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Depletion of polycomb repressive complex 2 core
component EED impairs fetal hematopoiesis

Wenhua Yu1,4, Fang Zhang1,4, Shiyan Wang1, Yi Fu1, Jiahuan Chen1, Xiaodong Liang1, Huangying Le1, William T Pu*,2,3 and
Bing Zhang*,1

Polycomb repressive complex 2 (PRC2), a H3K27me3 methyltransferase complex, promotes the development of many organs by
silencing ectopic transcription program. However, currently little is known about the role of PRC2 in blood and vascular
development. In this study, we interrogated the function of embryonic ectoderm development (EED), a core PRC2 component, in
both endothelial and hematopoietic tissues by inactivating a floxed murine EED allele with Tie2Cre, which catalyzes recombination
in endothelial and hematopoietic lineages. Murine EEDfl/fl;Tie2Cre (EEDCKO) embryos died at embryonic day (E) 13.5. We did not
observe structural abnormalities of blood vessels or cardiac valves, suggesting that EED is dispensable in endothelial cells for
initial steps of vascular development. EEDCKO embryos were pale and had abnormal livers. Flow cytometry of fetal liver cells
showed that EED depletion significantly impeded erythroid maturation. There was a corresponding increase in myeloid
progenitors and granulocytes and macrophages, suggesting an attenuated differentiation path in myeloid lineages. Moreover, EED
depletion impaired the generation of hematopoietic stem cells. Collectively, our study demonstrates that within Tie2Cre-
recombined embryonic cells, EED is required for proper erythropoiesis and for formation of hematopoietic progenitor and stem
cells, but is dispensable for endothelial lineage commitment and early vascular patterning.
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Polycomb repressive complex 2 (PRC2) represses gene
transcription by trimethylating histone H3 on lysine 27
(H3K27me3). The core PRC2 complex is comprised of
embryonic ectoderm development (EED), Suppressor of
Zeste12 homolog (SUZ12), retinoblastoma-associated
protein 48 (RbAp48), and a catalytic subunit, either Enhancer
of Zeste Homolog 1 or 2 (EZH1 or EZH2).1,2 EZH1 and EZH2
are mutually exclusive in the same PRC2 complex and are
partially redundant at certain developmental and disease
stages.3,4 EED is a core component of PRC2 complex that
interacts with EZH1 or EZH2 through a WD40 domain. In
addition, EED recognizes H3K27me3 through an aromatic
cage structure to recruit PRC2 to established H3K27me3 and
thereby enforce maintenance of this repressive epigenetic
mark.5,6

PRC2 has essential roles of regulating cell fate commit-
ment, organogenesis, homeostasis and disease-related tis-
sue remodeling.1 In early developing mouse embryos,
homozygous Eed null mutation abolished global H3K27
methylation and caused defects in primitive streak formation
and fetal lethality at E9.5.7,8 EZH2 also controls the fate of
multiple types of tissue progenitors.9 Depletion of EZH2 in
epidermal precursor cells promoted premature epidermal
differentiation and barrier acquisition.10,11 EZH2 also had
developmental-stage-specific roles in regulating cardiomyo-
cyte differentiation and proliferation.12,13 In adult vasculature,

EZH2 was required for VEGF-induced silencing of vasohibin1
(VASH1), which promoted angiogenesis in ovarian cancer.14

Both endothelial cell (EC) and hematopoietic cells originate
from a common progenitor, the hemangioblast. Hemogenic
ECs within the yolk sac give rise to the first population of
hematopoietic stem cells (HSCs), which migrate to aorta-
gonad mesonephros (AGM) and then to the fetal liver, which
then becomes the main site of fetal hematopoiesis. Fetal liver
HSCs establish the common myeloid progenitor (CMP) and
the common lymphoid progenitor (CLP), multipotent progeni-
tors that differentiate into the major blood lineages. CMPs
further differentiate into megakaryocyte–erythrocyte progeni-
tors (MEPs), precursors of erythrocytes and megakaryocytes,
and granulocyte–macrophage progenitors (GMPs), precur-
sors of granulocytes and monocyte/macrophages.15–17

Functional links between PRC2, hematopoiesis, and
hematopoietic malignancies have been recently unveiled.
Human genetic studies revealed that mutations affecting
EZH2, EED, SUZ12, and JARID2, encoding PRC2 subunits
and associated proteins, cause hematopoietic diseases
including myelodysplastic syndrome, T-cell acute lympho-
blastic leukemia, and B cell lymphoma.18–21 However, the
functions of PRC2 in hematopoietic development are currently
less clear. Conditional deletion of Ezh2 in hematopoietic and
vascular lineages of mouse embryos by Tie2Cre was lethal at
mid-gestation due to insufficient expansion of hematopoietic
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stem/progenitor cells (HSCs).22 In contrast, conditional dele-
tion of EED in HSCs by VavCre did not significantly influence
fetal HSC hemostasis but became significant in the
adulthood.23 Thus, the role of PRC2 and its component
subunits in blood and vessel development require elucidation.
In this study, we used Tie2Cre to inactivate EED in

developing blood and vascular lineages. Because there is no
functional redundant ortholog of EED, this should abolish
PRC2 function in these lineages and circumvent functional
redundancy between EZH1 and EZH2. We found that EED is
dispensable for EC specification and initial development into
vessels and cardiac valve precursors, but is essential for
normal population of the fetal liver by HSCs and for
erythropoiesis. Combined with previous studies on PRC2,
our results illustrated a tissue-context-dependent and
developmental-stage-specific role of PRC2 in controlling
hematopoiesis.

Results

EED is required in the Tie2Cre lineage for normal
embryonic development. EEDflox mice were described
previously and develop normally.23 Although heterozygosity
for a null Eed allele was previously reported to cause myelo-
and lympohoproliferative defects,24 Tie2Cre;EEDfl/wt mice
survived normally to adulthood and were fertile (Table 1).
However, no live Tie2Cre;EEDfl/fl (EED conditional knockout,
abbreviated as EEDCKO) mice were observed at birth
(Table 1), indicating that EED is required in the Tie2Cre
lineage for normal embryonic development.
To determine the time of embryonic lethality, we analyzed

litters at E11.5 and E13.5. At E11.5, EEDCKO were present at
the expected Mendelian frequency, whereas 70% of mutant
embryos were no longer viable at E13.5 (Table 1, Figures 1a
and b). However, E11.5 EEDCKO embryos already showed
developmental abnormalities, as they lacked large blood-
perfused vessels including vitelline veins in the yolk sac
(Figures 1c and d, black arrow) and primary head veins of the
embryo (Figures 1c and d, yellow arrow). The region occupied
by the liver was also notably pale (Figures 1c and d, asterisk).

EED deletion did not significantly alter the vascular
patterning. Given that EED is an essential component of
PRC2, which deposits H3K27me3, we performed immunos-
taining to measure bulk H3K27me3 levels. Immunofluores-
cent staining demonstrated substantially weaker H3K27me3
signal in endothelial cells (Figures 2a and b), consistent with
efficient EED deletion in these cells by Tie2Cre. This also
suggested the possibility that the observed absence of blood-

filled vessels in EEDCKO embryos was due to abnormal
vascular development (Figures 2a and b).
To test this possibility, we examined blood vessels of

wild-type and EEDCKO embryos at E9.5 and E12.5 by
PECAM1 whole-mount staining, a marker of vascular
endothelial cell. Unexpectedly, at E9.5, there was no global
angiodysplasia observed in EED mutants. The large vessels
such as the pharyngeal arch arteries, midline dorsa aorta,
cardinal vein, intersomitic vessels, and large cerebral vessels
were well developed in EEDCKO (Figures 2c and d). The small
vessels formed complete vascular plexuses with similar
density and pattern to control littermates. We also checked
the vasculature of E12.5 embryos and found no significant
difference in vascular density or pattern in EEDCKO compared
with control (Figures 2e and f).
Endothelial cells of the heart contribute to heart valve

mesenchyme formation through endothelial-to-mesenchymal
transition, and Tie2Cre-driven mutations in EC genes have
caused lethal heart valve defects.25,26 To test whether the
deletion of EED results in valve hypoplasia, we examined
heart valves in E12.5 EEDCKO and control littermates. Cardiac
valve size and morphology were comparable between mutant
and wild-type embryos (Figures 2g and h). Taken together,
these data suggest that EED depletion did not significantly
influence vessel or valve formation, and therefore are unlikely
to account for the observed embryonic lethality.

Deletion of EED attenuated the myeloid lineages commit-
ment. Tie2Cre drives recombination in almost all hematopoie-
tic cells, in addition to endothelial cells.27 As the deletion
of PRC2 has been reported to induce defective
hematopoiesis,23,24 we hypothesized that death of EEDCKO

embryos is due to the abnormal hematopoiesis. Between
E11 and E15.5, the fetal liver is the primary site of
hematopoiesis.15,28 Given the abnormal appearance of the
fetal liver on gross embryo inspection (Figures 1c and d), we
examined fetal liver morphology on H&E-stained histological
sections and found that EEDCKO liver size was significantly
reduced (Figures 3a and b). Hepatic structure was poorly
organized, and the cytoplasm of blood cells within the liver were
swollen and more eosinophilic than controls (Figure 3b). All
together, these data suggested disrupted fetal hematopoiesis.
To check the status of hematopoiesis, especially erythropoi-

esis, whose deficiency could have contributed to the pale
appearance of EEDCKO embryos, we isolated hematopoietic
cells from fetal liver and examined their lineage composition by
flow cytometry. Using a Cre-activated Rosa26-floxed-stop-
YFP (Rosa26fsYFP) reporter, we determined that over 90% of
hematopoietic cells were YFP+ (Figures 4a and b), confirming
efficient Tie2Cre-mediated recombination within the hemato-
poietic lineage.27 We then evaluated erythropoiesis using flow
cytometry to measure lineage differentiation markers. CD71+

Ter119+ cells, representing more mature erythroblasts, were
dramatically depleted compared with control (9.4% versus
43%, P= 0.0004; Figures 4c–e). In contrast, less mature
CD71+Ter119− erythroblasts were significantly increased
(18.6% versus 8.1%, P= 0.0001, Figures 4c, d and f), which
suggested that EED is required for erythroblast maturation.
Erythroblasts arise from a common myeloid progenitor

(CMP), which also differentiates into the granulocyte–

Table 1 Survival rate of Tie2Cre;EEDfl/fl knockout mouse

Age EEDfl/wt EEDfl/fl TieCre+EEDfl/wt TieCre+EEDfl/fl

P0 16 (33%) 16 (33%) 16 (33%) 0 (0%)
E13.5 16 (24%) 20 (29%) 18 (26%) 14 (4 viable= 6%)
E11.5 30 (30%) 27 (27%) 20 (20%) 23 (23%)

Table indicates number and (%) of embryos found at each stage.
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macrophage progenitor (GMP), which subsequently differ-
entiates into granulocytes and macrophages (GMC).17,29 The
granulocytes and macrophages express the cell surface
marker Mac1 and lack Ter119.17 By flow cytometry, MAC1+-
Ter119– cells increased almost 2.4-fold (P= 0.0001) in
EEDCKO (Figures 4g–i). This result suggests that EED
depletion biases CMP differentiation towards GMC at the
expense of the myeloid lineage.

EED depletion exhausted the HSC pool. Erythroblasts and
granulocytes are derived from myeloid progenitors. To
investigate whether EED is required for normal formation of
myeloid progenitor cells, we measured multipotent hemato-
poietic and myeloid progenitors by flow cytometry. Myeloid
progenitor cell (MPC) lacks canonical erythrocyte maker of
CD71 and Ter119. Thus, we first isolated the CD71–Ter119–

blood cells and further stained them with typical progenitor
markers of Sca1 and cKit to gate the MPC (Figures 5a–d). The
percentage of CD71–Ter119–cKit+Sca1– myeloid progenitors
was increased by 2.5-fold in EEDCKO compared with control
littermates (P=0.0076; Figure 5e), indicating EED depletion
hindered MPC differentiation or promotes its proliferation or
self-renewal. The total number of CD71–Ter119– Sca1+cKit+

(LSK) cells was not altered in EEDCKO although they were
significantly depleted in C71−Ter119− population (P=0.1467;
Figure 5f).
The depletion of cKit+ cells in CD71−Ter119− population

indicates the loss of HSC in EEDCKO mouse. HSCs are
hematopoiesis-committed multipotent cells that self-renew

and give rise to all hematopoietic lineages. To test whether
PRC2 regulates HSC generation or homeostasis, we stained
for cell surface markers C48 and C150. Within Lin−CD48–

CD150+ cells, HSC cells are the subset that expresses the
pan-stem cell marker Sca123 (Figures 6a–d). Consistent with a
previous study showing the impaired expansion of HSC cells
following EZH2 depletion, the HSC population in EEDKO was
significantly reduced (0.025 versus 0.0056%, P= 0.011;
Figure 6e). Taken together, these data indicate that EED
deletion impaired the generation or maintenance of HSCs.

Discussion

The PRC2 complex is a master regulator of differentiation
programs and organogenesis. In this study, we depleted EED,
a core component of PRC2. Unlike EZH1 or EZH2, there is no
known functional redundancy for EED within PRC2, and
therefore EED inactivation should delineate required PRC2
functions. Inactivation of EEDflox using Tie2Cre illustrated that
EED depletion did not strongly affect vascular development
but significantly disrupted erythroid maturation as well as HSC
formation, homeostasis, and differentiation, which together
led to embryonic lethality. These findings reinforced current
knowledge of the essential role of PRC2 in regulating cell
differentiation and homeostasis, while unveiling new roles for
PRC2 in regulating hematopoiesis.

PRC2 and hematopoiesis. PRC2 has been recently shown
to regulate the development and malignancy of multiple

EEDCKO

EEDfl/wt

EEDCKO

E11.5

E13.5

E13.5

*

*

E11.5

EEDfl/wt

Figure 1 EEDCKO mouse is embryonic lethal at mid-gestation. (a and b) Images of wild-type and EEDCKO embryos at E13.5. Most EEDCKO embryos had died by this stage.
(c and d) Images of wild-type and EEDCKO embryos at E11.5. EEDCKO embryos show significant paleness and absence of blood-perfused vasculature. Asterisks overlie the fetal
liver. Black arrow points to a vitelline vessel. Yellow arrow indicates primary head vein. Bar, 0.2 cm (b) or 0.3 cm (d)
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hematopoietic lineages,20,22,23,30,31 but its roles in these
processes are still imprecisely defined. Ectopic expression of
EZH2 in bone marrow HSCs promoted HSC proliferation and
myeloproliferative disease.32 Conversely, inactivating muta-
tions of PRC2 core members SUZ12 and EED, induced by
N-ethyl-N-nitrosourea (ENU), disrupted HSC regeneration.30

Depletion of EZH2 by Tie2Cre caused defective HSC
development in the fetal liver, but did not compromise adult

HSC capacity to reconstitute the bone marrow.22 However, a
recent study reported that deletion of EED by VavCre, which is
active in hematopoietic cells, was compatible with fetal
survival, leading to the opposite conclusion that PRC2 is
dispensable for fetal HSC differentiation and maintenance.23

Results from these EZH2 and EED knockout studies have
been difficult to compare due to the different Cre drivers,
functional redundancy of EZH1/2, and non-canonical roles of
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Figure 2 Normal blood vessel and cardiac valve development in EEDCKO. (a and b) Immunofluorescent images of skin tissue from E12.5 stage embryos. Overall, H3K27me3
signal was reduced in endothelial cells. Bar, 0.1 cm. (c and d) PECAM1 whole-mount staining of E9.5 embryos. Black arrows point at branchial arch arteries. Green arrows point
at cerebral vascular plexus. Bar, 0.1 cm. (e and f) PECAM1 whole-mount staining of E12.5 embryos. (g and h) H&E staining of E12.5 embryonic heart section. Arrowheads point
at atrioventricular endocardial cushion. Bar, 50 μm
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EEDfl/fl

EEDCKO

a c

b d

Figure 3 Hepatic abnormalities of EEDCKO embryos. (a and b) H&E staining of E12.5 histological section through the liver. Arrowheads indicate swollen cells with eosinophilic
cytoplasm. Black bar, 50 μm. Yellow bar, 10 μm

0 103 104 105 0 103 104 105

0 103 104 105

0

103

104

105

eY
FP

TER119 TER119

0

103

104

105

eY
FP

lrt
C

E
ed

C
K

O

0

104

105

103

0

104

105

103

0 104 105103

0 104 105103

GMC

GMC

MAC1 

Te
r1

19
 

Te
r1

19
 

C
D

71

0 104 105103

0

104

105

103

C
D

71

17
D

C
+

911reT
+ 

sllec

1
C

A
M

+
911reT

-
sllec

17
D

C
+

911reT
–

sllec

Ctrl EedCKO Ctrl EedCKOCtrl EedCKO
0.00

0.05

0.10

0.15

GMC

0.0

0.2

0.4

0.6

CD71+Ter119+

0.00

0.05

0.10

0.15

0.20

0.25
p=0.0004 p=0.0187 p=0.0096

0

104

105

103

Ter119-CD71+

Figure 4 EEDCKO caused defective erythrocyte maturation. Flow cytometry analysis of hematopoietic cells from hepatic liver. (a and b) Detection of hematopoietic cells that
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Unpaired t-test, n= 4–7. (i and j) Flow cytometry analysis of the granulocyte lineage (MAC1+Ter119–). (k) Quantitative analysis of granulocyte lineage. Unpaired t-test, n= 4–7
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EZH2 that are not dependent on EED.33 Furthermore, a
recent study reported that EED functions as a scaffold protein
that interacts with catalytic components of the PRC1
complex,34 adding further complexity to comparisons
between EZH2 and EED knockout studies.
Our study reconciles the results of the Tie2Cre;Ezh2fl/fl and

VavCre;EEDfl/fl studies to a large extent by deleting EEDfl/fl with
Tie2Cre. We found that EED depletion by Tie2Cre disrupted
HSC homeostasis and severely impaired erythropoiesis. We
reason the different results from two experiments might be due
to the earlier onset of Tie2Cre deletion in hemangioblasts. EED-
deficient hemangioblasts might be defective in maitenance or
further differentiation, whereas this defect may not be exposed
when EED ablation occurs in HSCs or their descendants.
Although lethal effects of EED depletion on hematopoiesis may
require its inactivation in angioblasts, the functional defect may
not occur in angioblasts, as we have previously observed that
altering PRC2 in progenitors may not have functional con-
sequences until a later developmental time point,12 perhaps
reflecting a 'memory' effect of the chromatin landscape.
Tie2Cre also efficiently targets endothelial cells, which

contribute to form a stem cell niche to nurse multiple types of
hemotapoietic progenitors including HSC by paracrine

mechanisms.15,35 Hence, even though we did not observe
vascular abnormalities in the EEDCKO mutants, it is possible
that Tie2Cre-mediated EED deletion in EC could influence this
paracrine mechanism and thereby cell non-autonomously
influence HSC maintenance and differentiation. To test this
hypothesis, a more EC-restricted Cre such as CDH5CreERT23

will need to be used.36

PRC2 and vascular development. Recently Tie2Cre;
EZH2fl/fl mice were reported to have defective vascular
integrity and severe hemorrhage evident at E12.5 and due
to the activation of Mmp9.37 In our study, we did not find
significant hemorrhage up to E12.5, a day before death.
Thus, it is less likely that embryonic lethality of our Tie2Cre;
EEDfl/fl mutants was due to vascular leakage. The divergent
results might result from technical differences in mouse strain
background or kinetics of Cre inactivation. An alternative
intriguing possibility is that the more severe vascular
phenotype of EZH2fl/fl mutants reflects a non-canonical,
EED-independent role of EZH2 in regulating endothelial cell
genes such as Mmp9. Another potential contributor to the
divergent results is the recently reported role of EED in PRC1
activity.34

In adult mice, siRNA-mediated Ezh2 knockdown was used
to show that EZH2 promotes tumor angiogenesis by repres-
sing anti-angiogenic factor Vash1.14 We did not find an
essential role for EED in developmental angiogenesis. These
studies may point out differences in the dependence of
developmental versus tumor angiogenesis on PRC2 or they
may further highlight non-canonical roles of EZH2. Alterna-
tively, technical differences in the method of gene inactivation
may have led to divergent conclusions. A genetic deletion of
Eed or Ezh2 by inducible CDH5CreETR2 in the adult mouse
would help to solidify our current understanding of the role of
PRC2 in angiogenesis and even possibly generate new
insights into the functions of EED and EZH2 within PRC2
and in non-canonical roles.33

PRC2 and hematopoietic malignancies. Mutations of
genes encoding PRC2 subunits have been linked to multiple
types of human hematopoietic malignancies. Somatic muta-
tion of EED or chromosome deletion of EZH2 led to
myelodysplastic syndrome and related neoplasm, which is
consistent to our and others studies that depletion of EZH2
and EED in hematopoietic cells impaired erythroblast genera-
tion, erythrocyte maturation, and caused cytopenia.31,32,38

Moreover, structural rearrange of EZH2, SUZ12, and EED
both in mouse and human results in the T-cell acute
lymphoblast leukemia.20 The malignant transformation in
hematopoietic cells lacking PRC2 suggests that compensating
for PRC2 deficiency may be a productive therapeutic strategy
for some hematopoietic disorders. Consistent with this idea,
overexpression of EZH2 in mice augmented HSC regeneration
and prevented the HSC exhaustion during the transplantation
assays.32 However, elevation of EZH2 and other PRC2
components is associated with aggressive forms in solid
cancers and related to cancer progression.39,40 As a result,
PRC2 inhibition has emerged as a potential strategy cancer
treatment strategy, and is currently being tested in clinical
trials. Given the deleterious effects of PRC2 inhibition on

Figure 5 Eed deletion resulted in defective development of myeloid progenitor
cells. (a–d) Flow cytometry analysis of myeloid progenitor cells (MPCs) and LSK cells
from control and EEDCKO fetal liver. (e) Quantitative analysis of MPCs. Unpaired
t-test, n= 3–6. (f) Quantitative analysis of LSK cells. Unpaired t-test, n= 3–6

Role of EED in fetal hematopoiesis
Wenhua Yu et al

6

Cell Death and Disease



HSCs and hematopoiesis illuminated in this study and others,
the side effects and therapeutic index of these agents needs to
be carefully evaluated.

Materials and Methods
Mice. All animal procedures were approved by Institutional Animal Care and Use
Committee (IACUC) of Shanghai Jiao Tong University and Boston Children’s
Hospital. The EEDflox, Tie2Cre, and Rosa26fsYFP alleles were described
previously.23,41,42 All mouse strains were maintained in a C57BL/6 and 129 mixed
background. EEDfl/fl female mice were mated with Tie2Cre;EEDfl/wt male mice to
generate TieCre;EEDfl/fl embyros, to avoid germline deletion that can result from
Tie2Cre transmitted through the female germline. Gestational age of embryos was
determined by checking vaginal plugs, with noon of the day of the plug defined as
embryonic day (E) E0.5.

Immunofluorescent staining. Immunofluorescent staining of embryo
sections was performed as described previously.43,44 Cryopreserved embryos were
sectioned, fixed in 4% PFA for 15 min, and blocked and permeabilized with Blocking
buffer (1% BSA in PBS containing 5% goat serum) containing 0.1% Triton X-100.
Following 1 h of blocking at room temperature, the sections were incubated with
primary antibodies (H3K27me3, 17-622, Millipore; PECAM1, clone MEC13.3, BD
Bioscience, San Diego, USA) overnight at 4 ˚C. The samples were washed three
times with PBS containing 0.05% Tween-20, incubated with Alexa-conjugated
secondary antibodies (1:200, Fisher Scientific, Shanghai, China) for 1 h and then
counterstained with DAPI (1 μg/ml, Roche) for 5 min before mounting. The images
were captured on a Olympus FluoView FV1000 confocal microscope (China).

Whole-mount staining. Whole-mount immunohistochemical staining of E9.5
and E12.5 mouse embryos using PECAM1 antibody was performed as reported
previously.43,44 Briefly, embryos were dissected from the uterus, fixed in 4%
paraformaldehyde overnight, and dehydrated in 100% methanol until use. The
embryo was quenched with 5% hydrogen peroxide in methanol to remove the
endogenous peroxidase and then rehydrated in 75, 50, and 25% methanol before
use. The blocking process was performed with incubation of blocking buffer (2%
nonfat milk, 5% goat serum and 0.2% Triton X-100) for 2 h at room temperature.
After blocking, PECAM1 antibody (MEC13.3, 1:200; BD Pharmingen) in blocking
buffer was applied to embryos with gentle shaking overnight. The embryos were
washed with PBS five times, incubated overnight with biotinylated goal anti-rat
antibody (1:50, BD Pharmingen) in PBS containing 0.2% Triton X-100, and then
incubated with HRP-conjugated streptavidin for 2 h before color development in
DAB substrates (Vector Labs, Burlingame, CA, USA). The images were obtained
using an SMZ800 stereo microscope.

Flow cytometry. Fetal livers were isolated from E12.5 mouse embryos,
triturated, and passed through 70 μm nylon mesh to obtain a single-cell suspension.
The RBCs were lysed in 1 × erythroid lysis buffer. The isolated cells were first
incubated on ice with Fc-Block. For selection of Lin− cells, the cells were incubated
with biotin-conjugated antibodies against lineage-specific markers (Ter119[TER119];
CD71; B220[RA3-6B2]; Gr1[RB6-8C5]), and biotin was subsequently bound by
PerCP-Cy5.5 conjugated streptavidin. The cells were stained as indicated for
surface markers, including FITC-CD34, phycoerythrin(PE)-Cy7-conjugated Sca1
(D7), allophycocyanin (APC)-Cy7-conjugated cKit (2B8), and PE-conjugated CD48
(HM48-1). These antibodies were purchased from BD Biosciences (San Jose, CA,
USA), Thermo Fisher (Shanghai, China) and BioLegend (San Diego, CA, USA).
The dead cells were excluded by staining with 7-AAD (1 μg/ml, Thermo Fisher).
Antibody-labeled cells were run on an LSR II/LSR Fortessa for analysis or on a
FACSAria II for cell sorting. Flowjo software (Ashland, OR, USA) was used to
analyze the cytometry data.

Statistics. The results are shown as mean± S.E.M. Student’s t-test was used to
determine whether groups were significantly different.
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