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ABSTRACT: The discovery of active and stable catalysts for the
oxygen evolution reaction (OER) is vital to improve water
electrolysis. To date, rutile iridium dioxide IrO2 is the only
known OER catalyst in the acidic solution, while its poor activity
restricts its practical viability. Herein, we propose a universal graph
neural network, namely, CrystalGNN, and introduce a dynamic
embedding layer to self-update atomic inputs during the training
process. Based on this framework, we train a model to accurately
predict the formation energies of 10,500 IrO2 configurations and
discover 8 unreported metastable phases, among which C2/m-IrO2
and P62−IrO2 are identified as excellent electrocatalysts to reach
the theoretical OER overpotential limit at their most stable
surfaces. Our self-learning-input CrystalGNN framework exhibits
reliable accuracy, generalization, and transferring ability and successfully accelerates the bottom-up catalyst design of novel
metastable IrO2 to boost the OER activity.
KEYWORDS: graph neural network, metastable IrO2, oxygen evolution reaction, crystal search

■ INTRODUCTION
In electrochemical water splitting, the four-electron oxygen
evolution reaction (OER) is kinetically sluggish and restricts
the overall efficiency for hydrogen production.1−3 To date,
rutile IrO2 is the only known OER catalyst with high stability
in acidic solution;4 however, its practical application is to a
large extent hindered by low OER activity.5 Much effort has
been devoted to improving their catalytic activities, including
heteroatom doping,6−8 morphology, surface modulation,9−13

exploring metastable allotropes,14,15 and so forth., among
which metastable configurations are expected to achieve better
catalytic performance due to their diversities of bond orders
and active sites.16−18 For example, recently our synthesized
1T- and 3R-phase IrO2 exhibited excellent OER activities and
stabilities at the same time.14,15 Therefore, searching for
metastable IrO2 is an effective strategy to design highly
efficient OER catalysts.
Although many crystal search techniques successfully

promote the identification of unknown metastable structures,
it remains a huge challenge to rapidly screen ideal candidates in
the entire material space.19−23 As an emerging and state-of-art
technology, machine learning (ML) has demonstrated great
potential in accelerating crystal discovery,24−26 contributing to
lower experimental costs and better bottom-up design
protocols.27−30 Because crystals/molecules are usually non-
Euclidean, graph neural networks (GNNs) have been

confirmed far beyond traditional ML methods and proposed
as a well-suited deep learning protocol in predicting material
properties, such as CGCNN,31 MEGNet,32 iCGCNN,33 and
GeoCGNN.34 However, it should be noted that the
information of these inputs is usually encoded by artificially
selected atomic properties; in other words, the inputs among
these ML frameworks require a case-by-case design, which
leads to narrow applicability outside of their training scope.
In this work, we propose a universal GNN-based algorithm,

named CrystalGNN, in which the only inputs for predicting
material properties are the atomic number, bond length, and
adjacent matrix in the crystal. To gain this aim, we introduce a
dynamic embedding layer to accept the feedback of back-
propagation during the training process, thereby the inter-
atomic and intra-atomic correlation are self-captured adap-
tively along with the iteration of the neural network. It is found
that our CrystalGNN framework can achieve reliable accuracy,
generalization, and transferring ability with non-empirical
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inputs. We then utilize it to accelerate the exploration of
metastable IrO2 and search ∼10,000 IrO2 configurations,
among which two kinds of novel metastable IrO2 are identified
with considerable OER stabilities and activities.

■ METHODS

Density Functional Theory Calculations

The IrO2 structures are generated from CALYPSO23,35 and are
optimized within the density functional theory (DFT) framework by
the Vienna Ab initio Simulation Package (VASP).36−38 The
generalized gradient approximation39 of Perdew−Burke−Ernzerhof
(GGA-PBE)40 is applied to represent the exchange−correlation
energy, and a cutoff energy of 400 eV is used. The energy convergence
criterion is set to 10−4 eV and the force convergence criterion is set to
0.05 eV·Å−1 for each atom. The Γ-centered k-point grids of 30/a ×
30/b × 30/c and 30/a × 30/b × 1 are chosen for bulk and slab
calculations, respectively. For all slabs, a vacuum distance of 12 Å is
added along the z direction, and the bottom layers are fixed, while the
remaining layers are relaxed. To assess the kinetic and thermal
stabilities of these metastable structures, we employ the finite
displacement method to calculate the phonon dispersion via the
PHONOPY program41 and perform 5 ps ab initio molecular
dynamics (AIMD) simulations at 400 K under the NVT ensemble
with a time step of 1.0 fs.

OER Reaction

The OER reaction under acidic conditions contains four intermediate
steps as follows3

H O OH (H e )2 +* * + ++

OH O (H e )* * + ++

H O O OOH (H e )2 + * * + ++

OOH O (H e )2
* +* + ++

where * represents an active site on the clean surface and *OH, *O,
and *OOH denote hydroxyl, oxo-, and hydroperoxide intermediates
adsorbed on the surface, respectively.42

According to the computational hydrogen electrode (CHE)
model,43 the chemical potential of the proton−electron pair can be
expressed by the chemical potential of H2 in the gas phase

G G G(H ) (e )
1
2

(H )2+ =+
(1)

The Gibbs free-energy change (ΔGi) for every OER elementary
steps is given as the difference between the initial and final states44

G E T SZPEi i= + (2)

where ΔEi represents the energy difference between the reactant and
product, ΔZPE represents changes in the zero-point energy, TΔS
represents changes in entropy, and T represents the temperature,
which is set to 298.15 K. The zero-point energy and entropy can be
calculated by the following formulas

ZPE
1
2

h
i

i=
(3)

Figure 1. The framework and performance of CrystalGNN. (a) Framework of CrystalGNN and workflow of the dynamic embedding layer. The
performance of CrystalGNN for predicting the formation energies (FE) of (b) two-dimensional materials in the C2DB data set and (c) bulk
materials in the Materials Project data set.
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where h denotes the Planck’s constant, kB denotes the Boltzmann
constant, and νi denotes the vibrational frequency.

The limiting potential of the OER is defined as the change in Gibbs
free energy in the potential determining step (PDS), namely

U Gmax ilimiting = { } (5)

and the overpotential of the OER reaction can be written as42

U

e
1.23

limiting=
(6)

where 1.23 V is the equilibrium potential for the OER. In addition, to
avoid computational error for triplet oxygen, the free energy of O2 is
calculated from the experimental free energy of the OER reaction ΔG
= −4.92 eV.43 The surface energy Esur is calculated by

E
E N E

A
( )

2sur
slab bulk= ·

(7)

where Eslab is the energy of the surface, Ebulk is the energy of the bulk,
A is the surface area, and N is the number of IrO2 units.

■ RESULTS

Framework of CrystalGNN Algorithm
As shown in Figure 1a, our proposed CrystalGNN is under the
framework of the message passing mechanism,45 including
message passing layer, global pooling layer, and fully connected

layer. The crystal structure is normally encapsulated into graph
data, whose nodes and edges correspond to crystal atoms and
bonds. For the information of bonds, bond lengths less than a
cutoff radius are chosen to reflect the connections between
atoms, which are mathematically transformed into discrete
eigenvectors {ek} by the Gaussian expansion. However, for the
attributes of each atom {vi}, there is no unified paradigm and
their physiochemical properties are usually artificially selected
to represent discrete atomic information by the one-hot
encoding method,31,46−48 making these eigenvectors inde-
pendent of each other. The main idea of our CrystalGNN is to
encode the atomic attributes vi{ } into a fixed-dimension dense
vector vi{ } in a dynamic embedding layer and let it self-update
to adaptively reflect the intra-atomic and inter-atomic
correlation along with the iteration of the neural network,
namely

v vi i= (8)

where ω represents the initial coefficient. During the iteration
of the neural network, the aggregation function fagg is used to
obtain the aggregated feature ωt at the t-th iteration, and then
ωt is passed into an update function to obtain a new vi

t ,
namely

f ( )t
agg= (9)

v vi
t t

i= (10)

Based on the fagg to accept the feedback of backpropagation
during the training process, the dynamic embedding layer will

Figure 2. The results of the crystal structure search accelerated by machine learning. (a) Parity plots between predicted enthalpies and DFT-
calculated enthalpies for IrO2. Insets are histograms of the error distributions for the test set. (b) RMSE and the speed of prediction for IrO2 with n
= 3, 4, 5, 6 and 7. (c) Visualization of graph-wide feature space of the t-distributed stochastic neighbor embedding (t-SNE) plot of the graph-level
embedding from the output of the pooling layer. (d) RMSE and R2 of prediction for RuO2 and MnO2 by the original data and transfer learning
from IrO2 data. The “TL” represents the model trained by transfer learning.
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automatically optimize the atomic information when the model
reaches the best. The introduction of this embedding layer can
make the initial atomic vectors dense and intrinsically related;
therefore, only a single atomic number encoded into a 128-
dimensional dense vector for every constituent atom is taken as
the input, which is enough to obtain ideal accuracy for ML.
(Supporting Information, Table S1). Details of our Crys-
talGNN framework can be accessed in Supporting Note, S1.
Accordingly, we evaluate the performance of our Crys-

talGNN framework in the prediction of the formation energies
of crystal materials in the C2DB data set49 and Materials
Project data set.50 It is found that the mean absolute errors
(MAEs) for two-dimensional and bulk materials can reach 0.08
and 0.10 eV, which are comparable to the benchmark (0.05−
0.2 eV) of other GNNs51 (Figure 1b,c). Specifically, we
compare the performance of CrystalGNN and CGCNN in the
regression task (predicting the formation energies, band gaps,
and absolute energies) and the classification task (predicting
the classifications of metal and semiconductor). The results
demonstrate that the performance of CrystalGNN is
comparable to that of CGCNN, and in some tasks,
CrystalGNN may achieve better performance. (Supporting
Information, Table S2).
In order to emphasize the advantage of the embedding layer,

we decrease the inputs of CGCCN and find that the CGCNN
deteriorates as the MAE increases from 0.11 to 0.16 eV/atom
if only one atom feature is used, whereas the predicting
accuracies of our CrystalGNN barely change when the number
of atom features decreases. (Supporting Information, Figure
S1). Our proposed CrystalGNN can maintain ideal accuracy
regardless of which atom feature is selected, which is mainly
attributed to the introduction of self-updated mechanism for
the atom feature. This also confirms that our proposed
CrystalGNN needs fewer inputs to obtain appropriate
accuracy.

ML Workflow of Searching IrO2
In the search for crystal structures, the number of IrO2 formula
units (n) in the crystal cell is a vital parameter, as a larger n
means a more complex structure. At first, we screen the IrO2
crystal space with n = 1−2 and for each n, 1500 initial
structures are optimized. P42/mnm-IrO2, namely, rutile phase
(where the tag XXX in XXX-IrO2 represents the space group of
IrO2), is selected as the most stable phase, which is consistent
with the experimental results.4,52,53 However, due to their
complex structures, the metastable I41/amd-IrO2

12 and Pa3̅-
IrO2

54 successfully synthesized in experiments are missing,
which motivates us to perform detailed structure searching for
more unknown complex structures.
Next, we summarize these 3000 structures as the initial data

set and employ CrystalGNN to train an ML model for
enthalpy prediction. The performance of this ML model is
shown in Figure 2a, in which the root mean square errors
(RMSEs) are 0.07, 0.11, and 0.11 eV/atom for the training set,
validation set, and test set, respectively. The inserted error
distribution of the test set reflects that the deviations between
DFT calculations and ML predictions are mostly located at 0−
0.15 eV/atom (∼90%), and only 10% of the error points are
located at > 0.15 eV/atom. At this point, our proposed
CrystalGNN achieves great accuracy for predicting the
enthalpies of IrO2 structures in the initial ML model.
Then, we conduct an exhaustive crystal structure search for

complex structures, where n is set from 3 to 7 and for each n,
1500 structures are collected. To reflect the accuracy and
efficiency of our framework, for each n, we illustrate the RMSE
of the prediction and the ratio of the DFT-consumed time to
ML-consumed time in Figure 2b. The RMSE value range from
0.12 to 0.15 eV/atom, whose performances are close to that of
the initial model. We note that the more complex the structure
is, the more computing power consumes, so when the value of
n increases, the accelerating effect becomes more evident.
Meanwhile, the prediction of IrO2 crystals with n = 3−7 is still

Figure 3. Summary of the crystal structure search by our framework. (a) Scatter diagram plots the volumes and enthalpies of the ∼10,000
structures. (b) Selected low-energy region of the scatter diagram plots. (c) Selected stable structure in the low-energy region, in which the known
structures are the stable phases synthesized in the experiment while the new discovery structures are the newly discovered with low enthalpies and
dynamic stability.
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accurate even though there are no known structures in the ML
model, reflecting that our CrystalGNN has a good general-
ization ability and thus guarantees the efficiency and accuracy
of exploring complex structures on the basis of simple
structures. We visualize the output of the pooling layer with
t-distributed stochastic neighbor embedding (t-SNE) in Figure
2c, whose close points in the same cluster are expected to share
similarities in atomic structures and crystal configuration. This
implies that our CrystalGNN can generate viable representa-
tions and group the crystals delineated by similar enthalpies.
Because CrystalGNN has learned the structure and composi-
tion representations of simple IrO2 phases, our model naturally
presents good performance in complex phases.
Moreover, we also extend this framework to similar RuO2

and MnO2 systems because RuO2 and MnO2 are also reported
to have high stability and activity in the OER.55−59 We apply
transfer learning to improve the performance by training the
data of RuO2 and MnO2 based on the IrO2 models. As
illustrated in Figure 2d, both the prediction accuracies and
efficiencies for RuO2 and MnO2 models increase. It is worth
noting that CrystalGNN also achieves high predicting accuracy
(0.12 eV/atom for RuO2 and 0.14 eV/atom for MnO2) in
Supporting Information, Table S3 and accelerates the
efficiency of the crystal search in Supporting Information,
Figures S2 and S3. Therefore, our CrystalGNN has an
excellent ability of generalization and transfer learning, while
maintaining accuracy.
Metastable IrO2 Structures
After the exhaustive structure search of IrO2, Figure 3a exhibits
the distribution of the formation enthalpies for a total of
10,500 structures. For n = 1, the most stable structure is P3̅m1-
IrO2, named ,1T-phase IrO2, which has been recently
synthesized.14 For n = 2 and n = 4, P42/mnm-IrO2 is located
at the minimum enthalpy as it is recognized as the most stable
phase both experimentally and theoretically. For n = 4, I41/
amd-IrO2 and Pa3̅-IrO2 are successfully searched. It is clear
that the volumes of IrO2 bulks expand with increasing
parameter n, and there is a weak relationship between the
enthalpy and volume. When n is increased to 5−7, the
proportions of stable metastable IrO2 decrease. Considering
that the enthalpy (−6.69 eV/atom) of I41/amd-IrO2 is the
largest among four synthesized IrO2 structures, we take it as a
threshold and find 10 unreported IrO2 phases (Figure 3b).
Then, in order to further verify the thermo- and kinetic

stabilities of these new configurations, we also analyze their
phonon spectra and 5 ps ab initio molecular dynamics.
(Supporting Information, Figures S4 and S5). Finally, eight
metastable IrO2 candidates are confirmed without imaginary
frequency and geometry distortion, which are promising for
synthesis in experiments. Their relative formation enthalpies
are as follows: P42/mnm < Pa3̅ < P6/mmm < R3̅m < P3̅m1 <
P1̅< C2/m < Immm < Cmmm < P3m1 < P62 < I41/amd.
Figure 3c shows the geometric structures of eight novel

metastable phases. P42/mnm-IrO2 has a primitive cell of
tetragonal configuration with the mixed edge- and corner-
sharing octahedral, whereas I41/amd-IrO2 is also in the
tetragonal crystal system with the exclusively edge-sharing
octahedral. Pa3̅-IrO2, P3̅m1-IrO2, R3̅m-IrO2, and P3m1-IrO2
all belong to the trigonal crystal system. The primitive cell of
R3̅m-IrO2 presents a compact edge-sharing octahedral. P3̅m1-
IrO2 and P3m1-IrO2 have a two-dimensional configuration,
which is structurally similar to 2D transition-metal dichalco-
genides and their main difference is the layered stacking mode.
P6/mmm-IrO2 is a one-dimensional phase in the hexagonal
system, whose Ir atoms and O atoms lie nearly in the same
plane. P1̅-IrO2, belonging to the triclinic system, consists of a
nine-atom primitive cell with an exclusively corner-sharing
octahedral. C2/m-IrO2 has a monoclinic configuration, where
the Ir atoms and O atoms form a mixed edge- and corner-
sharing octahedral. Immm-IrO2 and Cmmm-IrO2 have similar
structures as they are both orthorhombic but present varying
degrees of connectivity. P62−IrO2 falls within the hexagonal
system, where one Ir atom and one O atom are located at the
hexahedron face and another Ir atom and three O atoms
located in the interior of the hexahedron. Overall, the Ir−O
coordination numbers of all metastable phases are 4, 6, or a
mixture of 4 and 6, which are common in other transition-
metal dioxides.60 IrO2 prefers to construct an octahedral
configuration, whose Ir atoms share more oxygen to maintain
stoichiometry, resulting in a universal six-coordinated number.
The Ir−O coordination numbers in Immm-IrO2 and Cmmm-
IrO2 are both 4 and 6 due to the existence of oxygen vacancies.
The planar configuration of P6/mmm-IrO2 is accompanied by
the special coordination number of 4.
Moreover, we also evaluate their band structures and find

that P42/mnm-IrO2, I41/amd-IrO2, and Immm-IrO2 present
metallic properties without band gaps. C2/m-IrO2 and Cmmm-
IrO2 are semiconductors with narrow band gaps of 0.24 and

Table 1. Space Group, Lattice Constant, Enthalpy, Ir−O Coordination Number, and Band Gap of the Four Known Structures
and Eight Newly Discovered Structures of IrO2

a

space group n a b c enthalpy Ir−O coordination band gap

P3̅m1 1 3.14 3.14 4.11 −6.81 6 1.94
P42/mnm 2 4.54 4.54 3.19 −7.05 6 0
Pa3̅ 4 4.94 4.94 4.94 −6.93 6 0.53
I41/amd 4 5.62 5.62 5.62 −6.69 6 0
P6/mmm 3 7.22 7.22 2.80 −6.83 4 1.04
R3̅m 3 4.86 4.86 4.86 −6.82 6 0.52
P1̅ 3 3.18 4.42 7.36 −6.80 6 0.64
C2/m 3 5.23 8.39 4.36 −6.79 6 0.24
Cmmm 3 10.36 7.14 3.08 −6.77 6, 4 0.29
P3m1 3 3.14 3.14 12.74 −6.77 6 1.74
P62 3 6.31 6.31 3.10 −6.75 6 1.00
Immm 4 7.17 7.40 3.09 −6.78 6, 4 0

an represents the number of formula units in the simulation cell. a, b, and c represent the lattice constants. The enthalpies (eV) and band gap (eV)
of these structures were obtained by DFT calculations.
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0.29 eV, respectively. The band gaps of Pa3̅-IrO2, R3̅ m-IrO2,
and P1̅-IrO2 are approximately 0.6 eV and the band gaps of
P6/mmm-IrO2 and P62−IrO2 are approximately 1.0 eV while
P3̅m1-IrO2 and P3m1-IrO2 possess relatively wider band gaps
of up to 1.94 and 1.74 eV, respectively. The basic information
and physical properties of these eight novel phases are
summarized in Table 1 and Supporting Information, Figure S6.
Screening of the OER Activities
Last but not least, we perform ab initio calculations to screen
the OER activities of these eight metastable structures under
the scheme of Figure 4a. For each metastable IrO2 bulk, we
cleave its six low-index (100), (010), (001), (110), (011), and
(101) surfaces and compare their surface energies to determine
the stable exposed surfaces. (Supporting Information, Table
S4). Then, we choose the two most stable surfaces of each
metastable IrO2 and further analyze their surface Pourbaix
diagrams to understand the equilibrium surface structures
under the OER operating electrochemical potentials. (Support-
ing Information, Figure S7). Under an electrochemical
potential of 1.5−2.0 V, it is found that the fully oxygen-
terminated surfaces for all configurations possess the lowest
thermodynamic potential and are selected to investigate the
free energy evolutions of the four elementary reaction steps,
including the O*, OH*, and OOH* intermediates. In total, the
OER activities of 22 surfaces are evaluated along the
conventional adsorbate evolution mechanism. (Supporting
Information, Table S5).
It is universally acknowledged that scaling relationships exist

for the Gibbs free binding energies of the OER intermedi-
ates.42,61 The scaling relationships of ΔGO* vs ΔGOH* and

ΔGOOH* vs ΔGOH* are ΔGO* = 0.94ΔGOH* + 1.36 and
ΔGOOH* = 1.00ΔGOH* + 3.00, respectively, in Figure 4b. The
first-order relationships of ΔGOOH* and ΔGOH* are attributed
to the single bond nature of *OH and *OOH on the active
sites, which are in agreement with previous studies of OER
catalyst materials.62,63 Based on the scaling relations, we
straightforwardly summarize the volcanic OER overpotentials
vs ΔGO* − ΔGOH* in Figure 4c and Supporting Information,
Figure S8. A moderate ΔGO* − ΔGOH* of approximately 1.5
eV, or a ΔGOH* ranging from 0.5−1.5 eV, is linked to a low
overpotential. Detailed information about the theoretical
overpotentials and the PDSs is given in Supporting
Information, Figure S9. It is found that the overpotential of
rutile IrO2 at the most stable (110) surface is 0.61 V with the
PDS of OOH* → O2, which corresponds to the previous
theoretical and experimental outcomes.12,62,63 Although rutile
IrO2 (101) and (001) surfaces possess better OER perform-
ance with overpotentials of 0.53 and 0.33 V, respectively, the
high surface energies of these two surfaces mean less exposed
surface area for the OER. For a comparison, at the peak of the
volcano is the (011) surface of C2/m-IrO2, and the (100)
surface of P62−IrO2, whose overpotentials are close to 0.3 V at
the most exposed surfaces. The PDSs of C2/m-IrO2 (011) and
P62−IrO2 (100) surfaces are at O* → OOH* with
overpotentials of 0.33 and 0.30 V, respectively. So, C2/m-
IrO2 and P62−IrO2 are two promising OER catalyst materials
as their most stable surfaces are more active than those of rutile
IrO2.
Furthermore, in order to reveal the origin of this OER

enhancement, we analyze the electronic properties and find

Figure 4. The OER activities of the metastable structures. (a) Scheme for computing the OER activities of metastable structures. (b) Scaling
relationships of ΔGO* vs ΔGOH* and ΔGOOH* vs ΔGOH*. (c) Two-dimensional volcano plot of the OER overpotentials as a function of ΔGOH* and
ΔGO* − ΔGOH*. (d) Relationship between Bader charge of the surface Ir atom and ΔGOH*.
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that the Bader charges of the Ir active sites are linearly
dependent on ΔGOH* (Figure 4d). When the Bader charge of
the Ir atom is approximately +1.4 |e|, its ΔGOH* is close to 0
eV, indicating a strong OH* adsorption. In contrast, there is
weak OH* adsorption with ΔGOH* higher than 0.8 eV when
the Bader charge is up to +1.8 |e|. The Bader charge of the Ir
atom in rutile IrO2 (110) is +1.51 |e|, which results in less
oxidation of the Ir atom, thus making the OH* adsorption
stronger. The experiments have confirmed that the closed
characteristic of the (110) surface leads to the less oxidized Ir
atom.64,65 The Bader charges of the Ir atom in P3̅m1-IrO2, P1̅-
IrO2, and P3m1-IrO2 range from +1.4|e| to +1.6|e|, accom-
panied by the strong OH* adsorptions. Therefore, their Ir
atoms are less oxidized compared to the rest with better OER
activities, which could be used to explain the poor catalytic
performance of these metastable structures. On the contrary,
the Bader charges of the Ir atom in C2/m-IrO2 and P62−IrO2
are within the range of +1.6|e|− +1.8|e|, which are observably
higher than that in rutile IrO2 (110), indicating more
oxidization of the Ir atoms. The higher oxidation states of
surface Ir atoms could be attributed to the local configurations
of the metastable phases in which the Ir atoms and O atoms of
monoclinic C2/m-IrO2 form the compact mixed edge- and
corner-sharing octahedral while the Ir atoms and O atoms of
hexagonal P62−IrO2 are located closely along the z direction
and lead to better electron donation in the OER reaction
compared to rutile IrO2, corresponding to the appropriate
adsorption of hydroxyl and easy desorption steps. Therefore,
constructing specific metastable phases to modify the surface
configurations and to increase the oxidation states of surface Ir
atoms is a feasible strategy to improve the catalytic activity of
IrO2-based catalysts.
For the promising C2/m-IrO2 and P62−IrO2, we present

more discussion on their OER mechanism and experimental
prospect. Besides the conventional adsorbate evolving
mechanism (AEM), the lattice oxygen mechanism (LOM) is
competitive in the OER.66 We compare the LOM and AEM on
C2/m-IrO2 and P62−IrO2 in Supporting Information, Figure
S10. It is found that the LOM on C2/m-IrO2 is more energetic
favorable OER pathway. The PDS of four-electron OER along
the LOM is at *O → *HO‑site with the overpotentials of 0.27
and 0.22 V, which are lower than the AEM overpotentials of
0.31 and 0.32 V for (110) and (011) surfaces, respectively. In
comparison, P62−IrO2 still favors the AEM. The electronic-
structure descriptor of oxygen p-band center is successful in
describing catalytic activity trends for the OER in a variety of
catalysts.67,68 Supporting Information, Figure S11 shows the
projected density of states (DOS) distribution of the O 2p
orbitals in C2/m-IrO2 and P62−IrO2. Compared with Rutile-
IrO2, the O 2p-band centers of C2/m-IrO2 and P62−IrO2
clearly shift closer to the Fermi level, corresponding to their
higher oxidation states of surface Ir atoms. Meanwhile, there
exists a clear linear correlation between the OER over-
potentials and O 2p-band center, and a higher O 2p-band
center corresponds to a better OER performance. For C2/m-
IrO2, and P62−IrO2, their unique surface configurations
contribute to the reasonable values of O 2p-band center,
thus reaching the ideal OER activity. More importantly, in
recent experimental report by Liao, et al.,69 our experimental
collaborators successfully synthesize monoclinic phase iridium
oxide nanoribbon (IrO2NR), which demonstrated better OER
performance than the commercial Rutile IrO2. Our proposed
C2/m-IrO2 shows several similarities with the experimental

IrO2NR. Their space groups are the same C2/m, in which Ir
and O atoms form the [Ir−O6] octahedron with edge-sharing
mode. The intrinsic catalytic activity of IrO2NR exhibits low
overpotential of 205 mV from the linear sweep voltammetry
(LSV) curves, which are close to our calculated overpotentials
of 0.27 V for (110) surface and 0.22 V for (011) surface,
respectively. (Supporting Information, Figure S12).

■ CONCLUSIONS
In summary, we develop a universal self-learning-input deep
learning framework, namely, the crystal graph neural network
(CrystalGNN), for predicting the formation energies of bulk
and two-dimensional materials and it exhibits high prediction
accuracy, and excellent generalization and transferring abilities.
The highlight of our CrystalGNN framework is the
introduction of a dynamic embedding layer to self-update
the atomic features adaptively along with the iteration of the
neural network. Then, we realize an efficient workflow for
accelerating the search for metastable IrO2, where CrystalGNN
learns from a simple structure data set to accurately predict the
properties of complex IrO2 structures. Under this workflow, we
discover eight unreported metastable IrO2 phases with enough
kinetic and thermodynamic stabilities, which are promising for
synthesis in experiments. Meanwhile, two metastable IrO2 with
the space groups of C2/m and P62 are confirmed as
distinguished OER electrocatalysts because the theoretical
OER overpotentials at their most stable exposed surfaces are
much lower than the benchmarked rutile IrO2 and reach the
theoretical volcanic limit. Their outstanding OER enhance-
ment originates from the increasing oxidation states of surface
Ir atoms. Our work not only proposes a new deep learning
GNN framework for rapid crystal structure search but also
successfully identifies two promising metastable IrO2, which
provides a targeted guideline for improving OER catalyst
materials.
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The Supporting Information is available free of charge at
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Detail introduction of CrystalGNN, hyperparameters of
the model, performance of CrystalGNN, phonon
spectra, molecular dynamics, and band structure of
newly discovered structures, OER activity of newly
discovered structures, comparison of OER mechanism,
density of states, similarities between the experimental
IrO2NR and our proposed C2/m- IrO2, CrystalGNN, is
open-source and available at https://github.com/Aus-
tin6035, and data sets generated during the current
study (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Yujin Ji − Institute of Functional Nano & Soft Materials
(FUNSOM), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow University, Suzhou,
Jiangsu 215123, China; orcid.org/0000-0003-3177-
2073; Email: yjji@suda.edu.cn

Youyong Li − Institute of Functional Nano & Soft Materials
(FUNSOM), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow University, Suzhou,

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00709
JACS Au 2023, 3, 1131−1140

1137

https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00709/suppl_file/au2c00709_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00709/suppl_file/au2c00709_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00709/suppl_file/au2c00709_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00709/suppl_file/au2c00709_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00709?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00709/suppl_file/au2c00709_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yujin+Ji"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3177-2073
https://orcid.org/0000-0003-3177-2073
mailto:yjji@suda.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Youyong+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Jiangsu 215123, China; Macao Institute of Materials Science
and Engineering, Macau University of Science and
Technology, Taipa 999078, China; orcid.org/0000-
0002-5248-2756; Email: yyli@suda.edu.cn

Authors
Jie Feng − Institute of Functional Nano & Soft Materials
(FUNSOM), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow University, Suzhou,
Jiangsu 215123, China

Zhihao Dong − Institute of Functional Nano & Soft Materials
(FUNSOM), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow University, Suzhou,
Jiangsu 215123, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/jacsau.2c00709

Author Contributions
J.F., Z.D., and Y.J. completed the machine learning model. J.F.
and Y.J. constructed the atomistic models and performed
density functional calculations. Y.J. and Y.L. conceptualized
and supervised this work. All the authors were involved in the
drafting of the manuscript. CRediT: Jie Feng data curation,
formal analysis, investigation, methodology, visualization,
writing-original draft, writing-review & editing; Zhihao Dong
data curation, formal analysis, investigation, methodology,
writing-original draft, writing-review & editing; Yujin Ji
conceptualization, data curation, formal analysis, investigation,
methodology, project administration, supervision, writing-
original draft, writing-review & editing; Youyong Li con-
ceptualization, project administration, software, supervision,
writing-original draft, writing-review & editing.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by National key research and
de v e l opmen t p r o g r am o f Ch i n a (G r an t s no .
2022YFA1503100),the Natural Science Foundation of Jiangsu
Province (BZ2020011), National Natural Science Foundation
of China (Grants no. 22173067), the Science and Technology
Development Fund, Macau SAR (FDCT no. 0052/2021/A),
Collaborative Innovation Center of Suzhou Nano Science &
Technology, the Priority Academic Program Development of
Jiangsu Higher Education Institutions (PAPD), the 111
Project, and Joint International Research Laboratory of
Carbon-Based Functional Materials and Devices.

■ REFERENCES
(1) Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic Nanostructures
with Low Dimensionality for Electrochemical Water Splitting. Chem.
Soc. Rev. 2020, 49, 3072−3106.
(2) Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y.-
L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T.; Shao-Horn, Y.
Activating Lattice Oxygen Redox Reactions in Metal Oxides to
Catalyse Oxygen Evolution. Nat. Chem. 2017, 9, 457−465.
(3) Rossmeisl, J.; Qu, Z.-W.; Zhu, H.; Kroes, G.-J.; Nørskov, J. K.
Electrolysis of Water on Oxide Surfaces. J. Electroanal. Chem. 2007,
607, 83−89.
(4) Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y.
Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for
Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett.
2012, 3, 399−404.

(5) Kibsgaard, J.; Chorkendorff, I. Considerations for the Scaling-up
of Water Splitting Catalysts. Nat. Energy 2019, 4, 430−433.
(6) Wang, Y.; Zhang, L.; Yin, K.; Zhang, J.; Gao, H.; Liu, N.; Peng,
Z.; Zhang, Z. Nanoporous Iridium-Based Alloy Nanowires as Highly
Efficient Electrocatalysts toward Acidic Oxygen Evolution Reaction.
ACS Appl. Mater. Inter. 2019, 11, 39728−39736.
(7) Nong, H. N.; Reier, T.; Oh, H.-S.; Gliech, M.; Paciok, P.; Vu, T.
H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R.; et al. A
Unique Oxygen Ligand Environment Facilitates Water Oxidation in
Hole-Doped Irniox Core−Shell Electrocatalysts. Nat. Catal. 2018, 1,
841−851.
(8) Choi, S.; Park, J.; Kabiraz, M. K.; Hong, Y.; Kwon, T.; Kim, T.;
Oh, A.; Baik, H.; Lee, M.; Paek, S. M.; et al. Pt Dopant: Controlling
the Ir Oxidation States toward Efficient and Durable Oxygen
Evolution Reaction in Acidic Media. Adv. Funct. Mater. 2020, 30,
2003935.
(9) Cui, Z.; Qi, R. First-Principles Simulation of Oxygen Evolution
Reaction (Oer) Catalytic Performance of IrO2 Bulk-Like Structures:
Nanosphere, Nanowire and Nanotube. Appl. Surf. Sci. 2021, 554,
149591.
(10) Gao, J.; Xu, C.-Q.; Hung, S.-F.; Liu, W.; Cai, W.; Zeng, Z.; Jia,
C.; Chen, H. M.; Xiao, H.; Li, J.; et al. Breaking Long-Range Order in
Iridium Oxide by Alkali Ion for Efficient Water Oxidation. J. Am.
Chem. Soc. 2019, 141, 3014−3023.
(11) Kim, Y.-T.; Lopes, P. P.; Park, S.; Lee, A.; Lim, J.; Lee, H.;
Back, S.; Jung, Y.; Danilovic, N.; Stamenkovic, V.; et al. Balancing
Activity, Stability and Conductivity of Nanoporous Core-Shell
Iridium/Iridium Oxide Oxygen Evolution Catalysts. Nat. Commun.
2017, 8, 1449−1458.
(12) Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.;
Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K.; et al.
A highly active and stable IrO <sub>x</sub> /SrIrO 3 catalyst for the
oxygen evolution reaction. Science 2016, 353, 1011−1014.
(13) Yang, L.; Yu, G.; Ai, X.; Yan, W.; Duan, H.; Chen, W.; Li, X.;
Wang, T.; Zhang, C.; Huang, X.; et al. Efficient Oxygen Evolution
Electrocatalysis in Acid by a Perovskite with Face-Sharing IrO6
Octahedral Dimers. Nat. Commun. 2018, 9, 5236−5239.
(14) Dang, Q.; Lin, H.; Fan, Z.; Ma, L.; Shao, Q.; Ji, Y.; Zheng, F.;
Geng, S.; Yang, S.-Z.; Kong, N.; et al. Iridium Metallene Oxide for
Acidic Oxygen Evolution Catalysis. Nat. Commun. 2021, 12, 6007−
6010.
(15) Fan, Z.; Ji, Y.; Shao, Q.; Geng, S.; Zhu, W.; Liu, Y.; Liao, F.;
Hu, Z.; Chang, Y.-C.; Pao, C.-W.; et al. Extraordinary Acidic Oxygen
Evolution on New Phase 3R-Iridium Oxide. Joule 2021, 5, 3221−
3234.
(16) Tan, X.; Geng, S.; Ji, Y.; Shao, Q.; Zhu, T.; Wang, P.; Li, Y.;
Huang, X. Closest Packing Polymorphism Interfaced Metastable
Transition Metal for Efficient Hydrogen Evolution. Adv. Mater. 2020,
32, 2002857.
(17) Reed, J.; Ceder, G. Role of Electronic Structure in the
Susceptibility of Metastable Transition-Metal Oxide Structures to
Transformation. Chem. Rev. 2004, 35, 4513−4534.
(18) Flores, R. A.; Paolucci, C.; Winther, K. T.; Jain, A.; Torres, J. A.
G.; Aykol, M.; Montoya, J.; Nørskov, J. K.; Bajdich, M.; Bligaard, T.
Active Learning Accelerated Discovery of Stable Iridium Oxide
Polymorphs for the Oxygen Evolution Reaction. Chem. Mater. 2020,
32, 5854−5863.
(19) Zhao, J.; Shi, R.; Sai, L.; Huang, X.; Su, Y. Comprehensive
Genetic Algorithm for ab Initio Global Optimisation of Clusters. Mol.
Simulat. 2016, 42, 809−819.
(20) Lonie, D. C.; Zurek, E. Xtalopt: An Open-Source Evolutionary
Algorithm for Crystal Structure Prediction. Comput. Phys. Commun.
2011, 182, 372−387.
(21) Falls, Z.; Avery, P.; Wang, X.; Hilleke, K. P.; Zurek, E. The
Xtalopt Evolutionary Algorithm for Crystal Structure Prediction. J.
Phys. Chem. C 2020, 125, 1601−1620.
(22) Glass, C. W.; Oganov, A. R.; Hansen, N. Uspex�Evolutionary
Crystal Structure Prediction. Comput. Phys. Commun. 2006, 175,
713−720.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00709
JACS Au 2023, 3, 1131−1140

1138

https://orcid.org/0000-0002-5248-2756
https://orcid.org/0000-0002-5248-2756
mailto:yyli@suda.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jie+Feng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhihao+Dong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00709?ref=pdf
https://doi.org/10.1039/d0cs00013b
https://doi.org/10.1039/d0cs00013b
https://doi.org/10.1038/nchem.2695
https://doi.org/10.1038/nchem.2695
https://doi.org/10.1016/j.jelechem.2006.11.008
https://doi.org/10.1021/jz2016507?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz2016507?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41560-019-0407-1
https://doi.org/10.1038/s41560-019-0407-1
https://doi.org/10.1021/acsami.9b09412?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.9b09412?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41929-018-0153-y
https://doi.org/10.1038/s41929-018-0153-y
https://doi.org/10.1038/s41929-018-0153-y
https://doi.org/10.1002/adfm.202003935
https://doi.org/10.1002/adfm.202003935
https://doi.org/10.1002/adfm.202003935
https://doi.org/10.1016/j.apsusc.2021.149591
https://doi.org/10.1016/j.apsusc.2021.149591
https://doi.org/10.1016/j.apsusc.2021.149591
https://doi.org/10.1021/jacs.8b11456?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b11456?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-017-01734-7
https://doi.org/10.1038/s41467-017-01734-7
https://doi.org/10.1038/s41467-017-01734-7
https://doi.org/10.1126/science.aaf5050
https://doi.org/10.1126/science.aaf5050
https://doi.org/10.1038/s41467-018-07678-w
https://doi.org/10.1038/s41467-018-07678-w
https://doi.org/10.1038/s41467-018-07678-w
https://doi.org/10.1038/s41467-021-26336-2
https://doi.org/10.1038/s41467-021-26336-2
https://doi.org/10.1016/j.joule.2021.10.002
https://doi.org/10.1016/j.joule.2021.10.002
https://doi.org/10.1002/adma.202002857
https://doi.org/10.1002/adma.202002857
https://doi.org/10.1002/chin.200450215
https://doi.org/10.1002/chin.200450215
https://doi.org/10.1002/chin.200450215
https://doi.org/10.1021/acs.chemmater.0c01894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c01894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/08927022.2015.1121386
https://doi.org/10.1080/08927022.2015.1121386
https://doi.org/10.1016/j.cpc.2010.07.048
https://doi.org/10.1016/j.cpc.2010.07.048
https://doi.org/10.1021/acs.jpcc.0c09531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c09531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cpc.2006.07.020
https://doi.org/10.1016/j.cpc.2006.07.020
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(23) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal Structure Prediction
Via Particle-Swarm Optimization. Phys. Rev. B 2010, 82, 094116.
(24) Tong, Q.; Gao, P.; Liu, H.; Xie, Y.; Lv, J.; Wang, Y.; Zhao, J.
Combining Machine Learning Potential and Structure Prediction for
Accelerated Materials Design and Discovery. J. Phys. Chem. Lett. 2020,
11, 8710−8720.
(25) Musa, E.; Doherty, F.; Goldsmith, B. R. Accelerating the
Structure Search of Catalysts with Machine Learning. Curr. Opin.
Chem. Eng. 2022, 35, 100771.
(26) Ryan, K.; Lengyel, J.; Shatruk, M. Crystal Structure Prediction
Via Deep Learning. J. Am. Chem. Soc. 2018, 140, 10158−10168.
(27) Mansouri Tehrani, A.; Oliynyk, A. O.; Parry, M.; Rizvi, Z.;
Couper, S.; Lin, F.; Miyagi, L.; Sparks, T. D.; Brgoch, J. Machine
Learning Directed Search for Ultraincompressible, Superhard
Materials. J. Am. Chem. Soc. 2018, 140, 9844−9853.
(28) Oliynyk, A. O.; Antono, E.; Sparks, T. D.; Ghadbeigi, L.;
Gaultois, M. W.; Meredig, B.; Mar, A. High-Throughput Machine-
Learning-Driven Synthesis of Full-Heusler Compounds. Chem. Mater.
2016, 28, 7324−7331.
(29) Witman, M.; Ek, G.; Ling, S.; Chames, J.; Agarwal, S.; Wong, J.;
Allendorf, M. D.; Sahlberg, M.; Stavila, V. Data-Driven Discovery and
Synthesis of High Entropy Alloy Hydrides with Targeted Thermody-
namic Stability. Chem. Mater. 2021, 33, 4067−4076.
(30) Singstock, N. R.; Ortiz-Rodríguez, J. C.; Perryman, J. T.;
Sutton, C.; Velázquez, J. M.; Musgrave, C. B. Machine Learning
Guided Synthesis of Multinary Chevrel Phase Chalcogenides. J. Am.
Chem. Soc. 2021, 143, 9113−9122.
(31) Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural
Networks for an Accurate and Interpretable Prediction of Material
Properties. Phys. Rev. Lett. 2018, 120, 145301.
(32) Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S. P. Graph
Networks as a Universal Machine Learning Framework for Molecules
and Crystals. Chem. Mater. 2019, 31, 3564−3572.
(33) Park, C. W.; Wolverton, C. Developing an Improved Crystal
Graph Convolutional Neural Network Framework for Accelerated
Materials Discovery. Phys. Rev. Mater. 2020, 4, 063801.
(34) Cheng, J.; Zhang, C.; Dong, L. A Geometric-Information-
Enhanced Crystal Graph Network for Predicting Properties of
Materials. Communications Materials 2021, 2, 92−11.
(35) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Calypso: A Method for Crystal
Structure Prediction. Comput. Phys. Commun. 2012, 183, 2063−2070.
(36) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab
Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys.
Rev. B 1996, 54, 11169−11186.
(37) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy
Calculations for Metals and Semiconductors Using a Plane-Wave
Basis Set. Comp. Mater. Sci. 1996, 6, 15−50.
(38) Hafner, J. Ab-Initio Simulations of Materials Using Vasp:
Density-Functional Theory and Beyond. J. Comput. Chem. 2008, 29,
2044−2078.
(39) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B

1994, 50, 17953−17979.
(40) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(41) Togo, A.; Oba, F.; Tanaka, I. First-Principles Calculations of
the Ferroelastic Transition between Rutile-Type and CaCl2-Type
SiO2 at High Pressures. Phys. Rev. B 2008, 78, 134106.
(42) Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.;
Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J.
K.; Rossmeisl, J. Universality in Oxygen Evolution Electrocatalysis on
Oxide Surfaces. ChemCatChem 2011, 3, 1159−1165.
(43) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.;
Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the Overpotential for
Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108,
17886−17892.
(44) Li, M.; Zhang, L.; Xu, Q.; Niu, J.; Xia, Z. N-Doped Graphene as
Catalysts for Oxygen Reduction and Oxygen Evolution Reactions:
Theoretical Considerations. J. Catal. 2014, 314, 66−72.

(45) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G.
E. Neural Message Passing for Quantum Chemistry; International
conference on machine learning, PMLR, 2017, pp 1263−1272.
(46) Choudhary, K.; DeCost, B. Atomistic Line Graph Neural
Network for Improved Materials Property Predictions. npj Comput.
Mater. 2021, 7, 185−188.
(47) Karamad, M.; Magar, R.; Shi, Y.; Siahrostami, S.; Gates, I. D.;
Barati Farimani, A. Orbital Graph Convolutional Neural Network for
Material Property Prediction. Phys. Rev. Mater. 2020, 4, 093801.
(48) Wang, B.; Fan, Q.; Yue, Y. Study of Crystal Properties Based on
Attention Mechanism and Crystal Graph Convolutional Neural
Network. J. Phys.: Condens. Matter 2022, 34, 195901.
(49) Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt,
P. S.; Hinsche, N. F.; Gjerding, M. N.; Torelli, D.; Larsen, P. M.; Riis-
Jensen, A. C.; et al. The Computational 2d Materials Database: High-
Throughput Modeling and Discovery of Atomically Thin Crystals. 2D
Mater. 2018, 5, 042002.
(50) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al.
Commentary: The Materials Project: A Materials Genome Approach
to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002.
(51) Fung, V.; Zhang, J.; Juarez, E.; Sumpter, B. G. Benchmarking
Graph Neural Networks for Materials Chemistry. npj Comput. Mater.
2021, 7, 84−88.
(52) Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers,
A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z.; Oellers, T.; Fruchter, L.;
et al. The Stability Number as a Metric for Electrocatalyst Stability
Benchmarking. Nat. Catal. 2018, 1, 508−515.
(53) Kasian, O.; Geiger, S.; Li, T.; Grote, J.-P.; Schweinar, K.;
Zhang, S.; Scheu, C.; Raabe, D.; Cherevko, S.; Gault, B.; et al.
Degradation of Iridium Oxides Via Oxygen Evolution from the
Lattice: Correlating Atomic Scale Structure with Reaction Mecha-
nisms. Energy Environ. Sci. 2019, 12, 3548−3555.
(54) Ono, S.; Kikegawa, T.; Ohishi, Y. High-Pressure and High-
Temperature Synthesis of a Cubic IrO2 Polymorph. Physica B 2005,
363, 140−145.
(55) Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y.
Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for
Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett.
2012, 3, 399−404.
(56) Kuo, D.-Y.; Paik, H.; Kloppenburg, J.; Faeth, B.; Shen, K. M.;
Schlom, D. G.; Hautier, G.; Suntivich, J. Measurements of Oxygen
Electroadsorption Energies and Oxygen Evolution Reaction on RuO2
(110): A Discussion of the Sabatier Principle and Its Role in
Electrocatalysis. J. Am. Chem. Soc. 2018, 140, 17597−17605.
(57) Stoerzinger, K. A.; Diaz-Morales, O.; Kolb, M.; Rao, R. R.;
Frydendal, R.; Qiao, L.; Wang, X. R.; Halck, N. B.; Rossmeisl, J.;
Hansen, H. A.; et al. Orientation-Dependent Oxygen Evolution on
RuO2 without Lattice Exchange. ACS Energy Lett 2017, 2, 876−881.
(58) Fang, Y.-H.; Liu, Z.-P. Mechanism and Tafel Lines of Electro-
Oxidation of Water to Oxygen on RuO2 (110). J. Am. Chem. Soc.
2010, 132, 18214−18222.
(59) Zhao, Y.; Chang, C.; Teng, F.; Zhao, Y.; Chen, G.; Shi, R.;
Waterhouse, G. I.; Huang, W.; Zhang, T. Defect-Engineered Ultrathin
Δ-MnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient
Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1700005.
(60) Waroquiers, D.; Gonze, X.; Rignanese, G.-M.; Welker-
Nieuwoudt, C.; Rosowski, F.; Göbel, M.; Schenk, S.; Degelmann,
P.; André, R.; Glaum, R.; et al. Statistical Analysis of Coordination
Environments in Oxides. Chem. Mater. 2017, 29, 8346−8360.
(61) Koper, M. Thermodynamic Theory of Multi-Electron Transfer
Reactions: Implications for Electrocatalysis. J. Electroanal. Chem.
2011, 660, 254−260.
(62) Back, S.; Tran, K.; Ulissi, Z. W. Toward a Design of Active
Oxygen Evolution Catalysts: Insights from Automated Density
Functional Theory Calculations and Machine Learning. Acs Catal
2019, 9, 7651−7659.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00709
JACS Au 2023, 3, 1131−1140

1139

https://doi.org/10.1103/physrevb.82.094116
https://doi.org/10.1103/physrevb.82.094116
https://doi.org/10.1021/acs.jpclett.0c02357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c02357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.coche.2021.100771
https://doi.org/10.1016/j.coche.2021.100771
https://doi.org/10.1021/jacs.8b03913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b03913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b02717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b02717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b02717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.6b02724?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.6b02724?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c00647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c00647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c00647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c02971?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c02971?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/physrevlett.120.145301
https://doi.org/10.1103/physrevlett.120.145301
https://doi.org/10.1103/physrevlett.120.145301
https://doi.org/10.1021/acs.chemmater.9b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/physrevmaterials.4.063801
https://doi.org/10.1103/physrevmaterials.4.063801
https://doi.org/10.1103/physrevmaterials.4.063801
https://doi.org/10.1038/s43246-021-00194-3
https://doi.org/10.1038/s43246-021-00194-3
https://doi.org/10.1038/s43246-021-00194-3
https://doi.org/10.1016/j.cpc.2012.05.008
https://doi.org/10.1016/j.cpc.2012.05.008
https://doi.org/10.1103/physrevb.54.11169
https://doi.org/10.1103/physrevb.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1103/physrevb.50.17953
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1103/physrevb.78.134106
https://doi.org/10.1103/physrevb.78.134106
https://doi.org/10.1103/physrevb.78.134106
https://doi.org/10.1002/cctc.201000397
https://doi.org/10.1002/cctc.201000397
https://doi.org/10.1021/jp047349j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp047349j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jcat.2014.03.011
https://doi.org/10.1016/j.jcat.2014.03.011
https://doi.org/10.1016/j.jcat.2014.03.011
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1103/physrevmaterials.4.093801
https://doi.org/10.1103/physrevmaterials.4.093801
https://doi.org/10.1088/1361-648x/ac5705
https://doi.org/10.1088/1361-648x/ac5705
https://doi.org/10.1088/1361-648x/ac5705
https://doi.org/10.1088/2053-1583/aacfc1
https://doi.org/10.1088/2053-1583/aacfc1
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1038/s41524-021-00554-0
https://doi.org/10.1038/s41524-021-00554-0
https://doi.org/10.1038/s41929-018-0085-6
https://doi.org/10.1038/s41929-018-0085-6
https://doi.org/10.1039/c9ee01872g
https://doi.org/10.1039/c9ee01872g
https://doi.org/10.1039/c9ee01872g
https://doi.org/10.1016/j.physb.2005.03.014
https://doi.org/10.1016/j.physb.2005.03.014
https://doi.org/10.1021/jz2016507?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz2016507?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenergylett.7b00135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenergylett.7b00135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja1069272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja1069272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/aenm.201700005
https://doi.org/10.1002/aenm.201700005
https://doi.org/10.1002/aenm.201700005
https://doi.org/10.1021/acs.chemmater.7b02766?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.7b02766?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jelechem.2010.10.004
https://doi.org/10.1016/j.jelechem.2010.10.004
https://doi.org/10.1021/acscatal.9b02416?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.9b02416?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.9b02416?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(63) Gunasooriya, G.; Nørskov, J. K. Analysis of Acid-Stable and
Active Oxides for the Oxygen Evolution Reaction. ACS Energy Lett
2020, 5, 3778−3787.
(64) Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y.
Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2
and RuO2. J. Phys. Chem. Lett. 2014, 5, 1636−1641.
(65) Guerrini, E.; Trasatti, S. Recent Developments in Under-
standing Factors of Electrocatalysis. Russ. J. Electrochem. 2006, 42,
1017−1025.
(66) Zagalskaya, A.; Alexandrov, V. Role of Defects in the Interplay
between Adsorbate Evolving and Lattice Oxygen Mechanisms of the
Oxygen Evolution Reaction in RuO2 and IrO2. ACS Catal. 2020, 10,
3650−3657.
(67) Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y.-L.; Risch, M.;
Hong, W. T.; Zhou, J.; Shao-Horn, Y. Double Perovskites as a Family
of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution.
Nat. Commun. 2013, 4, 2439.
(68) Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y.-
L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T.; Shao-Horn, Y.
Activating Lattice Oxygen Redox Reactions in Metal Oxides to
Catalyse Oxygen Evolution. Nat. Chem. 2017, 9, 457−465.
(69) Liao, F.; Yin, K.; Ji, Y.; Zhu, W.; Fan, Z.; Li, Y.; Zhong, J.; Shao,
M.; Kang, Z.; Shao, Q. Iridium oxide nanoribbons with metastable
monoclinic phase for highly efficient electrocatalytic oxygen evolution.
Nat. Commun. 2023, 14, 1248.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00709
JACS Au 2023, 3, 1131−1140

1140

https://doi.org/10.1021/acsenergylett.0c02030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenergylett.0c02030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz500610u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz500610u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1134/s1023193506100053
https://doi.org/10.1134/s1023193506100053
https://doi.org/10.1021/acscatal.9b05544?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.9b05544?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.9b05544?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/ncomms3439
https://doi.org/10.1038/ncomms3439
https://doi.org/10.1038/nchem.2695
https://doi.org/10.1038/nchem.2695
https://doi.org/10.1038/s41467-023-36833-1
https://doi.org/10.1038/s41467-023-36833-1
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

