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Sensor-level functional connectivity topography (sFCT) contributes significantly to

our understanding of brain networks. sFCT can be constructed using either

electroencephalography (EEG) or magnetoencephalography (MEG). Here, we compared

sFCT within the EEG modality and between EEG and MEG modalities. We first used

simulations to look at how different EEG references—including the Reference Electrode

Standardization Technique (REST), average reference (AR), linked mastoids (LM), and

left mastoid references (LR)—affect EEG-based sFCT. The results showed that REST

decreased the reference effects on scalp EEG recordings, making REST-based sFCT

closer to the ground truth (sFCT based on ideal recordings). For the inter-modality

simulation comparisons, we compared each type of EEG-sFCT with MEG-sFCT using

three metrics to quantize the differences: Relative Error (RE), Overlap Rate (OR), and

Hamming Distance (HD). When two sFCTs are similar, RE and HD are low, while OR

is high. Results showed that among all reference schemes, EEG-and MEG-sFCT were

most similar when the EEG was REST-based and the EEG and MEG were recorded

simultaneously. Next, we analyzed simultaneously recorded MEG and EEG data from

publicly available face-recognition experiments using a similar procedure as in the

simulations. The results showed (1) if MEG-sFCT is the standard, REST—and LM-based

sFCT provided results closer to this standard in the terms of HD; (2) REST-based sFCT

and MEG-sFCT had the highest similarity in terms of RE; (3) REST-based sFCT had the

most overlapping edges with MEG-sFCT in terms of OR. This study thus provides new

insights into the effect of different reference schemes on sFCT and the similarity between

MEG and EEG in terms of sFCT.

Keywords: functional connectivity topography, MEG, EEG, reference schemes of EEG, sensor level,

face-recognition

INTRODUCTION

Functional connectivity (FC) is utilized to measure functional coupling and interaction between
different brain regions. Usually, topographical FC patterns can be conducted on sensor level
or on source level. Unlike source level FC analysis, sensor level FC analysis directly takes
use of scalp surface measured EEG/MEG recordings and is still widely used. Sensor-level
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functional connectivity topography (sFCT) is regarded as a
non-invasive and effective approach for approximating the
relationship among cortex areas (De Vico Fallani et al., 2014;
Wang et al., 2014; Garces et al., 2016) and it has been playing an
important role in assisting physicians to diagnose related diseases
(Schoonheim et al., 2013; Toussaint et al., 2014; Min et al.,
2015; Sato et al., 2017). Generally, surficial electroencephalogram
(EEG) or magnetoencephalotopography (MEG) can be used to
construct and analyze sFCT (Stam, 2004; Schindler et al., 2008).
The two measurements have their own unique advantages and
disadvantages, and getting full use out of them is a challenging
issue. Based on the intrinsic relationship between electrical field
and magnetic field, simultaneously collected MEG and EEG
should have a certain degree of similarity in term of sFCT
because both originate from neuronal activity within brain. sFCT
might therefore be an effective means to explore the relationship
between MEG-derived sensor-level neural networks and those
constructed by differing EEG reference schemes.

Before investigating the relationship between MEG—and
EEG-sFCT (inter-modality) gaining an insight into the effect
of EEG reference on sFCT (intra-modality) is imperative. EEG
measures differences in scalp potential, which are derived from
ohmic currents induced by electrical brain activity. The scalp
potential is a relative value and the potential of a point
always depends on where the reference point is set. Choosing
an appropriate EEG reference has a significant influence on
brain-activity measurements and allows more accurate cross-
study comparisons (Rummel et al., 2007; Kayser and Tenke,
2010). During the past several decades, numerous studies have
developed different EEG reference schemes and attempted to
determine which one is the most suitable (Fein et al., 1988;
Dien, 1998; Mima and Hallett, 1999; Zaveri et al., 2000, 2006;
Hagemann et al., 2001; Rummel et al., 2007). Because a constant,
zero reference does not exist in the human body (Geselowitz,
1998; Nunez and Srinivasan, 2006), non-zero activity is always
present regardless of which reference scheme is chosen. A
“good” EEG reference should be the most similar with the ideal
measurement. Preferences for EEG reference schemes vary across
laboratories, often depending on research fields, and clinical
practices (Kayser and Tenke, 2010; Nunez, 2010). In this study,
we chose the following four widely used EEG reference schemes
to construct EEG-based sFCT: (1) the reference electrode
standardization technique (REST) (Yao, 2001; Zhai and Yao,
2004; Yao et al., 2005, 2007) (2) the average reference (AR, i.e.,
average potential over all EEG electrodes) (Offner, 1950; Nunez
et al., 2001), (3) linked mastoids (LM) (Gevins and Smith, 2000;
Croft et al., 2002), and (4) the left-ear reference(LR) (Basar et al.,
1998; Thatcher et al., 2001). The infinity reference (IR), which is
considered to be located rather far away and to deliver the least
interruptions to the recording electrodes, is usually regarded as
a zero-reference that provides a static ground truth (Yao, 2001;
Zhai and Yao, 2004) for evaluating different EEG references.

Unlike EEG, MEG depends on the magnetic field outside the
head, which is induced by current flow within the brain (Darvas
et al., 2004; Baillet, 2017). MEG has several prominent advantages
over EEG. It is reference free, and the effect of volume conduction
is negligible (van den Broek et al., 1998). However, MEG is much

more expensive than EEG and the cost prohibits widespread
utilization.

Under different pathological or physiological conditions,
a better understanding of disease can be obtained through
comparing the similarity of the two modalities (MEG and EEG)
on sFCT. The overall structure of this study is as follows; first,
with simulated data, we explore the similarity of intra-modality
(within EEG references) and inter-modality (EEG and MEG)
by calculating sFCT based on imaginary part of coherency (IC)
(Nolte et al., 2004). Particularly, three metrics are exploited
to evaluate the differences among different sFCTs; (1) Relative
Error (RE), (2) Overlap Rate (OR) (3) Hamming Distance (HD)
(Makram Talih, 2005; Medkour et al., 2010; van Wijk et al.,
2010). Following this, real data is applied to further validate the
performance of each EEG reference scheme and the connection
between MEG and EEG on sFCT.

MATERIALS AND METHODS

sFCT Construction
Imaginary Part of Coherency
Volume conduction is a phenomenon that affects the coherency
between EEG channels, making artifacts difficult to distinguish
from true brain activity (Chella et al., 2016). The imaginary part
of coherency (IC) has proved to be helpful in extracting the true
functional connectivity between EEG electrodes and making it
less effected by volume conduction (Nolte et al., 2004; Schoffelen
and Gross, 2009). Here, we briefly recalled the definition of
coherency.

Assuming vi(f ) and vj(f ) represent the complex-form Fourier
transforms of time series signals v̂i(t) and v̂j(t), respectively, and
the two signals are recorded from the EEG electrodes which are
indexed by i and j, with any given reference. Their cross-spectrum
is defined as follows.

Sij(f ) =
〈

vi(f ) v∗j (f )
〉

(1)

where, ∗denotes the complex conjugation, and 〈〉 denotes
expectation value. Coherency is defined as the cross-spectrum
normalized by power,

Cohij(f ) =
Sij(f )

(Sii(f )Sjj(f ))
1/2

(2)

The imaginary part of coherency among all the electrodes/sensors
of EEG/MEG is used to construct sFCT.

Construction of sFCT
Based on the IC matrix, sFCTs are constructed to describe the
connectivity among multiple regions or nodes, and to reflect
the synchronization and the interaction among brain regions.
To enable a better representation of the topography of network
connectivity, weak links between nodes are removed using a
binary network that sets a connectivity threshold. The binary
network is determined by the following steps: first, according
the weights of edges, all the edges were sorted in descending
order; second, the largest x (x refers to network sparsity, ranging
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from 20 to 80, and the step width was set to 10) weights in the
IC matrix were selected, accordingly, the minimum value of the
selected largest x weights was taken as the threshold to construct
a binary network; finally, the nodes with larger values than the
threshold were set to 1, and the rest nodes were set to 0. In this
way, the binary network was generated. Here, a series of threshold
values were placed on the sFCTs, which yielded different network
sparsities. This allowed us to observe and validate the robustness
of different sFCTs.

MEG Based sFCT Construction
We performed several operations when processing and analyzing
the real MEG data, such as unifying scalp-sensor mapping,
computing sFCTs, and analyzing and comparing sFCTs based
on the different methods (seen in Figure 1). Inter-modality
comparisons of sFCTs can only be computed when themodalities
share the same electrode distribution. Therefore, the unifying
procedure is essential for subsequent procedures. In this study,
we transformed the MEG signal so that it seems that the MEG
and EEG data are collected from the same location by the
following steps.

(a)With the least square method, the coordinates of the MEG
sensors and EEG electrodes were exploited to fit the spherical
radius of MEG and EEG, respectively. The fit radii were written
as reeg and rmeg , respectively.

(b)Based on the spherical radii of the MEG sensors and EEG
electrodes from step (a), the MEG sensors were mapped to the
sphere fitted by the EEG electrodes by multiplying the ratio of
reeg/rmeg .

(c)According to the fact that magnetic field strength follows an
inverse square law, the strength of a magnetic field measured at
increasing distance from the field source (dMfs), decay according

to1/(dMfs)
2. The signal strength of the scaled MEG sensors from

step (b) was compensated by multiplying the ratio of (rmeg/reeg)
2.

(d)With the griddata function provided byMathWorks@R, the
signal strength of the scaled MEG sensors from step (c) were
interpolated at the query points specified by EEG electrodes.

EEG Based sFCT Construction
Although there are many widely utilized EEG reference schemes,
in this study, the EEG reference schemes referred in other
literatures (Yao, 2001; Zhai and Yao, 2004; Nunez, 2010; Qin et al.,
2010) were exploited to further compare the results from different
studies. The four EEG reference schemes (REST, AR, LM, and
LR) used to construct sFCTs are described below.

Reference Electrode Standardization Technique
Based on the following important ground truths, Yao et al.
proposed REST (Yao, 2001; Zhai and Yao, 2004; Yao et al.,
2005, 2007). The reference is at an infinity point far away from
brain sources such that an approximate neutral reference can be
acquired. Given the transfer matrix from brain sources to scalp
EEG sensors, the relationship between scalp EEG recording, and
source activities can be written as,

MREST = GRESTSrc (3)

where, Src is a matrix referring to the active brain areas, GREST

refers to the transfer matrix that enables the transformation from
active sources to sensor representations, and MREST denotes the
scalp EEG recordings that result from inside active sources Src
with a reference at an infinity point. Similarly, for other reference
schemes, the relationship between active sources, and scalp EEG
recordings can be written as,

MREF = GREFSrc (4)

where, GREF represents the corresponding transfer matrix of
any original EEG reference schemes. Putting Equation (4) into
Equation (3), MREST can be derived from any original EEG
reference recordings.

MREST = GRESTSrc = GREST(G
+
REF

MREF) = TRESTMREF (5)

where, G+
REF

refers to the Moore-Penrose generalized inverse, and
linear transformation TREST is written as

TREST = GRESTG
+
REF

(6)

Equation (6) indicates that REST enables the transformation
matrix TREST to be carried out without the necessity to acquire
the real active brain sources Src (Yao, 2001). Therefore, REST can
implicitly solve the EEG inverse problem with transfer matrices
GREST and GREF . Practically, matrices GREST and GREF can be
deduced from an equivalent source distribution (ESD), which
encloses all the possible neural sources. Thus, the transformation
matrix in REST only relies on the characteristic of the assumed
ESD, including the head model, electrode montage, original
reference, and spatial geometry, rather than the actual brain-
source data. In this study, the ESD was assumed to be a discrete
layer of current dipoles forming a closed surface, as has been
done in previous studies (Yao, 2001;Womelsdorf and Fries, 2006;
Nunez, 2010; Huang et al., 2017).

AR Reference, LM Reference, and LR Reference
Theoretically, to obtain an arbitrarily “zero level” electric
potential, the EEG reference electrodes are well advised to be
placed on a presumed “inactive” zone. According to variable
clinical applications, in addition to REST, three other EEG
reference schemes are widely used, differing on where the
reference electrodes are placed. These include AR reference, LM
reference, and LR reference. AR reference uses the average signal
from all electrodes (Lehmann et al., 1998; Hesse et al., 2004;
Huang et al., 2017). LR uses the signal from the right earlobe, and
LM utilizes the mean signal from the left and right earlobes as the
reference (Yao et al., 2005; Huang et al., 2017).

Metrics of Measuring Similarity Between
sFCTS
Relative Error
RE can represent the sum of the difference between two matrices,
thus is generally utilized to evaluate the effectiveness of each
reference scheme. It is calculated as:

RE =

∥

∥Coh− Coh∗
∥

∥

∥

∥Coh
∥

∥

(7)
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FIGURE 1 | Flowchart depicting the procedure for real data. Processing included several important steps. First, data is set so that scalp MEG collection and scalp

EEG collection come from the same stimulus. Second, electrode transformations are conducted by unifying the EEG and MEG sensors on the scalp. Then, sFCTs are

computed for each EEG reference scheme and for MEG. Finally, the differences between methods are analyzed with quantized metrics.

where, Coh represents the coefficient matrix of IC with an
infinite far-away point as the referenced node. Coh∗ denotes
the imaginary part of coherency-coefficient matrix with real
measured reference schemes, including AR reference, REST
reference, LM reference, and LR reference. Thematrix norm ‖·‖is
the Frobenius norm defined as following.

∥

∥Coh
∥

∥ =

√

√

√

√

N
∑

i=1

N
∑

j=1

Coh2ij (8)

where, N denotes to the total electrode number, and Cohij refers

to the coherency between EEG electrodes i and j. The range of
RE should range from 0 to 1, with a smaller RE corresponding to
greater similarity between two IC matrices.

The square and sum operations in Equation (8) enable RE
measure the global difference between two ICmatrices. However,
the relationship between two corresponding nodes sometimes
cannot be accurately determined. Therefore, additional effective
metric should be considered for evaluating sFCT. Here, the
overlapping rate (OR) and hamming distance (HD) are also
induced to jointly assess the similarity of topographies.
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Overlapping Rate Between Topographies
Overlapping Rate (OR) detects the shared connective edges from
all possible edges. OR was defined as the ratio of

OR =
G1

⋂

G2

G1
⋃

G2
(9)

where, G1 and G2 refer to two topographies, respectively.
⋂

denotes the intersection of G1 and G2, which refers to the
communal edges of two topographies.

⋃

refers to the union
of G1 and G2, which represent all the possible edges appeared
in two topographies. From the perspective of topography, OR
is able to detect where the edges of two topographies overlap,
thus evaluating how similar the two topographies are. HigherOR
value indicate greater similarity between two FCTs.

Hamming Distance Between Topographies
Besides similar partitions, differences in partitions also contribute
significantly toward evaluating how similar two topographies are.
Hamming Distance (HD) is an excellent complement for OR
because it can detect differences between two topographies. HD
calculates the distance between topographies by measuring the
vector entries that differ (Makram Talih, 2005; Medkour et al.,
2010; van Wijk et al., 2010). The number of elements of two
topographies G1 and G2 with adjacency matrices N(1)and N(2)

that disagree is calculated as follows,

HD(G1,G2) =

N
∑

i6=j

[N
(1)
ij 6= N

(2)
ij ] (10)

where, the square brackets notation here reflects an indicator
function that is equal to one if its argument is true and zero
otherwise. Smaller HD values correspond to greater similarity
between two topographies.

Simulation Tests
Simulated Dipolar Sources Setting
In this study, a concentric three-layer sphere model (Rush and
Driscoll, 1969; Yao, 2001; Qin et al., 2010) were utilized to analyze
the simulated EEG data. The radii of the three concentric spheres
are 0.87(inner radius of the skull), 0.92 (outer radius of the skull)
and 1.0 (radius of the head), and the conductivities are 1.0 (brain
and scalp) and 0.0125 (skull) (Rush and Driscoll, 1969; Yao,
2001; Qin et al., 2010). A single equivalent sphere (Sarvas, 1987;
Huang and Mosher, 1997) was exploited to model simulated
MEG recordings in this study. The radius of the single sphere is
0.87(inner radius of the skull). The forward solution of MEG was
generated according to Sarvas (1987).

To conveniently compare sFCTs from MEG and EEG, the
simulated MEG and EEG models share the same Cartesian
coordinate system, the same equivalent source distribution
model, and the same electrode montage. Both EEG and MEG
head models take the center of the sphere(s) as the coordinate
origin. Direction from the origin toward the left ear was
determined as the +y axis, and the posterior–anterior direction
that from the origin to the nasion was the +x axis. The +z axis
was defined as the axis that was perpendicular to+x and+y axes

and pointed from the origin toward the vertex. A closed spherical
cap surface with radius r = 0.869 and a transverse plane at z =
−0.076, that contained 1,500 nodes on the spherical cap surface,
was assumed for the discrete equivalent dipole layer sources (Yao,
2001). A 129-channel system was employed in this study and the
montage was the same with the EGI (Electrical Geodesics, Inc.)
collecting system with 129 electrodes.

The representation of dipolar neural source orientations was
defined by the spherical coordinates system (r, θ , φ), which
was converted by the corresponding Cartesian coordinate system
mentioned above. Where, θ is inclination, move r units from the
origin in the zenith direction, rotate by θ about the origin toward
the azimuth reference direction, and rotate by φ about the zenith
in the proper direction. For each testing dipolar pair, the source
momentums were denoted as [−0.5, 0.5, 0.1] and [0.5,−0.5, 0.1],
respectively.

For each testing dipolar pair, the temporal process of two
coherent dipolar neural sources was simulated by dot product of
a Gaussian function and a cosine function, because this function
has the appearance of an evoked potential (Yao, 2001) (see in
Figure 2),

y(ti) = e
(−(2π

ti−t0
γ

)
2
)
cos(2πf (ti − t0)+ α) i = 1, 2 · · · , k

(11)

where, t0 = 100∗dt, f = 30Hz, γ = 5, α = π
4 for one dipole

in the pair, and t0 = 200∗dt, f = 30Hz, γ = 10, α = π
2 for the

other. For the two dipoles, ti = i ∗ dt, i = 1, 2, . . . , k(k = 600)
and dt = 0.1.

One-Fixed Dipolar Pair Setting
To confirm the connections of MEG and each EEG reference
scheme, the statistical results were exported from different
network sparsities. The network sparsity refers to how many
edges were selected from IC matrix to construct binary network.
The number of the edges in binary network was determined by
how many of the largest weights in the IC matrix were selected.
Thus, network sparsity can be determined by how many of the
largest weights were selected. In this study, the number of the
largest weights ranged from 20 to 80, and the step width was
set to 10. The parameters were set as follows: (1) two random
selected sources were evoked with the wave format in Figure 1;
(2) source orientations were set to [−0.5, 0.5, 0] and [0.5,−0.5, 0],
respectively; (3) signal-to-noise ratio (SNR) was defined as the
ratio of the Frobenius norm of the data matrix to that of the
noise, and set to 1. Note that in the simulation EEG electrodes
and MEG sensors are assumed to share the same localization to
exclude the influence of electrode distribution. However, in real
measurements, electrode localizations between EEG and MEG
differ from each other.

Dipolar Pairs Setting
MEG is sensitive to tangentially oriented dipoles, but it is blind
to the radially oriented dipoles. In contrast, EEG can sense both
radial and tangential dipoles, but has trouble detecting deep
source (Cohen and Cuffin, 1987). Considering that most neural
activity within brain occurs in the cortex, all the dipolar pairs
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FIGURE 2 | Simulated signal generated from two coherent sources (blue and orange). Based on the source settings, simultaneously collected simulated surface MEG

and EEG recordings could be derived by solving an electromagnetic forward problem.

involved in the testing were located in upper superficial position
(radius > d > 0.65, d: distance from the dipole to the center
of head model) of the simulated head model (radius = 0.869).
Further, each dipolar pair adopted a combined orientation with
radial and tangential components. Specifically, the parameters of
each dipolar pair were set as follows: (1) network sparsity ranges
from 20 to 80, and the interval is set to be 10; (2) in each dipole,
the two random selected sources are evoked with the wave format
in Figure 1, and the corresponding source orientations were set
to be [−0.5, 0.5, 0.1] and [0.5,−0.5, 0.1] respectively.

Based on the results from the one-fixed dipolar pair, the
experiment with 20 dipolar pairs was designed to further validate
whether the connection between MEG and EEG was repeatable,
and whether the performance of each EEG reference was stable
when increasing dipolar pairs. In the experiment with 20 dipolar
pairs, the SNR was set to 1. Additionally, based on the results
from the one-fixed dipolar pair and 20 dipolar pairs, the
experiment with 100 dipolar pairs was designed to test whether
the connection between MEG and EEG and the performance of
each EEG reference was robust against noise. In the experiment,
three SNRs (1, 2, and 5) were used.

Real Data
For real data, we used simultaneously collected MEG and EEG
that were obtained during a face recognition task. These data are
publicly available from the OpenfMRI website (https://openfmri.
org/dataset/ds000117/). The details regarding data collection can
be viewed on the hosting website (Wakeman and Henson, 2015).
The pre-processing procedures are referenced by the MEG visual
tutorial: Single subject in Brainstorm (http://neuroimage.usc.
edu/brainstorm/Tutorials/VisualSingle). For the chosen healthy
subject, the face stimuli comprised 49 famous people (23men and
26 women). The famous faces were able to be recognized by the
majority of British adults. The non-face stimuli were comprised
of 50 samples from scrambled images. The details of the involved
images in the face and non-face stimuli experiments can refer to
the previous study (Wakeman and Henson, 2015).

Experiments have shown that a negative deflection peaking
around 170ms (N170 component) is larger when viewing faces
than when viewing scrambled faces (Wakeman and Henson,
2015). A similar M170 component can be detected in MEG

data (magnetometers and gradiometers) (Gao et al., 2013).
Studies (Gao et al., 2013) have also shown that M170 manifests
based on the global characteristics of a face, whereas the
induced Gamma oscillations (30–70Hz) are associated with
the integration of visual input into a pre-existent coherent
perceptual representation. Therefore, to better observe the sFCT
relationship between EEG and MEG, we chose a 50–600-ms
observation window and a 30–70-Hz frequency band. All of IC
matrices were calculated at the given 44 Hz—which is within
the gamma-oscillation range (Gao et al., 2013)—and the sparse
degree was set to 50.

For cortex functional connectivity networks analysis, we
relied on the minimum norm-imaging method with a dipole-
orientation model and 68 scouts defined by the Desikan–Killiany
atlas to construct the connection between brain areas. For scalp
functional connectivity networks analysis, we employed 102
magnetometers (MAG) channels and 70 EEG channels. The 102
MAG channels were first projected to the 70 EEG channels using
cubic interpolation and then sFCT analysis was conducted for
inter-modality (EEG and MEG) and intra-modality (EEG based
on different references) analysis.

RESULTS

We explored two issues using simulations. The first was an
inter-modality comparison of sFCT between EEG and MEG.
We expected EEG-sFCTs and MEG-sFCTs to be consistent when
using the same activate sources. The second simulation compared
sFCT that were based on different EEG references. We expected
that a good EEG reference would result in sFCT similarity
between MEG and EEG.

Simulated Data Analysis
Fixed Dipolar Pair Simulation
Figure 3 shows the sFCTs generated by each different approach
by setting one fixed dipolar pair. We observed two important
results. First, visual inspection shows that sFCT varied
considerably among the EEG reference schemes and that
similarity to MEG-sFCT was evident for some of the EEG-sFCTs.
Second, among the different EEG references, REST appears have
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FIGURE 3 | Imaginary coherence-based sFCTs derived using different methods. Network sparsity was set to 50. The red segments represent the connections

between two electrodes and the two yellow dots represent the simulated sources. (A) sFCT of MEG. (B) sFCT of IR. (C) sFCT of REST. (D) sFCT of AR. (E) sFCT of

LM. (F) sFCT of LR.

resulted in sFCTs that were the most similar to those based on
IR. Our observations are in accordance with the electromagnetic
theory that MEG and EEG are closely related to each other. The
three metrics RE (relative error), OR (overlapping rate), and HD
(hamming distance) were used to quantitatively inspect how
similar two sFCTs were to the global difference, similar partition,
and difference partition, respectively. Through these metrics, two
types of differences were evaluated. One was the sFCT difference
between each EEG reference and IR, and the other was the sFCT
difference between the two modalities.

Mean values for the different metrics are exhibited in Figure 4

for the intra—and inter-modality comparisons. IR-based sFCT is
regarded as the standard. Compared with other schemes, REST
was the best EEG reference scheme because of its much lower
HD (Figure 4A). Additionally, each EEG reference and IR had
the same tendency as MEG (Figure 4B). We used OR values
to evaluate the same sFCT partition. As we increased network
sparsity, REST always had the highest OR, meaning that for
sFCT, it is the closet to IR (Figure 4C). The OR results also
showed a certain connection between IR and MEG despite the
network sparsity (Figure 4D). EEG-sFCT based on LM or LR
rarely shared common partitions with MEG. OR for AR-based
EEG-sFCT even decreased at high network sparsity. Unlike the
other schemes, although the OR for REST-based EEG-sFCT was
rather low at lower sparsity, at high sparsity it intersected with the
OR for IR. As shown in Figure 4E, we also used RE to measure
the overall difference between IC matrices based on the different
approaches. The difference between each EEG reference scheme
and IR, and the difference between EEG and MEG are exhibited.
The red dashed line illustrates the RE difference between IR and
MEG. REST performed the best among the EEG references, as
evidenced by its low RE when compared with IR and MEG.

Based on these results, we can conclude that EEG and MEG
are related when they are deduced from the same source. sFCTs
derived from the EEG references all had different degrees of

similarity with IR and MEG. Among the EEG reference schemes,
REST appears to be the most desirable because it produces sFCTs
that are the most similar to MEG-sFCTs and IR.

Statistical Comparisons of sFCT on 20 Dipolar Pairs
We employed a repeatability test using 20 dipolar pairs to
further validate the relationship between EEG—and MEG-
derived sFCT (Figure 5). The HD results using 20 dipolar pairs
again indicate that the REST scheme has a lower transformation
cost than others. The mean HD for REST only consumed
49.09% of the cost for AR, 50.62% for LM, and 45.98% for
LR (Figure 5A). Moreover, despite different degrees of sparsity,
EEG reference schemes share similar tendencies withMEG-based
sFCT (Figure 5B). Compared with IR-based sFCT, REST was
again revealed to be superior because of its significant higher
OR (Figure 5C). The mean OR for REST reached 0.401, while
results from the other three reference schemes are all around
zero (< 0.1), which means they produced sFCTs that hardly
intersected IR-based sFCTs. Additionally, OR values for REST
were very similar to IR and had a certain degree of similarity with
MEG-based sFCT (Figure 5D).

The analysis of the different metrics, as functions of network
sparsity, presented in Figure 5 shows that differences in similarity
for inter—and intra-modality comparisons. Compared with
other EEG references, sFCTs derived from REST-based EEG
are most similar to IR and MEG-based sFCTs. To evaluate
the reference effects statistically, we performed a univariate
analysis of variance (UANOVA) on the HDs, ORs, and REs from
inter—and intra-modality experiments. UANOVA results were
corrected for multiple comparisons using Bonferroni’s post-hoc
test and p < 0.05 was considered statistically significant.

We found significant differences for sFCT similarity (each of
the three metrics) among the involved EEG reference schemes.
(HD: F = 1156.73, p < 0.001; RE: F = 1076.49, p < 0.001;
OR: F = 1616.98, p < 0.001). Additionally, pair-wise multiple
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FIGURE 4 | Results of one fixed dipolar pair with different network sparsities. Network sparsity ranges from 20 to 80. (A) HD (Hamming Distance) between each EEG

reference and the EEG IR at different network sparsities. (B) HD between each EEG reference and MEG at different network sparsities, including the HD between EEG

IR and MEG. (C) OR (Overlapping Rate) between each EEG reference and the EEG IR at different network sparsities. (D) OR between each EEG reference and MEG

at different network sparsities, including the HD between EEG IR and MEG. (E) RE (Relative Error) between each EEG reference and two standards (MEG and the EEG

IR). The red dash line is used to represent the RE between IR and MEG, which stays the same despite the change in sparsity.

comparisons reveal significant differences (Bonferroni’s test, p
< 0.05) for all comparisons except for AR vs. LR for the RE
metric (HD: p = 0.038 for AR vs. LM, p < 0.001 for all other
pairs; RE: p = 0.073 for AR vs. LR, p < 0.001 for all other
pairs; OR: p = 0.011 for AR vs. LM, p < 0.001 for all other
pairs).

We also found significant differences for each metric when
comparing EEG-sFCT (including different references and IR)
with MEG-sFCT (HD: F = 465.43, p<0.001; RE: F = 728.96, p<

0.001; OR: F = 490.56, p < 0.001). Although pair-wise multiple
comparisons revealed many significant differences (Bonferroni’s
test, p < 0.05), those for AR vs. LM for the OR metric and
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FIGURE 5 | Results using 20 dipolar pairs with different network sparsities. (A) HD (Hamming Distance) between each EEG reference and the EEG IR at different

network sparsities. (B) HD between each EEG reference and MEG at different network sparsities, including the HD between EEG IR and MEG. (C) OR (Overlapping

Rate) between each EEG reference and the EEG IR at different network sparsities. (D) OR between each EEG reference and MEG at different network sparsities,

including the HD between EEG IR and MEG. (E) RE (Relative Error) between each EEG reference and two standards (MEG and the EEG IR). RE between IR and MEG

(the red dash line) stays the same at different network sparsities.

REST and LR vs. IR and for the RE metric did not significantly
differ (HD: p = 0.029 for AR vs. LM, p < 0.001 for all other
pairs; RE: p = 1.00 for REST vs. IR, p = 0.394 for LR vs. IR,
and p < 0.001 for all other pairs; OR: p = 0.122 for AR vs.
LM, p = 0.006 for LM vs. LR, and p < 0.001 for all other
pairs).

Results From 100 Dipolar Pairs With Different Noise

Levels
We added different noise levels to the simulated EEG/MEG
recordings to test the robustness of each EEG reference against
noise. Figures 6, 7 illustrate the quantitative metrics obtained
from 100 dipolar pairs under different SNRs (SNR = 1,
2, or 5). Figure 6 shows the results from the comparison

between EEG references and Figure 7 presents the EEG/MEG
comparisons.

TheHD between each EEG reference and IR slightly decreased
as SNR increased for a given network sparsity (Figures 6A,D,G).
At each sparsity and SNR combination, REST had the lowest
HD compared with the other EEG references. Similarly, the RE
between each EEG reference and IR decreased as SNR increased
(Figures 6B,E,H). In particular, as SNR increased, RE for REST
became extremely small. When SNR was set to five, the average
REs for REST were almost zero (0.002) for each given network
sparsity. Compared with the other reference schemes, REST also
had the lowest RE for each given network sparsity and SNR
combination, meaning that REST is also the best reference in
the terms RE. The OR between REST and IR increased as SNRs
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FIGURE 6 | Similarity of sFCTs between EEG references (REST, AR, LM, and LR) and IR based on HD (Hamming Distance), RE (Relative Error), and OR (Overlapping

Rate) with various SNR (from 1, 2 to 5). In the case of SNR = 1, different metrics, HD (A), RE (B), and OR (C), were used to measure similarity. In the case of SNR =

2, HD, RE, and OR correspond to (D–F), respectively. Similarly, in the case of SNR = 3, HD, RE, and OR correspond to (G–I), respectively. Each bar graph gives

results from the four EEG references (REST, AR, LM, and LR) under different network sparsities (ranging from 20 to 80 with an interval of 10).

increased (Figures 6C,F,I), while OR resulting from AR, LR, or
LM decreases as SNR increased for each given network sparsity.
Higher OR indicates more similarity between two sFCTs, which
means that REST was better at recovering IR from the perspective
of sFCT. Compared with the other three EEG reference schemes,
the OR for REST was the highest for each given network sparsity
and SNR combination. Therefore, in the terms of HD, RE, and
OR, REST is the most robust metric against noise, while the other
three EEG reference methods appear easily affected by noise.

When we compared MEG-sFCT with each EEG-sFCT
(including IR-sFCT), we found that HDs were stable as SNR
increased for each given network sparsity (Figures 7A,D,G).
Overall, no obvious differences were observed in the cost
of transforming each EEG-based sFCT to an MEG-based
sFCT for any of the network sparsity and SNR conditions
(Figures 7A,D,G). The RE between EEG and MEG decreased
slightly as SNR increased (Figures 7B,E,H). In particular, for
each given network sparsity and SNR condition, the REs for
REST—and IR-based sFCTs were lower than those for sFCTs
based on other EEG references, meaning that REST and IR
are comparable in the terms of RE, while the other three EEG
reference schemes are not. The OR between EEG and MEG did

not increase with SNR. At different noise levels, IR shared the
highest OR with MEG-sFCT for each given network sparsity.
Compared with AR, LM, and LR, the results from REST-based
sFCTs were closer to those based on IR for each given network
sparsity and SNR condition. Therefore, in the terms of HD, RE,
andOR, the similarity betweenMEG-based sFCT and EEG-based
sFCT is robust against noise. Additionally, aside from IR, REST
is the EEG reference scheme that is most similar to MEG for each
given network sparsity and SNR.

Real Data Analysis
The simulation results indicated that EEG—and MEG-based
sFCTs are related. This is likely because both EEG and
MEG are sensitive to the same generators (synchronous post-
synaptic currents in aligned pyramidal cells). To validate the
simulation predictions, we performed the same analyses on real
measurements.

The major active areas in the brain as determined by the
EEG and MEG data were similar (Figures 8A,D). Similarly,
results from the IC matrix comprising 68 scouts (defined by the
Desikan-Killiany atlas) indicate that EEG and MEG recordings
identify mostly the same brain connections when viewing faces

Frontiers in Behavioral Neuroscience | www.frontiersin.org 10 May 2018 | Volume 12 | Article 96

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Huang et al. sFCT Comparison Between EEG and MEG

FIGURE 7 | Similarity of sFCTs between EEG (REST, AR, LM, LR, and IR) and MEG based on HD (Hamming Distance), RE (Relative Error), and OR (Overlapping Rate)

with different SNRs (1, 2, and 5, respectively). In the case of SNR = 1, different metrics, HD (A), RE (B), and OR (C), were used to measure similarity. In the case of

SNR = 2, HD, RE, and OR correspond to (D–F), respectively. Similarly, in the case of SNR = 3, HD, RE, and OR correspond to (G–I), respectively. Each bar graph

gives results from the four EEG references (REST, AR, LM, LR) and IR under different network sparsities (ranging from 20 to 80 with an interval of 10).

(Figures 8B,E). Both MEG and EEG correctly identified the core
active regions distributed in the ventral occipito-temporal cortex,
known as the fusiform, and occipital face areas (Haxby et al.,
2000; Ishai et al., 2005; Kanwisher and Yovel, 2006; Barbeau et al.,
2008; Blank et al., 2014). Other regions, such as those in the
frontal cortex, were also active during face recognition (Blank
et al., 2014). Although sFCT usually appears a little different
from the cortical connections because of the volume conduction
effect, the active regions at the cortex level should be consistent
with those at the source level. MEG-based sFCT reflected the
prominent active regions at the source level (Figures 8C,F). Even
though the differences in sFCTs generated by the varying EEG
reference schemes is visible, all of them reflect the major active
cortical regions to a certain degree. Considering the projection
errors, REST-based sFCT can still identify the major connections
of important nodes. Although LM-based sFCT could identify
the activity in the occipital lobe, it missed the activation in
the temporal lobe. In this trial, AR—and LR-based sFCTs were
concentrated on activity in the left hemisphere, which may lead
to a misleading identification of activation at the source level.

As with the simulations, we quantified sFCT similarity of
the real measurements by using the RE, HD, and OR metrics.
Note that for real data, all the metrics are calculated on merged

nodes for two major reasons. First, when brain activity is
transmitted from cortical neurons to the electrodes on the
scalp, influence from factors such as volume conduction is
inevitable. Second, in real measurements, the distributions of
EEG and MEG on the electrodes are different. Although we
mapped MEG sensors to the corresponding EEG electrodes
by coordinate transformation, some level of bias cannot be
avoided.

To better visualize the connection among active scouts
at scalp-level, 70 electrodes were divided into seven groups
(Figure 8G), and the following similarity calculations for RE,
HD, and OR are based on the group-level data. Each of the
seven groups corresponds to a functional specialized scout. For
example, electrodes marked with 02, 05, 06, 07, 08, 12, 13, 14, 15
belong to the frontal lobe group. In terms of RE vs. MEG, the
best EEG reference scheme was REST, as evidenced by its lower
RE values (Figure 8H). Similarly, the HD between EEG—and
MEG-sFCTs was lowest for the REST and LM reference schemes
(Figure 8I). Thus, the cost of transformation was less for REST
and LM than for the other two references. The OR values for
REST-based sFCTs were higher than those for the other reference
schemes, indicating a greater degree of overlap with the MEG-
based sFCTs (Figure 8J). Therefore, in terms of HD, RE, and OR,
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FIGURE 8 | Source and Scalp results from real data. The source activity for MEG and EEG were both reconstructed using Minimum Norm Imaging and model Dipole

Orientations. The brain was divided into 68 scouts according to the Desikan-Killiany atlas. The source activity, source connections, and scalp functional connectivity

topographies evaluated by EEG and MEG are illustrated. (A,D) Reconstructed source activity. The cortical activity is shown from above and below. The active areas

are colored and labeled. (B,E) Connections at the source level from EEG (B) and MEG (E) are represented. The source connections are shown from above and below.

The blue nodes represent scouts embedding strong activity. The blues lines denote the connections between two scouts. (C,F) Sensor-level functional connectivity

topographies (sFCTs) from the four different reference schemes (C) and MEG (F) are represented. The blue nodes denote the distribution of electrodes, and the red

lines represent the connections between electrodes. All sFCTs were constructed with network sparsity set to 50 edges. (G–J) Metric evaluations of seven electrode

groups. (G) Electrode groups are shown encapsulated by the red dotted lines. (H) The RE (Relative Error) between each reference and MEG. (I) The HD (Hamming

Distance) between each reference and MEG. (J) The OR (Overlapping Rate)between each reference and MEG.
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if we take MEG-sFCT as the standard, REST-based sFCT is the
most similar among the four EEG references.

DISCUSSION

Clinically, abnormal functional connectivity in human cortex
is thought to be implicated in several diseases. Information
processing in the brain can be elaborated in the form of sFCTs
derived from imaginary coherence matrixes. Therefore, studying
sFCT has an essential and profound impact on the field of
neuroimaging. For EEGs, scalp recordings can only provide the
potential difference between two points because nothing in the
body has a potential of zero. Thus, the use of an appropriate
reference is vital, and all reference choices inevitably affect the
EEG measurements. The reference issue is therefore always a
research topic that is rooted in the hardware design for EEG
detection, and researchers have been searching for the best
reference scheme for quite some time. Additionally, the IR of
an EEG cannot be detected in real measurements. Because of
this, when measuring real brain activity, the results provided
by different EEG references cannot be evaluated against any
gold standard. However, MEG is a reference-free methodology
that can be used to collect real measurements. According to the
principles of electromagnetics, EEG and MEG should be related,
and the two modalities tend to produce similar sFCTs given
the same brain activity. Therefore, similarity to MEG-sFCT is
likely to be a good metric for accessing the performance of EEG
reference schemes.

In our simulation experiment, all EEG-based sFCTs had a
similar tendency with respect to MEG-sFCT at different network
sparsities, which indicates that EEG-sFCT and MEG-sFCT are
strongly linked given the same active source. In particular, MEG
and the EEG IR produce highly similar sFCTs. Therefore, we infer
that in real measurements, MEGmay be a good substitute for the
EEG IR. Furthermore, the suitability of the EEG reference scheme
can be determined by the MEG obtained from real data. In the
future, MEG-based sFCT may not only be used to evaluate the
performance of different EEG reference schemes, but might be
taken as a new reference scheme by transformation to EEG-sFCT.
Particularly, compared with references like AR, LR, and LM,
REST-based sFCT appears to have good stability when varying
dipole number and exhibits robustness to different noise levels. In
the intra-modality experiment, REST-based sFCT exhibited only
minor differences from IR-based sFCT. In the inter-modality
experiment with MEG-sFCT as the reference, REST exhibited a
comparable similarity with IR-based sFCT. Thus, MEG and EEG
do produce sFCTs with a certain degree of similarity, and among
the tested EEG reference schemes, REST is the most consistent
with both IR and MEG.

Because the EEG IR cannot be detected in real measurements,
MEG-sFCT was used as the standard for evaluating different
EEG reference schemes in the face-recognition data analysis.
Theoretically, if conducting error is ignored, the same source
activation should product the same sFCT. On the whole, even
when affected by field spread and volume conduction, EEG—
and MEG-based sFCTs overlap considerably. Essentially, a good

sFCT is thought to recover real activation at the source-level.
Compared with other reference schemes, sFCT from REST can
reflect brain activity relatively well, with the same accuracy as
MEG. In contrast, LM only accounts for some of the prominently
active regions, and AR and LM cannot localize activity well at
all. These other methods thus have a rather negative influence on
evaluating brain activity with sFCT.

Compared to other reference methods, our experiments
show that REST produces sFCT that is more consistent with
IR—and MEG-derived sFCT. Therefore, we recommend using
REST when analyzing EEG-based sFCT. Moreover, REST is an
appropriate substitute for MEG for using sFCT to inspect brain
activity. Here, we confirmed the relationship between IR and
MEG with three metrics, but we did not quantize the sFCT
transformation between IR and MEG. Further study must figure
out the mathematic details of the transformation from MEG to
EEG, especially the EEG IR for real measurements. This will allow
research from different institutes to be unified.

One highlight of our study is, for the first time, to study sFCT
between EEG and MEG. Many studies developed exhaustive
analysis, based on the new EEG reference scheme—REST
provided by Yao (Qin et al., 2010; Zheng et al., 2018), including
the analysis of the EEG reference effects on brain network
(functional connectivity) (Chella et al., 2016). However, these
studies only were limited to discussions on the difference among
EEG reference schemes and did not take the sister modality
of EEG—MEG into account. Considering the close tie between
EEG and MEG and the characteristics that MEG is reference
free, we not only compared the difference of sFCT among
EEG reference schemes but also gave deep insight into the
commonality and difference between EEG-based and MEG-
based sFCTs. By building bridges between EEG and MEG in the
term of sFCT, we wish our study could provide a reference for the
studies in the field of EEG reference schemes, as well as on the
relationship between EEG and MEG.

LIMITATION

Both MEG and EEG originate from the neurobiological activity
within the brain. MEG detects the surface magnetic fields while
EEG detects scalp electrical potential. Generally, EEG and MEG
detection should be complementary, and the methods have
similarities as well as differences. To a certain degree, this study
neglects the differences between EEG and MEG with respect
to sFCT, and mainly focuses on the similarity between the two
modalities. The results from the simulated data indicate that
sFCTs based on MEG are indeed similar to those based on
EEG. However, the employed simulation model is merely an
approximation of a real head model, and the combination of
active sources in simulations is far simpler than that in real
brain activity. Therefore, results from the real-data analysis show
that the degree of similarity between EEG-sFCT and MEG-sFCT
based is actually lower than what we observed using simulation
data.

Besides, only two dipoles the minimum dipolar pair,
with randomly positions, and fixed orientation in the upper
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hemisphere are used to simplify our simulation on brain
functional connectivity. We will, in the future work, take the
influence of the orientation of dipoles and the number of
involved dipoles into consideration to gain deeper insight into the
connection between EEG references and MEG on sFCT. Further,
except IC, weighted phase lag index also proved to be insensitive
to volume conduction (Vinck et al., 2011), we will consider to
introduce such kind of index to analyze the connection between
EEG reference and MEG. Our study on the similarities between
MEG and EEG is likely to be taken as a reference for other
researchers and might inspire more related studies. We will also
conduct further research on this issue.

CONCLUSION

sFCT can help physicians analyze abnormal brain activity. sFCTs
based on different EEG references or on MEG are similar to
varying degrees. The reference issue is fundamental for scalp
EEG-based studies, and the choice of reference scheme is usually
based on the subjective judgment of the researchers, which may
differ from one to the other. By investigating the relationships
between sFCTs based on different references and modalities, we
found the most appropriate EEG reference scheme. Simulated
data with dipolar pairs indicated similarities between sFCTs that
were derived from different EEG references, as well as similarities
between EEG—and MEG-derived sFCTs. Quantized numeric
evaluations showed that REST-based-sFCT is the most similar to

that derived from MEG or IR. Thus, the REST-based reference
had the best performance among four EEG reference methods
that we tested. Furthermore, when we analyzed EEG and MEG
data obtained when people viewed faces, the REST-derived sFCT
was again the most similar to MEG-sFCT. Although this study

has shown that sFCTs derived from the twomodalities are similar,
we must remember that the two are indeed different, and a
completely accurate model relating EEG to MEG remains to be
determined.
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