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Summary

What is already known?
 ► Severe sepsis and septic shock are among the lead-
ing causes of death in the USA, and sepsis remains 
one of the most expensive conditions to diagnose 
and treat.

 ► Accurate early diagnosis and treatment can reduce 
the risk of adverse patient outcomes, but the accu-
racy of traditional rule- based screening methods is 
limited.

 ► Machine learning- based algorithms (MLAs) have 
been developed for sepsis detection and prediction. 
However, many of these MLAs require extensive 
training data, laboratory test results or specialist 
annotation and have not been evaluated with real- 
world data.

What does this paper add?
 ► This study is a novel multisite prospective real- world 
data evaluation of the effect of a machine learning 
algorithm for severe sepsis detection and prediction 
on clinical outcomes.

 ► In an analysis across nine diverse hospitals from 
the Northeast, South, Midwest and Western USA, in-
cluding academic centres and community hospitals, 
use of the MLA was associated with a statistically 
significant reduction of in- hospital mortality, hospital 
length of stay and 30- day readmissions for sepsis- 
related patient stays.

 ► Given that clinician perception of MLAs remains a 
barrier to their broad acceptance and use, this study 
advances the field of MLAs for prediction and de-
tection of sepsis by providing clinically relevant 
evidence that an MLA requiring only minimal data 
inputs, routinely collected by the electronic health 
record, can improve patient outcomes without add-
ing to clinician workload.

AbStrACt
background Severe sepsis and septic shock are among 
the leading causes of death in the USA. While early 
prediction of severe sepsis can reduce adverse patient 
outcomes, sepsis remains one of the most expensive 
conditions to diagnose and treat.
Objective The purpose of this study was to evaluate the 
effect of a machine learning algorithm for severe sepsis 
prediction on in- hospital mortality, hospital length of stay 
and 30- day readmission.
Design Prospective clinical outcomes evaluation.
Setting Evaluation was performed on a multiyear, 
multicentre clinical data set of real- world data containing 
75 147 patient encounters from nine hospitals across the 
continental USA, ranging from community hospitals to 
large academic medical centres.
Participants Analyses were performed for 17 758 adult 
patients who met two or more systemic inflammatory 
response syndrome criteria at any point during their stay 
(‘sepsis- related’ patients).
Interventions Machine learning algorithm for severe 
sepsis prediction.
Outcome measures In- hospital mortality, length of stay 
and 30- day readmission rates.
results Hospitals saw an average 39.5% reduction of 
in- hospital mortality, a 32.3% reduction in hospital length 
of stay and a 22.7% reduction in 30- day readmission rate 
for sepsis- related patient stays when using the machine 
learning algorithm in clinical outcomes analysis.
Conclusions Reductions of in- hospital mortality, hospital 
length of stay and 30- day readmissions were observed 
in real- world clinical use of the machine learning- based 
algorithm. The predictive algorithm may be successfully 
used to improve sepsis- related outcomes in live clinical 
settings.
trial registration number NCT03960203

IntrODuCtIOn
Despite a high associated mortality1 2 and high 
costs of treatment,2 3 severe sepsis remains 
notoriously difficult to diagnose and treat. The 

healthcare costs of sepsis in the USA in 2013 
reached nearly US$24 billion, roughly 6% 
of the nation’s total hospital bill, while sepsis 
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Table 2 Hospital characteristics; geographical region, 
teaching status and size of hospitals included in this study

Hospital characteristic Clinical outcomes analysis

Geographical region

  Northeast 1

  South 3

  Midwest 1

  West 4

Teaching status

  Teaching 7

  Non- teaching 2

Hospital Size

  Small (<100 beds) 3

  Medium (100–250 beds) 2

  Large (>250 beds) 4

patients represented only 3.6% of all hospital stays.4 Prior 
research has emphasised the importance of timely sepsis 
recognition to both improving patient outcomes and 
reducing costs associated with treatment.5–7 New definitions 
intended to improve the clinical recognition of sepsis have 
recently been proposed,8 9 as the previous use of screening 
based on systemic inflammatory response syndrome (SIRS) 
criteria has been found to be nonspecific.10 Evidence from 
the medical literature has shown that accurate early diag-
nosis and treatment can reduce the risk of adverse patient 
outcome from severe sepsis and septic shock.11–13 There-
fore, earlier detection of sepsis and more accurate recog-
nition of patients at high risk of developing severe sepsis or 
septic shock is essential for effective sepsis treatment.

Screening tools used in clinical settings for the identifi-
cation of decompensating patients include the Sequential 
Organ Failure Assessment (SOFA),14 the SIRS criteria15 
and the Modified Early Warning Score (MEWS).16 These 
systems have been used to recognise severe sepsis due to 
their ability to both identify systemic inflammation as a 
sign of infection, and to detect possible organ dysfunc-
tion. The utility of such systems for the identification of 
septic patients has been studied at length in recent liter-
ature.17–22 However, systems, such as MEWS, SOFA and 
SIRS, were originally designed as generalised screening 
tools as opposed to explicitly identifying sepsis, and their 
efficacy in sepsis diagnosis is limited. For example, SOFA 
has been reported to be not widely applicable outside of 
the intensive care unit (ICU), and it often requires use of 
laboratory values that are not rapidly available.17 SIRS has 
been reported to be nonspecific17–23 and also may yield 
up to one in eight false negatives in detecting patients 
with organ failure and infection.17–24 Despite their limita-
tions, these scoring systems have established performance 
metrics, and serve as important comparators for newly 
developed severe sepsis detection and prediction systems 
and their effect on clinical outcomes.25–28

Improvement in sepsis care and adoption of electronic 
health record (EHR) systems have been incentivised by 
the Centers for Medicare & Medicaid Services in recent 
years.29 30 Currently, 96% of hospitals in the USA have 
an EHR federally tested and certified for the govern-
ment's incentive programme.31–33 A number of methods 
have been developed to monitor patient EHR data for 
severe sepsis, but few provide predictive capabilities to 
enable early intervention and improve patient outcomes. 
Although they represent fairly new additions to the field 
of sepsis care, machine learning algorithms (MLAs) have 
the potential to significantly improve patient outcomes 
through advance warning of impending sepsis onset. 
Sepsis prediction MLAs may also serve to empower clini-
cians to have confidence in their sepsis diagnosis in a 
variety of ambiguous cases, including instances when 
positive culture results are not available,34 and in cases of 
atypical clinical presentation among older patients who 
comprise a majority of sepsis cases.35 36 Machine learning- 
based decision support systems, therefore, represent an 
important area of investigation for sepsis research.37 38

The MLA used in this study has been described in 
previous peer- reviewed publications both retrospectively 
and prospectively,39–45 but has not been evaluated for 
its effect on clinical outcomes on multicentre diverse 
hospital settings. In this study, performance of our MLA 
for severe sepsis prediction and detection was evaluated 
using real- world data from patient EHRs at nine diverse 
hospitals from the northeast, southern, midwestern and 
western regions of USA, spanning academic centres to 
community hospitals. A clinical outcomes analysis was 
performed to evaluate the effect of the algorithm on 
in- hospital patient mortality, hospital length of stay (LOS) 
and 30- day readmissions.

MethODS
Dataset
Prospectively collected real- world patient data were 
abstracted from the EHR systems of Epic (Epic Systems, 
Verona, Wisconsin, USA), Allscripts (Allscripts Health-
care Solutions, Chicago, Illinois, USA), Cerner (Cerner 
Systems, North Kansas City, Missouri, USA), Meditech 
(Meditech, Westwood, Massachusetts, USA), Paragon 
(McKesson, San Francisco, California, USA) and Soarian 
(Cerner Systems, North Kansas City, Missouri, USA), 
across the nine hospitals for a clinical outcomes evalua-
tion. These data spanned 75 147 patient encounters from 
early 2017 to mid-2018. Details about these nine hospitals 
are provided in table 2.

All patient information was deidentified prior to anal-
ysis in compliance with the Health Insurance Portability 
and Accountability Act. Data collection for all datasets 
was passive and did not impact patient safety.

In this clinical outcomes analysis, only adult (at or 
above age 18) EHR record data from inpatient wards 
and emergency departments were analysed. All genders 
and ethnicities were included. Patient stays that met 
two or more SIRS criteria at any point during their stay 
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were considered ‘sepsis related’ and included for clinical 
outcomes analysis. We defined the onset time of severe 
sepsis as the first time at which two SIRS criteria and at 
least one organ dysfunction criteria (online supplemen-
tary table 1) were met within the same hour. This resulted 
in the inclusion of 17 758 patient encounters for anal-
ysis. The design of and recruitment to this study did not 
involve patients and the public.

Demographic, admission and discharge times, vital sign, 
laboratory and drug administration data were abstracted, 
for each visit of a given patient, from the EHR. Online 
supplementary file 1 provides details on data field abstrac-
tion. Not all data fields were available at all facilities.

Machine learning algorithm
The machine learning classifier was constructed using 
gradient boosted trees, implemented in Python (Python 
Software Foundation, https://www. python. org/), with 
the XGBoost package.46 The algorithm analysed the 
patient vital signs of systolic blood pressure, diastolic 
blood pressure, heart rate, temperature, respiratory rate 
and SpO2 (oxygen saturation), and age. Missing values 
were filled using last- one carry forward imputation, 
wherein the most recent observation of a measurement is 
used to replace the missing value. This method of impu-
tation is appropriate for clinical measurements, because 
observations of a given vital sign are expected to be highly 
dependent on previous observations.47 48 The vector of 
vital sign measurements was analysed, and measurements 
were concatenated for up to 2 hours before the measure-
ment time as additional features. Differences in measure-
ment values between time steps were also concatenated 
where appropriate. Thus, each clinical feature represents 
between 3 and 5 columns in the data matrices. Our 
previous work has used this procedure of transforming 
time series problems into supervised learning problems.49 
Values were concatenated into a feature vector with 15 
elements. An ensemble of decision trees was constructed 
using the gradient boosted trees approach, and the 
ensemble prediction is based on an aggregate of these 
scores. Vital sign measurements were discretised into two 
categories to determine tree branching, and patient risk 
scores were determined by their final categorisation in 
each tree. Tree branching was limited to six levels. We set 
the XGBoost learning rate to 0.1 and included no more 
than 1000 trees in the final ensemble. These hyperparam-
eters were justified in the context of the present data with 
a coarse grid search and align with previous work.39 For 
additional details about MLA development, see Mao et 
al.39

Study design
For clinical outcomes analysis, we collected data from nine 
hospitals that implemented the MLA for sepsis prediction 
and detection. Data was then evaluated to determine the 
effect of the algorithm on patient outcomes of in- hospital 
mortality, hospital LOS and 30- day readmission. Providers 
at the hospitals using the MLA received automated 

telephonic alerts if the MLA score was above a threshold 
set by the hospital.

Adult patients were considered to be ‘sepsis related’ 
and included for analysis if they met two or more SIRS 
criteria at any point during their stay in units where the 
MLA was used. We classified patients in this manner due 
to the predictive nature of the MLA. Because the algo-
rithm is designed to identify patients likely to develop 
sepsis, including only those patients who met the 2001 
consensus severe sepsis or septic shock definition criteria 
or the more recent sepsis-3 criteria may have excluded 
patients who would have developed sepsis had they not 
been identified and treated early. It has been reported 
that sepsis-3 diagnostic criteria narrows the sepsis popu-
lation at the expense of sensitivity, and that disease diag-
nosis may be delayed due to resulting false negatives.50 
The SIRS criteria, while non- specific, are associated with 
early sepsis diagnostic criteria, and their use in this study 
ensured that those patients most at risk for sepsis were 
included in our final analysis.

At study sites, patient EHR data were constantly moni-
tored by software stored in the computational servers 
used for our data integration. Any changes in patient 
state represented in the EHR would prompt the soft-
ware to apply the MLA in order to generate an MLA 
score. If the MLA score was above a threshold set by the 
hospital, an indicator of patient risk would be generated, 
and a parallel monitoring service would detect the indi-
cator and send a telephonic alert for the corresponding 
patient. Telephonic notification volumes differed from 
month to month during the trial period. Months with 
uncharacteristically low volumes (fewer than 5) were 
excluded from analysis. Three sites in the study were 
affected by the exclusion of low volume months from 
analysis. Alert volumes varied as site- specific customisa-
tion was performed through PDSA (plan- do- study- act) 
cycles for thresholding and rules- based suppression to 
optimise the algorithm for the best fit into a given care 
setting.51 In particular, for any patient for whom an 
alert had already been produced, additional alerts were 
uniformly suppressed. At four of the nine hospitals, we 
collected data prior to the implementation of the MLA 
for measurement of baseline outcomes and for training 
of the MLA once deployed. When data from this base-
line period preceding implementation of the MLA were 
not available, the baseline period used was the month 
immediately following implementation. This was the case 
for the remaining five of the nine hospitals. The analysis 
was repeated including only three of the nine hospitals 
which had at least 1 month of baseline data preceding 
MLA implementation, and the outcomes were similar. 
Once trained on data from the baseline period, MLAs 
remained static and were not trained further.

Not all three patient outcomes were measured at all 
sites. LOS was measured at all sites, in- hospital mortality 
was measured at six out of nine sites, and readmis-
sion was measured at five out of nine sites. If admission 
and discharge time stamps were unavailable, LOS and 
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Table 1 Demographics—aggregated clinical and 
demographic characteristics of patients from nine hospitals 
used for clinical outcomes analysis

Clinical outcomes analysis

Baseline MLA

Total no 12 793 62 354

Mean age (SD) 45 (24.4) 45 (24.0)

Male 5429 (42.4) 26 126 (41.9)

Female 7364 (57.6) 36 228 (58.1)

Unknown — —

White 11 832 (87.7) 54 635 (81.8)

Black 594 (4.4) 2469 (3.7)

Hispanic 1063 (7.87) 9609 (14.4)

Asian American 10 (0.1) 44 (0.1)

Unknown — —

Temperature 36.8 (0.3) 36.8 (0.3)

Respiratory rate 18.2 (4.7) 18.2 (4.1)

Systolic blood pressure 127.0 (18.0) 129.5 (19.1)

Diastolic blood 
pressure

72.9 (11.0) 75.1 (11.5)

Heart rate 84.7 (17.3) 86.1 (18.5)

Lactate 1.9 (1.70) 1.9 (1.86)

Creatinine 1.4 (2.54) 1.2 (1.70)

International 
normalised ratio

1.2 (0.58) 1.3 (0.90)

Platelets 239.5 (77.1) 241.9 (85.0)

SpO2 97.4 (1.6) 97.4 (1.7)

White blood count 8.4 (2.51) 8.2 (2.03)

PaO2 101.7 (47.9) 103.8 (51.8)

Bilirubin 0.7 (1.3) 0.7 (1.1)

FiO2 44.3 (20.4) 46.6 (22.2)

pH 7.4 (0.08) 7.4 (0.09)

Values are shown with percentages of total population or SD.
FiO2, fractional inspired oxygen; MLA, machine learning- based 
algorithm; PaO2, arterial oxygen tension (or pressure).

Table 3 Sepsis- related patient outcomes table—analysis 
of in- hospital mortality, hospital length of stay and 30- day 
readmissions, in the baseline and MLA periods for sepsis- 
related patient

Baseline 
period

MLA 
period Reduction

In- hospital mortality 3.86% 2.34% 39.50%

Length of stay 4.83 days 3.27 days 32.27%

30- day readmission 36.4% 28.12% 22.74%

There were 12 793 patients in the baseline period, of whom, 3592 
were included for analysis and 62 354 patients in the MLA period, 
of whom, 14 166 patients were included for analysis
MLA, machine learning- based algorithm.

readmission were determined by defining new visits 
when all vital sign measurements for a given patient were 
observed to be greater than 120 hours apart.

Statistical analysis
We used the 2- proportion risk difference z- test to deter-
mine if there was a statistically significant decrease in the 
in- hospital mortality, LOS, or the 30- day readmission rate 
with the use of the MLA. All tests were two tailed with an 
alpha level of 0.05, and were performed using Python.

reSultS
Aggregated patient demographic data from the nine 
participating hospitals in this study are presented in 
table 1. Seventeen per cent of patients were included for 

the baseline analysis period and 83% of patients were 
included for the MLA analysis period. Vital sign aver-
ages and SD were not significantly different between the 
baseline and MLA analysis periods. Among those patients 
analysed by the MLA, the mean age was 45 years (41.9% 
male vs 58.1% female). Patients included for clinical 
outcomes analysis were generally representative of those 
at risk of developing severe sepsis in terms of gender and 
racial/ethnic distribution.1 52

Table 2 shows the variation in hospital size, location 
and type for the hospitals included in this analysis. The 
wide range of geographical and population distribution 
demonstrates a diverse range of hospital types included 
for clinical outcomes determination.

Clinical outcomes were measured for all patients over 
18 years who met two or more SIRS criteria at any point 
during their stay, in order to ensure that those patients 
most at risk for sepsis were included in our final anal-
ysis. The subsequent outcomes analysis was performed 
in order to determine if use of the MLA had significant 
effects on in- hospital patient mortality, hospital LOS and/
or 30- day readmissions. We emphasise that while the SIRS 
criteria were used to determine which patients should be 
included in the outcomes analysis, the MLA in this study 
uses only patient vital signs to predict severe sepsis.

The sepsis- related outcomes after MLA implemen-
tation were a 39.50% reduction of in- hospital mortality 
(p<0.001), a 32.27% reduction of LOS (p<0.001) and 
a 22.74% reduction in 30- day readmission (p<0.001; 
table 3, figure 1). These results include sites where data 
from the period preceding implementation of the MLA 
were not available, in which case the baseline period used 
was the month immediately following implementation.

The analysis was repeated for a subset of 3 hospitals 
with at least 1 month of baseline (pre- MLA implementa-
tion) data, with a total of 52 487 patients. This resulted 
in 3951 patients in the baseline period (971 included as 
sepsis related, as defined in the Study Design section), 
and 48 536 patients (10 646 included as sepsis related) in 
the MLA analysis period. The outcomes for this patient 
subset were a 42.50% reduction of in- hospital mortality 
(p<0.05) and a 23.82% reduction in LOS (p<0.05).
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Figure 1 Patientoutcomes——differences in (A) in- hospital mortality, (B) hospital length of stay and (C) 30- day readmissions 
in the baseline period and the MLA period for sepsis- related patients. Use of the MLA was associated with a 39.5% reduction 
of in- hospital mortality (p<0.001), a 32.3% reduction in length of stay (p<0.001) and a 22.7% reduction in 30- day readmissions 
(p<0.001). MLA, machine learning- based algorithm.

Results indicate that our machine learning algorithm 
for severe sepsis prediction can be successfully used to 
improve clinical outcomes of in- hospital mortality, LOS 
and 30- day readmission rates.

DISCuSSIOn
In this clinical outcomes study, we tested the hypothesis 
that use of an MLA for severe sepsis detection and predic-
tion would result in reductions of adverse sepsis- related 
clinical outcomes. The design of this study involved 
minimal to no risk of patient harm, but offered potential 
benefits to both patients and providers. In particular, the 
algorithm’s ability to identify patients with severe sepsis 
prior to onset provided a significant opportunity for early 
intervention. Prior studies have shown that early detec-
tion or prediction of sepsis and severe sepsis, respectively, 
can lead to a decrease in the time to administration of 
antibiotics,40 53 and early intervention has been shown to 
reduce rates of patient mortality.54–56 Use of the MLA in 
this study was associated with a 39.5% reduction of in- hos-
pital mortality (p<0.001), a 32.3% reduction in LOS 
(p<0.001) and a 22.7% reduction in 30- day readmissions 
(p<0.001).

Improvements in clinical outcomes were calculated by 
comparing outcomes before algorithm implementation 
with outcomes after implementation. Not all data fields 
were available for abstraction at all nine participating 
hospitals. In cases where pre- implementation measure-
ments were not available, the first month of clinical imple-
mentation was used as an approximate baseline. During 
this initial period, the MLA alert sensitivity, specificity and 
clinical response were undergoing evaluation and devel-
opment, and therefore, did not represent the final state 
of the MLA alert and response. However, including the 
use of this period as a baseline may result in an under-
estimation of the effect of the MLA, compared with the 
pre- implementation period.

Results from the clinical outcomes analysis indicate that 
the algorithm has a more significant effect on improving 

clinical outcomes than other screening tools such as 
MEWS, SOFA and SIRS.25–28 For example, in a prospective 
comparative analysis of qSOFA and SIRS for predicting 
adverse outcomes of patients with suspicion of sepsis, 
discrimination of in- hospital mortality using the SIRS 
score was reported to be significantly less than that of the 
qSOFA score, with an overall in- hospital mortality rate of 
19%.25 A pre- implementation and post- implementation 
study evaluating the effect of an SIRS- based sepsis early 
warning system that monitored SIRS criteria along with 
signs of organ dysfunction (based on systolic blood pres-
sure and serum lactate thresholds), found that while 
the tool prompted more timely sepsis care, there was no 
significant reduction in mortality.53 In a comprehensive 
review of peer- reviewed literature to evaluate the effect 
of MEWS on improving clinical outcomes, limited data 
and no clinical trials which linked use of MEWS scoring 
systems to ‘robust’ outcomes were found.26 An analysis of 
a variety of disease severity scoring systems for the prog-
nostic assessment of septic patients revealed that SOFA 
and MEWS showed only moderate discrimination in 
predicting 28- day mortality rates.28 Beyond the simple 
heuristics of rules- based scoring systems such as MEWS, 
SOFA, qSOFA and SIRS, several machine learning 
approaches have been retrospectively evaluated for the 
detection and prediction of incipient sepsis.37 38 57–66 They 
include dynamic Bayesian networks,60 support vector 
machines,57 survival- analytical models (TREWScore, Arti-
ficial Intelligence Sepsis Expert),61 62 smoothed disease 
severity score learning,63 hierarchical switching linear 
dynamical systems,64 autoregressive hidden Markov 
models,65 free- text models38 and random- forest models.57 
These tools contribute notably to the field of sepsis detec-
tion because they offer generalisability, are scalable, 
and can be updated as new information is acquired.58 
However, many do not use information about measure-
ment trends or correlations,67 or do so ineffectively. Most 
machine learning approaches have been evaluated only 
on retrospective data as proof- of- concept.37 57 58 60 62 64–66 
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There remains an ongoing need for research which eval-
uates the clinical utility of sepsis prediction models in 
prospective and real- world settings.

Towards this end, Nelson et al conducted a prospec-
tive trial of a real- time electronic surveillance system to 
expedite early care of severe sepsis.67 Outcome measures 
were rate and timeliness of sampling of blood lactate 
and blood cultures, performance of chest radiography 
and provision of antibiotics; however, only time to blood 
culture was significantly improved. The primary limita-
tion of the trial was cited as the inability to detect severely 
septic cases before caregivers. Umscheid et al conducted a 
real- world pre- implementation and post- implementation 
study of an early warning and response system (EWRS) for 
sepsis outside of the ICU.68 The EWRS identified at risk 
patients with a sensitivity of 16% and a specificity of 97%. 
Compared with a control period, the EWRS activated in 
the post- implementation period resulted in an increase 
in ICU transfer <6 hours after alert (p=0.06). However, 
additional outcome measures of hospital LOS (p=0.92), 
ICU transfer <24 hours after alert (p=0.20), renal replace-
ment therapy ≤6 hours after alert (p=0.51) and all- patient 
mortality reductions (p=0.45) failed to reach statistical 
significance.68 Austrian et al performed a time- series 
study which evaluated an electronic surveillance system 
on mortality and LOS on emergency department patients 
with severe sepsis or septic shock,69 finding a modest 
decrease in LOS (16%) that did not reach statistical signif-
icance, with no difference in- hospital mortality or other 
intermediate outcome measures. Alert fatigue due to low 
positive predictive value (PPV) (0.146) was proposed as 
the primary contributor to these results, and researchers 
noted that more sophisticated approaches to early sepsis 
identification are needed to consistently improve patient 
outcomes. Importantly, the study supports the principle 
that high PPV is critical for effective clinical decision 
support interventions.69 The early and accurate alerting 
system introduced in our study is associated with an LOS 
reduction of 32.3%, a mortality reduction of 39.50% and 
obtains a PPV of approximately 40% for sepsis prediction 
as demonstrated in prior work.44

In addition to clinically improving patient outcomes, 
the sepsis prediction tool analysed in this study also 
provides economic advantages. The cost of severe sepsis 
has been reported to extend ‘well beyond’ patient 
impact, as a large part of the sepsis economic burden is 
incurred after discharge and during rehospitalisation.70 
Administration of timely treatment is therefore crucial 
to reducing costs, reducing rates of readmission and 
improving treatment outcomes. This clinical outcomes 
study provides a prospective analysis of machine learning 
algorithm performance in the sepsis care domain. To the 
extent possible, we also calculate a first order approxi-
mation of cost reductions incurred through reductions 
in LOS from the use of the algorithm. The average LOS 
reduction was found to be 1.56 days. At an average per 
diem cost of care of US$2271 with 343 patients included 
per month at the nine locations, the reduction of LOS 

translates to approximately US$14.5 million of annual 
cost savings across all nine hospitals included in this anal-
ysis. These findings on post- marketing real- world data 
confirm pre- marketing randomised clinical trial results.40 
Previous research has shown that early detection and 
treatment of sepsis can improve patient outcomes and 
reduce hospital costs.12 13 71 72

Our real- world data analysis has several limitations. We 
cannot guarantee the usefulness of resulting alerts to 
clinicians, which indicates a need for future studies which 
include qualitative analysis of algorithm utility (ie, clini-
cian surveys or interviews). Future work including clini-
cian surveys would also help to determine how clinicians 
responded to the alerts, including any diagnostics tests or 
treatment interventions that were ordered. This level of 
detail would be helpful in assessing the potential means 
through which the observed positive impacts on patient 
outcomes were achieved. Ideally, this future work would 
also include the clinical adjudication of sepsis onset times, 
instead of defining onset times in terms of gold standard 
criteria, so that the extent to which alerts were accurate 
and early could be determined. Further, although machine 
learning systems have made significant advances in the 
healthcare domain over the past decade, it is important to 
consider the unintended ways in which they impact clinical 
practice. Unintended consequences of machine learning 
in medicine include an over- reliance on the capabilities of 
automation; a lack of contextual information which may 
lead to diagnostic misinterpretation; and observer vari-
ability affecting the accuracy and reliability of machine 
learning performance.73 However, it should be noted that 
risks of machine learning are minimised by screening or 
‘sniffer’ algorithms such as this MLA, which are designed 
to increase clinician oversight for high- risk cases, and not 
to replace expert clinical judgement and standards of 
care. Other limitations of our study include variation in 
clinician and team responses to patients at possible risk 
for sepsis. Only adults in US hospitals were included in 
the study. While nine diverse hospitals were included in 
the analysis, these hospitals may not be representative of 
all US hospitals or international hospital settings. Data 
were not available from all hospitals for all months and 
outcome measurements. Baseline data were not available 
for all hospitals and the first month of MLA data was used 
as an approximation in these cases. This may lead to an 
underestimation of the effect of the MLA at these sites. 
However, the analysis was repeated on a subset of three 
hospitals with at least 1 month of baseline pre- MLA imple-
mentation data and outcomes were similar. This study did 
not follow patient mortality after hospital discharge. We 
cannot eliminate the possibility that implementation of a 
sepsis algorithm raised general awareness of sepsis within 
a hospital, which may lead to higher recognition of septic 
patients, independent of algorithm performance.

COnCluSIOn
This study evaluates the effect of a machine learning 
algorithm for severe sepsis detection and prediction on 
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clinical outcomes. In an analysis of the algorithm across 
nine hospitals, use of the MLA was associated with a 39.5% 
reduction of in- hospital mortality, a 32.3% reduction in 
hospital LOS and a 22.7% reduction in 30- day readmis-
sions. These results support that the implementation of 
an accurate machine learning algorithm for early sepsis 
recognition may lead to improved patient outcomes, and 
by extension may serve to reduce the financial burden 
to the US healthcare system. In future studies, we will 
continue to analyse the algorithm’s impact on patient 
outcomes in other care settings.
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