a chromosomal region of interest harbors one QTL. Therefore, in our case, if the QTL is

within a congenic donor region, there is a difference in gonadal adipose depot weight between

host and donor mice, whereas congenic strains that do not share that QTL-containing donor

region have no phenotype. Using this method, we conducted two analyses, one narrow and

one broad. For the narrow analysis, we considered only a subset of congenic mice, those mice

with full-length donor regions that were also from large genotype groups (N mice� 12/strain/

genotype; 12 strains). For the broad analysis, we used nearly all congenic mice as described

below. For the narrow and broad analyses, we grouped mice within each congenic strain by

whether they had a host or donor region, and compared these two groups using a general lin-

ear model with the presence of the donor region and strain as fixed factors and body weight as

a covariate. We conducted the post hoc Fisher’s least significance difference to compare the

phenotype between genotype groups for each congenic strain, and p<0.05 was used as a signif-

icance level. Those strains with a significant difference between genotype groups we classified

as Adip20 positive (+), and those that were not different we classified as Adip20 negative (-).

Sequential method. The sequential method can detect single and multiple QTLs [19]

using an established procedure to compare congenic strains in a predetermined order. To

establish the strain comparison order, we constructed a minimum spanning tree (MST) based

on the donor region size and location with a custom R-script following the previously pub-

lished pseudocode [19] supplemented with the R software package optrees [20] and igraph. We

compared heterozygous congenic mice (129/B6) to the group of all homozygous littermates

(B6/B6). To make comparisons between mice of different genotypes, we used a general linear

model followed by least-squares difference post hoc analysis with a statistical threshold of

p< 0.05.

DNA sequence variants and human homology

Using an online database [21], we identified all genes residing within the genomic coordinates

of the QTLs defined in the sequential congenic analysis. We next used another online database

[22] containing genomic variants among inbred mouse strains from a large-scale genome

sequencing project [23, 24] to compare the genomic sequences within the defined QTL regions

for strains (129P2/OlaHsd and C57BL/6J) closely related to parental inbred strains used in our

study. We formatted these variants using an online tool [25], and we identified regulatory vari-

ants as well as coding variants (missense and stop codon gain/loss) with the potential to cause

functional changes. We determined which coding sequence variants were likely to be func-

tional using computer algorithms in the program Sorting Intolerant From Tolerant [26]. Eight

SNPs were excluded from this analysis because we could find no unique identifier for the vari-

ant in the dbSNP database (Build 138) [27]. We also identified human genes and their variants

associated with obesity that are located in the regions of conserved synteny with the mouse

QTL regions by searching an online catalog of human genome-wide association results [28]

with key words “adipose” and “body mass index”.

Analysis of microarray data

We performed gene expression analysis using Partek1 Genomics Suite1 (version 6.6, build

6.16.0419) by importing files of raw intensities for each probe set, performing the post-import

quality control analyses, and comparing genotype groups (host versus donor region) for
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differential gene expression [29–31]. We report the differential expression as the log2-fold

change (corresponding to a 1.5-fold change) with an associated p-value (p<0.05) corrected for

false discovery using the number of genes examined [32]. We selected this relaxed fold-change

cutoff to capture the anticipated small differences in gene expression that often arise from alle-

lic variation [33]. We present data from the relevant genes using a customized volcano plot

[34] annotating the resulting graph using the ggrepel [35] and ggplot2 [36] R packages.

We compared the results between Experiment 1 and Experiment 2 and report only those

genes that consistently differed by genotype. We included genes within the entire congenic

donor region (not just the smaller QTL regions as defined below), reasoning that gene regula-

tory elements can be located millions of base pairs from their protein-coding regions [37]. We

also examined the genome-wide pattern of differential expression beyond the donor fragment

region of the congenic strain 4. We took this additional step to confirm our expectation that

more genes would differ inside than outside the congenic region. To that end, we identified

the top 200 differentially expressed genes (those with the lowest p-values) and used their chro-

mosomal locations to create an ideogram [38].

For all analyses listed above, we computed the statistical tests with R (version 3.2.0) and R-

studio (version 0.99.489) and graphed the results using GraphPad Prism 6 (version 6.05;

GraphPad Software, La Jolla, CA). All data are available for download on Github (https://

github.com/DanielleReed/Adip20) and the Center for Open Science (osf.io/yeqjf). All men-

tions of mouse genomic coordinates refer to GRCm38 (mm10).

Results

Characteristics of congenic strains

We studied 1,293 congenic mice in total from 22 strains (Table 1, S4 Table) and confirmed the

residual heterozygosity of these newly created strains was low (<0.2%; S4 Fig). The average

adipose depot weight of the adult congenic mice ranged from 0.32±0.14 grams to 0.99±0.58

grams, depending on strain.

Marker association analysis

In an initial general linear model analysis of a combined group of mice from all congenic

strains, we estimated effect of marker genotype on gonadal adipose depot weight (Fig 2). The

result confirmed a linkage with a large effect size at ~52.5 Mb; this effect size was 0.5 unit of

pooled standard deviation for two independent genotype groups (Fig 2C), and 129-derived

allele increase the phenotype (Fig 2B). However, the result also indicated possible additional

peaks (Fig 2A).

Common segment method

As expected, the common segment method was uninformative for both the narrower and

broader analyses, failing to point to one region with a single QTL. In the narrow analysis, of

the 12 congenic strains we evaluated, three were Adip20(+) and nine were Adip20(-) (S5 and

S6 Tables). The positive strains had no single region in common. For the broad analysis, we

used mice from 19 of the 22 strains (three strains had too few mice of a particular genotype for

statistical analysis; S4 and S8 Tables); of these strains, five were Adip20(+) and fourteen were

Adip20(-) (S7 and S8 Tables). Like the narrow analysis, the broad analysis indicated that the

positive strains had no single region in common.

Adiposity QTL Adip20
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Sequential method

Using the sequential method, we analyzed the congenic strains with group sizes N� 12/geno-

type/strain (S5 Table). We put the 12 congenic strains that met this sample-size criterion into

one of three groups for comparison; the groupings and comparison order (described below)

were suggested by the results of the MST analysis (Fig 3A). Within these groups, we compared

pairs of strains, in the predetermined order, starting from comparison of the host strain (all

mice without the donor fragment) and the strain with the smallest donor region (Fig 3B). The

sequential analysis results indicated the presence of four QTLs (Fig 3C), which we ordered

from proximal to distal, starting with QTL1. For most of the QTLs, the 129-derived allele

increased the weight of the gonadal adipose depot, but QTL3 had the opposite direction of

effect (Figs 3C and 4).

Genetic variation

We analyzed genes residing in the QTL regions estimated in the sequential congenic analysis:

QTL1, 9:42779420–44142555; QTL2, 9:48789608–53884418; QTL3, 9:54242579–54286770;

and QTL4, 9:58262383–124595110. We refined the poorly localized QTL4, drawing on mar-

ginally significant mapping results from the original F2 intercross [15], to marker rs3721068
with a 10-Mb flanking region (QTL4, 9:108915010–118915010). There were 44,009 variants

Table 1. Characteristics of congenic mice by strains.

Straina N Age at necropsy (days) Gonadal adipose (grams) Body weight (grams)

Range Mean±SDb Mean±SD Mean±SD

1 113 175–187 180±2 0.54±0.24 31.77±2.93

1.1 176 162–184 180±2 0.55±0.28 31.44±2.96

1.1.1 3 180–180 180±0 0.99±0.58 36.13±4.72

1.2 14 180–182 181±1 0.61±0.28 33.43±4.24

3 175 177–190 180±2 0.56±0.24 31.18±3.19

3.1 120 178–182 180±1 0.55±0.25 31.64±3.21

3.1.1 106 178–186 180±1 0.50±0.23 31.55±3.11

3.1.1.1 127 179–184 181±1 0.39±0.17 31.10±2.26

3.1.1.2 34 179–181 180±1 0.40±0.17 31.21±2.58

3.1.1.3 14 179–181 180±1 0.56±0.38 31.23±3.77

3.1.1.4 63 103c-193 160±29 0.32±0.14 29.57±2.63

3.1.2 21 180–183 181±1 0.51±0.24 31.70±2.68

3.1.3 6 178–183 181±2 0.40±0.14 30.03±2.46

3.1.4 11 179–181 180±1 0.75±0.28 31.79±3.82

3.1.4.1 26 179–191 181±3 0.51±0.22 32.28±2.20

4 119 175–188 180±2 0.52±0.22 31.09±3.05

4.1 44 179–231 182±8 0.46±0.18 30.50±2.20

4.1a 22 177–190 180±3 0.51±0.19 31.31±2.42

4.2 16 180–181 180±0 0.52±0.18 30.90±2.51

4.3 18 179–183 181±1 0.51±0.18 31.11±2.55

4.4 61 178–193 181±3 0.48±0.28 30.95±2.89

4.5 4 179–181 180±1 0.90±0.45 34.89±4.53

aSubstrain IDs.
bSD = 0 indicates less than one day.
cWe necropsied 10 younger mice ranging from 103 to 124 days of age.

https://doi.org/10.1371/journal.pone.0188972.t001
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between the 129P2/OlaHsd and C57BL/6J strains (closely related to the B6 and 129 parent

strains used in our study), which we extracted (S3 Fig). Of these variants, the in silico analysis

predicted that 2% change some aspect of mRNA regulation (S9 Table). There are 429 protein-

coding genes [21], and 31% of the variants that map within the coding sequence are missense

variants. Specifically, 48 of these genes contain either missenses or nonsenses variants (S10

Table).

Previously reported mouse and human QTLs. Using these QTL co-ordinates, we surveyed

the mouse genome database [4] for other adiposity QTLs on chromosome 9. Of the eight pre-

viously reported QTLs (Adip5, Adip14, Dob2, Mobq8, Obq5, Carfhg2,Plbcq5, and Tdmq1),

seven QTLs had overlapping confidence intervals with the QTLs reported here (S11 Table).

We also identified the regions of conserved synteny of human chromosomes 3, 11, and 15. We

next examined results of recent human genome-wide association studies to find genes associ-

ated with body mass index and adiposity [28] and residing in these regions (Table 2), and to

examine mouse orthologous genes with sequence variants. Four human genes (FDX1, ARH-
GAP20, PDCD6IP, and TRAK) associated with adiposity and six (C11orf53,NCAM1, DMXL2,

OSBPL10, LOC101928114, and CCK) associated with body mass index (a commonly used but

Fig 2. Detection of gonadal adipose depot weight QTLs on chromosome 9 by association analyses of a pooled congenic

population. (A) Location of the markers in Mb on mouse chromosome 9 (mChr9); the y-axis is the—log p-values (black line) obtained in a

general linear regression model analysis with body weight and strain as covariates (red line, significant threshold; gray line, suggestive). We

defined the QTL confidence intervals by two units of—log10 p-value drop from the peak (blue line). For QTL1-QTL4 (Q1-Q4), the shaded

peak areas correspond to QTL regions defined by the sequential method. (B and C) Average weight of the gonadal adipose depot by

genotype (B6/B6, B6/129; B) and Cohen’s D effect size (C) of rs3723670, the most associated marker (i.e., the marker with the lowest p

value). *p<0.0001, difference between genotypes.

https://doi.org/10.1371/journal.pone.0188972.g002
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indirect measure of human adiposity) resided in these regions. Among mouse orthologues of

these 10 genes, at least one, Osbpl10, has a protein-coding variant between 129P2/OlaHsd and

C57BL/6J strains closely related to the B6 and 129 parental strains used in our study.

Microarray results

The donor region of the congenic strain 4 (42.6 to 58.3 Mb; Fig 3C) has 277 genes, and in each

microarray experiment, ~15% of these genes passed the microarray differential expression fil-

ters with a 1.5-fold change and/or a false discovery rate of p<0.05 (Fig 5). More than half of

these genes were differentially expressed in both microarray Experiments 1 and 2 (Abcg4,

Acsbg1, Alg9, Arcn1, C230081A13Rik,Cd3g, Cryab, Dixdc1, Fam55d, Fxyd6, Hmbs, Il10ra, Isl2,

Mcam, Mpzl2, Mpzl3, Nnmt, Ptpn9, Sik2, and Sik3; Fig 5 and S12 Table). Two genes that were

differentially expressed had two missense variants apiece (Dixdc1 and Sik2; S10 Table). Five

Fig 3. Dissection of QTLs with the congenic strains and the sequential method. (A) Minimum spanning tree (MST). (B) Mean and

standard error of the mean (SEM) by strain for gonadal adipose depot weight in grams. Host = combined group of homozygous littermates

without the donor fragment from all congenic strains; N = number of mice in each group. P-values are for least-significant-difference t-tests

for each sequential comparison; red text indicates p-values that met the threshold (p<0.05). For the comparisons of two strains, the first

strain was either greater (>), less than (<), or equal to (=) the second strain in gonadal adipose depot weight. “Model” lists QTLs within the

donor fragment of each congenic strain suggested by the sequential analysis. (C) Congenic strains and genotypes for informative markers:

A = B6/B6, shown as white bars; H = 129/B6, shown as dark gray bars; the recombinant ends correspond to both sides of the donor

fragment for each congenic strain between H and A (or chromosome end), shown as light gray bars. QTLs are shown at the bottom as black

boxes; arrows show the direction of effect (e.g., " indicates that the QTL allele from the 129 strain increases the trait value). The data support

the presence of four QTLs; we reported the detailed logic for this conclusion in S1 Text.

https://doi.org/10.1371/journal.pone.0188972.g003
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genes including two with the missense variants contained putative cis-regulator variants (Alg9,

Cryab, Dixdc1, Mcam, and Sik2; S9 Table). We also confirmed the expectation that differentially

expressed genes cluster in the congenic region rather than elsewhere in the genome (S4 Fig).

Integrating all methods above, there was no convergence to a single candidate gene (Fig 6).

Several genes did not survive the candidate gene filters used here but are noteworthy near

misses because their human orthologues are associated with similar traits in genome-wide

association studies (Fdx1 and Ncam1; Table 2). While no single gene was implicated consis-

tently, several had more evidence than did others, for instance, Dixdc1 and Sik2, as mentioned

Fig 4. QTL effects. The least square means (dark red lines) and 95% lower and upper confidence limits (blue lines) for QTL genotypes were

obtained from the general linear model with body weight as covariate in the congenic mouse data used for the sequential analyses. We

selected one marker in the middle of each QTL to plot each QTL effect. The host (A) comprised littermates homozygous for B6/B6 from all

strains; we selected appropriate congenic mice (H) as suggested by the results of the sequential analysis.

https://doi.org/10.1371/journal.pone.0188972.g004
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above, were differentially expressed in gonadal adipose depots and contained several putative

regulatory and missense variants.

Discussion

Here we bred congenic strains with the expectation that we could narrow the genomic location

of an adiposity QTL, Adip20, to a region with only one or a very few genes on mouse chromo-

some 9. The successful identification of several obesity genes, including leptin [39], the leptin

receptor [40], tubby [41, 42], and agouti [43], suggested this strategy would be useful even

when effect sizes differ by genetic context [44]. These early successes spawned other efforts like

ours to map genetic variants that contribute to obesity [45–62], and investigators have identi-

fied hundreds of QTLs [4]. When we fine-mapped the Adip20 locus, we detected effects of at

least four QTLs on chromosome 9. These results illustrate both the complexity of body compo-

sition genetics and the utility of congenic strains to better characterize the underlying genetic

architecture and, further, suggest that decomposition of a single QTL into multiple QTLs is

commonplace for traits like adipose depot weight and obesity [63–65].

In general, the study of complex traits is easier when we reduce or eliminate extraneous

sources of trait variation. For obesity, sex-by-genotype interactions are a common feature of

natural populations, including humans [66], as well as mouse intercross studies [8, 67, 68].

Thus, we chose to study only male mice to reduce the potential interaction of a particular

genotype with sex, while acknowledging this choice makes the results less generalizable [69].

In addition to reducing variation in adiposity due to sex, we controlled age as a source of

potential trait variation to reduce genotype-by-age interactions [70]. We also tried to reduce

parent-of-origin and maternal effects because of their known influence on adiposity [71, 72].

We controlled some maternal effects in the sense that all congenic mice had mothers of the

same genotype, and we controlled some imprinting and other parent-of-origin effects because

all congenic mice inherited the donor region from the father (i.e., paternal transmission). We

acknowledge that maternal effects are a composite of many factors, not just maternal genotype,

and so the offspring may vary based on maternal body weight and parenting behavior. How-

ever, generally, these experimental choices were useful in reducing certain types of variation.

Obesity as a trait is both simple and complex: it is simple conceptually because its single

hallmark is an excess of adipose tissue. However, it is complex because not all adipose tissue is

the same. It is stored in depots that differ in location, size, and function [13, 14, 73], and each

depot has a different genetic architecture [15] and pattern of gene expression [74, 75]. Further

complexities arise because adipose tissue is hard to measure directly, and each measurement

method yields different results [76]. Here we chose to study one adipose depot, which we mea-

sured directly by necropsy. This is a simple measurement method, and our expectation was

that its genetic architecture would be less complex than for whole-body obesity. We specifically

chose the gonadal over other depots because it is the heaviest [13, 14, 73] and a proxy for

Table 2. Human genome-wide associations within mouse QTLs for adiposity and body mass index.

QTL Mouse QTL location Human region Adiposity Body mass index

1 chr9:42779420–44142555 chr11:119308720–120693788 None None

2 chr9:48789608–53884418 chr11:107691025–114109156 FDX1, ARHGAP20 C11orf53, NCAM1

3 chr9:54242579–54286770 chr15:51295990–51341931 None DMXL2

4 chr9:108915010–118915010 chr3:27712199–48621406 PDCD6IP, TRAK1 OSBPL10, LOC101928114, CCK

This table lists chromosome: bp locations for mouse (GRCm38; mm10) and human (GRCh38). We obtained human orthologous regions by the UCSC

genome converter [90]. “Adiposity” and “Body mass index” columns contain Human Gene Nomenclature Committee gene symbols.

https://doi.org/10.1371/journal.pone.0188972.t002
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Fig 5. Extraction of differentially expressed genes. Filtering on a volcano plot of the microarray data analysis of the Experiment 1 (top)

and Experiment 2 (bottom). In Experiment 1, we selected the gonadal adipose tissue from male mice from congenic strain 4 with the donor

region captured QTL1, QTL2, and QTL3 (42.6 to 58.3 Mb). Half of the mice were heterozygous for the donor region (129/B6; N = 7), and half

were littermates homozygous for the donor region (B6/B6; N = 7). Experiment 2 replicated Experiment 1 except with N = 6 mice in each

genotype group, for a total of 12 mice. The customized volcano plots depict the estimated log2-fold change (x-axis) and statistical

significance (−log10 p-value; y-axis). Each dot represents one gene. The green dots show genes with absolute log2-fold change > 0.58 (i.e.,

1.5-fold change) and false discovery rate < 0.05; the red dots show genes with false discovery rate < 0.05; the yellow dots show genes with

absolute log2-fold change > 0.58; the black dots show genes that did not reach these statistical thresholds. We label genes that passed any

filters by name. Twenty differentially expressed genes are reproducible between Experiment 1 and 2, labeled with blue text and square

boxes. Red stars show two genes that passed the filters in one but not both experiments yet are noteworthy because their human

orthologues are associated with adiposity or body mass index in genome-wide association studies (Table 2). We summarize the additional

experimental details in S12 Table.

https://doi.org/10.1371/journal.pone.0188972.g005
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overall adiposity [77, 78]. However, despite all these complexities, both mouse and human

genetic approaches point to the same underlying mammalian biology: QTL regions found

here contain many mouse orthologues for obesity genes identified by human genome-wide

association studies.

We began the construction of congenic mice guided by mapping results from the intercross

population [15]. We also bred reciprocal consomics, which helped us define the genetic archi-

tecture [11], and provided a source of breeder mice for constructing the congenic strains.

Building on information from the consomic mice study [11], we learned that a single Adip20
QTL on chromosome 9 could not explain the observed results from the reciprocal strains [11].

Study of the congenic mice here confirmed and extended those more general results, uncover-

ing the location of the multiple QTL and identifying their opposing effects.

Within the four QTL regions we identified, there are many candidate genes, and we see a

technical gap between available and ideal testing methods. The most common available method

is the total elimination of each gene (e.g., gene knockout) and quantification of knockout versus

control mice. However, this method has a serious limitation as an approach to study obesity:

large-scale knockout surveys indicate that inactivating mutations affect early embryonic growth

for nearly half of genes tested [79], and about a third of genes affect body composition in adult

mice [80, 81]. This method has poor specificity, so we cannot assume that if knockouts differ

from controls in body composition (e.g., [82]), then the target gene is causal. Likewise, bioin-

formatics methods to evaluate functional variants are also not ideal because so many genes

have potentially functional variants. Furthermore, we cannot completely exclude any of the

thousands of observed variants because evaluating potential function with currently available

Fig 6. The overlap of candidate gene by nomination method. We extracted candidate genes based on

evidence from missense genetic variation, human adiposity, or body mass index orthologues and differential

gene expression.

https://doi.org/10.1371/journal.pone.0188972.g006
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informatics methods remains imperfect. For complex traits, the challenge is now to find new

ways to winnow a large number of variants to only a few or to find a way to test many variants

and their combinations rapidly. While there are statistical methods to winnow the candidate

gene by trying to parse causal relationships among genotype gene expression and trait [83–85],

ultimately we need direct tests of individual genotypes on traits.

While congenic mapping methods were useful in identifying additional adiposity QTLs on

mouse chromosome 9, there are at least three limitations to consider when interpreting the

results. The study of male mice exclusively we mentioned earlier. A second limitation is the

residual heterozygosity within the congenic strains that we confirmed through genotyping.

The amount was low relative to the number of backcross cycles because we used marker-assis-

ted breeding, but still it may have contributed to experimental noise. To put this limitation in a

broader context, we have learned recently from whole-genome sequencing studies that this

approach will not ensure that all members of a particular inbred strain are completely geneti-

cally identical [86]. Whether variants among members of the same inbred strain are technical

artifacts or represent true diversity is controversial, but if true this may explain in part the rap-

idly divergence in body weight during selective breeding of inbred mouse strains [87]. The

third limitation is that the congenic breakpoints were concentrated more in the middle regions

of the chromosome, and we may have missed additional QTLs in the proximal region where

there were fewer breakpoints.

We used complementary methods to evaluate causal genes, but no single gene emerged as

a highly prioritized candidate within any QTL region. This lack of convergence among meth-

ods may be due in part to the differing assumptions of each. For instance, the microarray

approach we used here assumes that causal variation affects gene expression in the gonadal

adipose depot of adult mice, but the actual causal variants may not affect gene expression at all

or may act in a different tissue or at a different time in development. Obviously, the limitation

of microarray experiments is the target tissue selection, and we acknowledge that genotype

effects in other tissue could be causal (e.g., liver tissue [84, 88]). These points made, there was

some convergence among methods. Specifically, the OSBPL10 gene was identified by a human

genome-wide association study of body mass index [89], and the mouse orthologue of this

gene, which is within the QTL4 region, had a missense variant between the 129 and B6 mouse

strains. Similarly, mouse gonadal adipose tissue expresses different amounts of Dixdc1 and

Sik2 mRNA, depending on QTL2 genotype, and each of the corresponding genes has two pre-

dicted missense and several regulatory variants. These results provide direction in the future

evaluation of candidate genes.
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