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pharmacovigilance signals in
olanzapine-treated patients

Xiuqing Zhu1,2†, Jinqing Hu1,2†, Tao Xiao1,3, Shanqing Huang1,2,
Dewei Shang1,2* and Yuguan Wen1,2*

1Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University,
Guangzhou, China, 2Guangdong Engineering Technology Research Center for Translational
Medicine of Mental Disorders, Guangzhou, China, 3Department of Clinical Research, Guangdong
Second Provincial General Hospital, Guangzhou, China
Background and aim: Available evidence suggests elevated serum prolactin

(PRL) levels in olanzapine (OLZ)-treated patients with schizophrenia. However,

machine learning (ML)-based comprehensive evaluations of the influence of

pathophysiological and pharmacological factors on PRL levels in OLZ-treated

patients are rare. We aimed to forecast the PRL level in OLZ-treated patients

and mine pharmacovigilance information on PRL-related adverse events by

integrating ML and electronic health record (EHR) data.

Methods: Data were extracted from an EHR system to construct an ML dataset

in 672×384 matrix format after preprocessing, which was subsequently

randomly divided into a derivation cohort for model development and a

validation cohort for model validation (8:2). The eXtreme gradient boosting

(XGBoost) algorithm was used to build the ML models, the importance of the

features and predictive behaviors of which were illustrated by SHapley Additive

exPlanations (SHAP)-based analyses. The sequential forward feature selection

approach was used to generate the optimal feature subset. The co-

administered drugs that might have influenced PRL levels during OLZ

treatment as identified by SHAP analyses were then compared with evidence

from disproportionality analyses by using OpenVigil FDA.

Results: The 15 features that made the greatest contributions, as ranked by the

mean (|SHAP value|), were identified as the optimal feature subset. The features

were gender_male, co-administration of risperidone, age, co-administration of

aripiprazole, concentration of aripiprazole, concentration of OLZ,

progesterone, co-administration of sulpiride, creatine kinase, serum sodium,

serum phosphorus, testosterone, platelet distribution width, a-L-fucosidase,
and lipoprotein (a). The XGBoost model after feature selection delivered good

performance on the validation cohort with a mean absolute error of 0.046,
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mean squared error of 0.0036, root-mean-squared error of 0.060, and mean

relative error of 11%. Risperidone and aripiprazole exhibited the strongest

associations with hyperprolactinemia and decreased blood PRL according to

the disproportionality analyses, and both were identified as co-administered

drugs that influenced PRL levels during OLZ treatment by SHAP analyses.

Conclusions: Multiple pathophysiological and pharmacological confounders

influence PRL levels associated with effective treatment and PRL-related side-

effects in OLZ-treated patients. Our study highlights the feasibility of

integration of ML and EHR data to facilitate the detection of PRL levels and

pharmacovigilance signals in OLZ-treated patients.
KEYWORDS

machine learning, prolactin, olanzapine, electronic health record, hyperprolactinemia,
pharmacovigilance, XGBoost, SHAP
Introduction

Prolactin (PRL), a polypeptide hormone, is primarily

synthesized in and secreted from the anterior pituitary gland,

and plays multiple roles in lactation, reproduction, and organ

homeostasis (1). PRL secretion is regulated by stimulatory

factors like the thyrotropin-releasing hormone (TRH) and

inhibitory factors like dopamine (DA) in the hypothalamus,

and is influenced by alterations in both physiological (e.g.,

pregnancy, stress, and sleep states) and pathological conditions

(e.g., pituitary disorders, central nervous system disorders, and

systemic diseases) (2, 3). Hyperprolactinemia is commonly

defined as the condition of a sustained increase in PRL up to

that of a fasting level (at least 2 h after waking) of above 20 ng/

mL (~424 mIU/L) in men, and above 25 ng/mL (~530 mIU/L) in

women (4). It has been found to be associated with an increased

risk of many diseases, such as cardiovascular mortality in males

(5), cancer (6), bone loss, and fractures (7). In particular,

psychiatric patients with hyperprolactinemia usually exhibit

short-term sexual dysfunction, amenorrhoea or galactorrhoea,

and long-term sequelae such as osteoporosis (8). Recently, a

nationwide study in Finland demonstrated that the long-term

use of PRL-increasing antipsychotics is significantly associated

with the increased risk of breast cancer in females with

schizophrenia (9). Studies in vivo and in vitro have revealed

that hyperprolactinemia-inducing antipsychotics can prompt

precancerous lesions to progress to cancer via activating JAK-

STAT5 (10).

A large group of drugs, including psychotropic drugs like

antipsychotics, have the potential to cause the hypersecretion of

PRL, which is the most common pharmacological cause of

hyperprolactinemia (3, 11). In both short- and long-term
02
toxicological studies with rodents, the drug-induced

mechanisms of hypo- and hyperprolactinemia commonly

involve the dopaminergic system (12). For example,

Kunimatsu et a l . (13) demonstrated that chronic

hyperprolactinemia and maintained corpora lutea causing the

decrease of bone density are commonly inducible in female rats

undergoing long-term treatment with antipsychotics haloperidol

and chlorpromazine (i.e., the DA D2 receptor antagonists). The

affinity for DA D2 receptors, the penetration of the blood–brain

barrier (BBB), and the dose required to adequately

occupy cerebral D2 receptors play major roles in the

hyperprolactinemic effects of antipsychotics and other

xenobiotics (14). Serotonin (5-HT), which serves as an indirect

modulator, also has a stimulatory role in PRL secretion in both

the hypothalamus and the pituitary, probably mediated via the

stimulation of PRL-releasing factors (15).

Olanzapine (OLZ), an atypical antipsychotic drug, has an

intermediary binding affinity for DA D2 receptors, thereby

inducing a moderate and dose-dependent elevation of PRL

levels (15, 16). It also exerts antipsychotic effects and induces

weight gain by blocking the 5-HT2A and 5-HT2c receptors,

respectively (16, 17). Thus, the antagonism of OLZ toward the

5-HT2 receptor might partly explain its moderate PRL-elevating

tendency (18, 19). In this regard, some gene polymorphisms in

DA D2 and 5-HT2A receptors (e.g., DRD2 and 5-HTR2A) have

been found to affect PRL levels after OLZ administration (20). A

logistic regression analysis of only 10 variables revealed that

other risk factors, such as gender, dose, and fasting glucose

levels, are also significantly correlated with elevated PRL levels in

patients taking OLZ (21). Nevertheless, few studies have

investigated the factors influencing PRL levels in OLZ-treated

patients in light of multi-dimensional electronic health record
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(EHR) data. In addition, Wu et al. (19) reported that elevated

PRL levels were significantly associated with sexual dysfunction

in patients with schizophrenia who had received OLZ treatment.

A previous study revealed the alterations in mitochondria of the

rat spermatozoa after experimental hyperprolactinemia (22).

Recently, an in vivo animal study by Khalaf et al. (23)

demonstrated the role of ovarian mitochondrial dysfunction

and oxidative stress in ovarian toxicity induced by

antipsychotics. On the other hand, the findings by Chen et al.

(24) revealed that changes in PRL levels in the course of OLZ

treatment are closely correlated with improvement in positive

symptoms of schizophrenia, indicating that the PRL level of

serum is a useful biological marker for predicting the

effectiveness of antipsychotics (25, 26). Hence, monitoring

PRL levels during OLZ treatment is vital to minimize the risk

of PRL-related adverse events and maximize the response to

treatment by antipsychotics.

Interes t in Art ific ia l Inte l l igence (AI)-ass i s ted

pharmacovigilance has grown in recent years (27). Within the

field of AI, machine learning (ML) is a data-driven computational

methodology increasingly applied for predictions of the post-

marketing side-effects of drugs (28). The EHR is a source of data

for detecting such adverse drug reactions (ADRs) due to its

advantages of housing a collection of accurate, detailed, and

abundant information on patients (28, 29). For example, On et al.

(30) developed ML models for eight types of chemotherapy-

induced ADRs (e.g., the nausea–vomiting prediction model) by

using EHR data. In addition, it has been demonstrated that ML

algorithms allow for the prediction of responses to drug treatment

(e.g., antidepressants and anti-cancer drugs) (31, 32) and disease

outcomes (e.g., stroke) (33).

In this study, we use the eXtreme gradient boosting

(XGBoost) algorithm, a well-known supervised ML algorithm

widely used in medicine (34), to construct a model of PRL

prediction associated with the side-effects and clinical

effectiveness of OLZ by using EHR data. The objectives of this

study are to i) develop an XGBoost model for the detection of

PRL levels in OLZ-treated patients, and ii) identify multiple

factors, particularly co-administered drugs, that may cause

hypo- or hyperprolactinemia during OLZ treatment by using

an interpretable ML method–the SHapley Additive exPlanations

(SHAP) analysis (35). The results are then compared with

evidence from real-world disproportionality analyses by using

the pharmacovigilance analysis tool OpenVigil FDA (http://

openvigil.pharmacology.uni-kiel.de/openvigilfda.php). This

online tool uses the “openFDA” API of the US Food and Drug

Administration (FDA) to access pharmacovigilance data from

the FDA Adverse Event Reporting System (FAERS) (36). The

flowchart of this work is shown in Figure 1.
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Materials and methods

Data source

Clinical data on inpatients during OLZ treatment in the

latter half of 2018 were mined from the EHR system of the

Affiliated Brain Hospital of Guangzhou Medical University in

China. The independent ethics committee of the hospital

approved the data collection and waived the requirement of

informed consent owing to the retrospective nature of our

analyses ([2021] No. 027) . We obtained 672 PRL

measurements of 393 inpatients who had received OLZ

treatment, along with information on the patients ’

demographic characteristics, diagnoses, history of disorders,

and combined medications and biochemical analyses that were

determined at the same time points as their PRL levels. Finally,

473 features were identified that, along with the label–PRL,

formed the dataset for the ML tasks. A summary of these

features is provided in Table 1.
Data preprocessing

Data preprocessing is vital for acquiring high-quality data

for modeling. We first omitted the features that had more than

50%missing values and then imputed those with fewer than 50%

missing values by using the k-nearest neighbor method (37).

Subsequently, min–max normalization and one-hot encoding

were applied to the continuous variables and the categorical

variables, respectively. Finally, the labels were transformed into

the logarithmic scale.
Model development and evaluation

The final dataset in 672×384 matrix format was generated

after data preprocessing, and was subsequently randomly

divided into a derivation cohort (80%) for model development

and a validation cohort (20%) for model validation. The

XGBoost algorithm with the default hyperparameter settings

was chosen for the regression prediction task. The metrics used

for model evaluation were the mean absolute error (MAE), mean

squared error (MSE), root-mean-squared error (RMSE), and

mean relative error (MRE) (%). They are defined as follows:

MAE =
1
n
 o
n

i=1
yi − ŷ ij j

MSE =
1
n
 o
n

i=1
yi − ŷ ið Þ2
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
 on

i=1 yi − ŷ ið Þ2
r

MRE   %ð Þ = 1
n
 o
n

i=1

yi − ŷ ið Þ
ŷ i

� 100%

Where yi and ŷ i are the predicted and the actual

values, respectively.
Optimal feature combination and
interpretation

Redundant and irrelevant features can increase the

computation time, and negatively impact and reduce the learning

accuracy of the models. This problem can be solved by feature
Frontiers in Endocrinology 04
selection (38). We used the mean absolute SHAP values (|SHAP

value|) to illustrate the global importance of features (39). The

sequential forward feature selection approach was then employed to

generate the optimal feature subset (40). The general practices in

this bottom-to-top search method involved starting with an empty

feature subset, adding one feature out of the remaining features in

each iteration (the order of addition depended on the feature

importance calculated by the SHAP values: the more important

the feature was, the greater was the precedence it had), and then

evaluating the pros and cons of the generated feature subset by

using 10-fold cross-validation on the derivation cohort. The optimal

feature combination was obtained when “no considerable

alteration” of the MAE values was observed in the test sets.

Subsequently, SHAP plots were drawn to interpret the

contributions of these features to the outputs of the model.

Finally, the overall performance of models before and after
FIGURE 1

The flowchart of this work.
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feature selection was compared on the validation cohort by using

the abovementioned metrics.
Disproportionality analyses of PRL-
related adverse events with
antipsychotics

We focused on co-administered medications that may have

an impact on the PRL levels during OLZ treatment. To this end,

the results of our SHAP analyses were compared with real-world

evidence from disproportionality analyses based on the relative

reporting ratio (RRR), a frequentist method, offered by

OpenVigil FDA. The RRR was calculated as follows (36):

RRR =
DE � N
E � D

where N denotes the total number of reports, DE, E, and D

denote the numbers of reports when both the drug was used and

the event occurred, the drug was used, and the event

occurred, respectively.

We used the RRR to compare the strength of associations

among a given list of antipsychotics (including OLZ, risperidone,

sulpiride, amisulpride, aripiprazole, clozapine, quetiapine,
Frontiers in Endocrinology 05
ziprasidone, paliperidone, and perphenazine) with the adverse

events “blood prolactin increased,” “hyperprolactinemia,” and

“blood prolactin decreased.” The drug with the largest RRR value

indicated the most proportional reporting of the reaction for it.

Stopping the administration of this drug was thus considered first.
Implementation

Data processing and modeling were conducted by using the

libraries pandas, numpy, scipy, matplotlib, seaborn, missingno,

sklearn, XGBoost, shap and palettable. All the ML tasks were

implemented in Python by using the Jupyter notebook.
Results

Dataset overview

The final dataset consisted of 672 log-transformed PRL label

values and 383 features (115 continuous features and 268

categorical features). Figure 2A shows the 110 continuous

features with less than 50% missing values, represented by the
TABLE 1 A summary of the features of patients taking olanzapine (OLZ) in our original data derived from the EHR system.

Items Features

Demographic
characteristics (four
features)

Gender, age, body weight (BW), height

History of disease and
substance abuse (four
features)

Allergic history, smoking history, drinking history, history of other substance abuse

Diagnoses (six features) Diagnosis of schizophrenia, diagnosis of bipolar affective disorder, diagnosis of diabetes, diagnosis of hyperlipemia, diagnosis of
hyperuricemia, diagnosis of hypertension

Blood types, phenotypes,
genotypes, and gene
polymorphisms (15
features)

ABO blood type, Rh blood type, CYP2C19 phenotype, CYP2D6 genotype, CYP2D6 phenotype, ApoE genotype, MTHFR phenotype, HLA-
B*1502 genotype, CYP2C19 genotype, MTHFR (C677T) polymorphism, CYP2D6 (G4180C) polymorphism, CYP2D6 (G2988A)
polymorphism, CYP2D6 (C2850T) polymorphism, CYP2D6 (G1846A) polymorphism, CYP2D6 (C100T) polymorphism

Information on OLZ (one
feature)

Daily dose of OLZ

Co-administered
medications (280 features)

1) Western Medicine:
risperidone, diazepam, oxcarbazepine, ceftriaxone, nimodipine, duloxetine, ganciclovir, loratadine, metoprolol, etc.
2) Traditional Chinese Medicine:
Shugan Jieyu capsules, Shuxuening injection, Shedan Chenpi powder, Jinshuibao tablets, Jiuwei Zhenxin granules, etc.

Biochemical analyses (163
features)

1) Blood routine examination:
white blood cell count (WBC), absolute monocyte count (MONO#), platelet distribution width (PDW), etc.
2) Therapeutic drug monitoring:
Concentrations of OLZ (C_OLZ), risperidone (C_ Risperidone), sertraline (C_Sertraline), fluoxetine (C_Fluoxetine), fluvoxamine
(C_Fluvoxamine), venlafaxine (C_Venlafaxine), lamotrigine (C_Lamotrigine), aripiprazole (C_Aripiprazole), etc.
3) Electrolytes:
serum sodium (Na), serum potassium (K), serum phosphorus (P), etc.
4) Hepatic and renal function:
alanine transaminase (ALT), aspartate aminotransferase (AST), serum creatinine (Cr), total bilirubin (TBIL), etc.
5) Others:
Total cholesterol (TC), creatine kinase (CK), C-reactive protein (CRP), uric acid (UA), testosterone, a-L-fucosidase (AFU), and lipoprotein
(a) [Lp(a)], cortisol, prolactin (PRL), progesterone, thyroxine, etc.
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white lines in each column. Figures 2B, C show the frequency

histograms and quantile–quantile (Q–Q) plots of the labels

before and after log-transformation, respectively. They

indicated that the distribution of the log-transformed PRL

ranging from 0.44 to 1 was the most symmetric and normal.

Table 2 shows the descriptions of the labels and partial features

in our original data, without data preprocessing, derived from

the EHR system.
Feature selection and interpretation

Figure 3A presents the trend of evolution of the decline in

the MAE in the training and test sets of the derivation cohort by

using the forward feature selection strategy based on feature
Frontiers in Endocrinology 06
importance computed by using SHAP values. The top 15

features were identified as the optimal feature subset because

the MAE declined imperceptibly with the addition of subsequent

features. They were ranked according to the mean (|SHAP

value|) as follows (Figure 3B): gender_male, co-administration

of risperidone (Risperidone), age, co-administration of

aripiprazole (Aripiprazole), concentration of aripiprazole

(C_Aripiprazole) , concentrat ion of OLZ (C_OLZ),

progesterone, co-administration of sulpiride (Sulpiride),

creatine kinase (CK), serum sodium (Na), serum phosphorus

(P), testosterone, platelet distribution width (PDW), a-L-
fucosidase (AFU), and lipoprotein (a) [Lp(a)]. Figure 3C

shows the Pearson’s correlations between the log-transformed

PRL and these features, and indicates no prominent multi-

collinear relationships among the features. Figure 3D presents
A

B

C

FIGURE 2

(A) Visualizing the missing data for features with fewer than 50% missing values by using the missingno library. Frequency histograms and
quantile–quantile (Q–Q) plots of (B) PRL and (C) log-transformed PRL [calculated by log10(PRL)/log10(PRLmax)].
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the direction of effects of a variable on the output of the model.

The SHAP dependence plots of these features show how they

affected the outputs of our model (Figure 4). They indicate that

higher PRL levels were related to females as well as the

concomitant use of risperidone and sulpiride, and co-

administered aripiprazole might have caused lower PRL levels.

The comparisons of the influences of these three co-

administered antipsychotics on PRL levels in terms of the

gender of patients taking OLZ, based on the original data

derived from the EHR system, are presented in Figure 5.
Comparison of the performance of
models

An overall comparison of the performance of models before

and after feature selection is listed in Table 3. Among them, the

XGBoost model after feature selection had better predictive

performance, with lower values of the MAE, MSE, RMSE, and

MRE. The lack of clear patterns and the symmetrical distribution

of the residuals indicated that our proposed XGBoost model

after feature selection was suitable for fitting the data in the

validation cohort (Figures 6A, B). Figure 6C shows that 47.41%
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and 68.89% of the predicted values were within ranges of ±30%

and ±50% of the actual values, respectively.
Disproportionality measures for
antipsychotics and PRL-related adverse
events

Table 4 shows comparisons of the disproportionality

measures for the 10 antipsychotics and PRL-related adverse

events. Risperidone, paliperidone, and amisulpride were the

top three antipsychotics associated with the risk of increased

PRL concentration in the blood and hyperprolactinemia

according to their RRR values. Similarly, aripiprazole exhibited

the strongest association with decreased PRL content in blood,

indicating that its use may protect patients taking OLZ

from hyperprolactinemia.
Discussion

ML techniques have been successfully and widely applied to

multiple fields in medicine, such as cancer diagnostics (41),
TABLE 2 The descriptions of labels and partial features before data preprocessing.

Labels and partial features Description (the total number of input-output data pairs is 672)

Categorical data Values Distribution [n (%)]

Gender Male 360 (53.57%)

Diagnosis of schizophrenia Yes 327 (48.66%)

Smoking history Yes 90 (13.39%)

Risperidone Yes 101 (15.03%)

Paliperidone Yes 6 (0.89%)

Amisulpride Yes 20 (2.98%)

Sulpiride Yes 24 (3.57%)

Aripiprazole Yes 36 (5.36%)

Continuous data Values [median (min–max)] Missing [n (%)]

PRL (mIU/L) 708.19 (50.38–7216.28) 0 (0%)

Age (years) 45 (12–91) 0 (0%)

BW (kg) 61.35 (37–104) 178 (26.49%)

Daily dose of OLZ (mg) 15 (1.25–30) 0 (0%)

ALT (U/L) 18 (3–399) 24 (3.57%)

C_Aripiprazole (ng/mL) 0 (0–647.37) 5 (0.74%)

C_OLZ (ng/mL) 30.44 (2.14–127.31) 0 (0%)

Progesterone (ng/mL) 0.6 (0.3–77.8) 31 (4.61%)

Testosterone (mmol/L) 8.74 (0.35–59.33) 31 (4.61%)

CK (U/L) 79.5 (16–1473) 48 (7.14%)

Na (mmol/L) 140.5 (121.0–146.5) 40 (5.95%)

P (mmol/L) 1.24 (0.62–2.90) 146 (21.73%)

AFU (U/L) 27.15 (6–70) 52 (7.74%)

Lp(a) (mg/L) 163.7 (3.2–1052.6) 56 (8.33%)

PDW (%) 15.8 (7.8–20.7) 41 (6.10%)
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FIGURE 4

The SHAP dependence plots of the top 15 features. The SHAP values that exceeded zero represent high log-transformed PRL values, and vice
versa.
A

B D

C

FIGURE 3

(A) The evolution of the performance of XGBoost models on the derivation cohort based on different compositions of the feature set. (B) The
ranking by importance of the top 15 features according to the mean (|SHAP value|). (C) Heat map of the correlations between the log-
transformed PRL and the selected features as analyzed by Pearson’s correlation coefficient. (D) The SHAP summary plot of the top 15 features.
The red (blue) dots denote the high (low) values of the features. The high (low) SHAP values of the features denote their high (low) log-
transformed PRL values.
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treatment outcome predictions in patients with first-episode

psychosis (42), and exploration of risk factors for the use of

direct coercive measures in offender patients with schizophrenia

spectrum disorders (43). AI-assisted pharmacovigilance has

made large advancements but is still in its infancy. Chandak

et al. (44) used ML to identify adverse drug effects posing

increased risk to women based on public databases. We

proposed a novel strategy that integrated ML with real-world

clinical data of representative Chinese patient populations to

advance AI-assisted pharmacovigilance studies. To the best of

the authors’ knowledge, this is the first study to forecast the PRL

level in OLZ-treated patients and mine pharmacovigilance

information on PRL-related adverse events by integrating ML

and EHR data. We used the XGBoost algorithm to construct an

accurate model of PRL prediction that uses only two

demographic characteristic predictors (i.e., gender_male and

age), five predictors of drug information (i.e., risperidone,

aripiprazole, C_Aripiprazole, C_OLZ, and sulpiride), and eight

predictors of biochemical metrics [i.e., progesterone, CK, Na, P,

testosterone, PDW, AFU, and Lp(a)]. This helps better

understand these confounders that influence the PRL levels in

OLZ-treated patients. They were found to be associated with the

effectiveness of treatment and PRL-related side-effects.

The XGBoost algorithm, an ensemble learning method

under the gradient boosting framework, is a scalable and

distributed gradient-boosted decision tree ML library that

allows for parallel tree boosting in both the classification and

the regression tasks. It thus provides fast and accurate solutions

for many problems in data science (45). It is generally considered

to be a “black-box” model that loses the interpretability of the

relationships between the inputs and the outputs of the models
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(46). In this study, we computed feature importance of the black-

box XGBoost model by using the SHAP library, which used the

SHAP values from game theory to estimate the contribution of

each feature to the prediction in a model-agnostic manner (47).

Furthermore, we drew more plots of interpretation, such as the

SHAP summary plot and SHAP dependence plots, to show the

general direction of influence and distributions of the SHAP

outputs of each feature in the XGBoost model (48). In particular,

our SHAP dependence plots demonstrated a non-linear

relationship between C_OLZ and PRL, namely, a prominent

trend of increase in the log-transformed PRL was observed as the

normalized C_OLZ ranged from zero to approximately 0.4, and

the trend of subsequent increase was not apparent. Moreover, we

found that the log-transformed PRL was positively correlated

with the range of the normalized C_OLZ from approximately 0.2

to 0.8 (corresponding to the C_OLZ ranging from

approximately 25.03 ng/mL to 100.14 ng/mL). This range is

close to the recommended therapeutic reference range (i.e., 20–

80 ng/mL) and the laboratory alert level (i.e., 100 ng/mL) of OLZ

according to the latest consensus-based guidelines of the

Arbeitsgemeinschaft für Neuropsychopharmakologie und

Pharmakopsychiatrie (AGNP)-Therapeutic Drug Monitoring

(TDM) expert group (49). On the other hand, typical PRL

levels with regard to the etiology of drugs are 25–100 ng/mL

(approximately 530–2120 mIU/L) (50), which is broadly in line

with our PRL measurements of OLZ-treated patients (see

Figure 2B). Severe drug-related hyperprolactinemia

(commonly defined as PRL values above 100 ng/mL), in the

context of 100–250 ng/mL (approximately 2120–5300 mIU/L)

and > 250 ng/mL (> ~5300 mIU/L), were found to occur in

~30% and ~5% of the cases (particularly with antipsychotics),
TABLE 3 Comparison of performance of XGBoost models on the validation cohort (N = 135) before and after feature selection.

XGBoost models MAE MSE RMSE MRE (%)

Before feature selection 0.046 0.0043 0.065 18

After feature selection 0.046 0.0036 0.060 11
fro
FIGURE 5

Comparisons of the influence of the co-administered risperidone, aripiprazole, and sulpiride on the PRL levels in terms of the gender of patients
taking olanzapine (OLZ) according to the original data. The green multiplication sign indicates the mean PRL values.
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respectively (50, 51). The aforementioned findings show that

PRL may be a potential biological correlate for predicting the

therapeutic effectiveness of OLZ and its PRL-related side-effects

as well as their severity.

We also identified multiple confounders that might have

influenced the PRL levels. They involved pathophysiological and

pharmacological factors. The most important one was gender,

i.e., females had more elevated RPL levels than males. A possible

explanation for this is that females were more affected by

antipsychotic-induced hyperprolactinemia than males (52).

Likewise, our study revealed age-related changes in PRL levels,

indicating that age is important because concomitant drug use

and illnesses such as hypothyroidism and the degeneration of the

ovarian secretion function, may be common in elderly

populations (53, 54). Other hormones, including progesterone

and testosterone, were also demonstrated to have effects on the

PRL level. PRL commonly works antagonistically with estrogen

and testosterone. It can inhibit the secretion of gonadotropin-

releasing hormone by modulating the dopaminergic pathway,

and thus may reduce testosterone levels associated with

hypogonadism (55). It also acts directly on the granulosa cells
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of Graafian follicles to stimulate the release of progesterone and

suppress estradiol production (56). The results indicated that

hormone replacement (estrogen or testosterone) therapy may be

an alternative pharmacological treatment strategy for

hyperprolactinemia (57, 58). However, this strategy for

an t ip sychot i c - induced hyperpro lac t inemia i s no t

recommended based on the latest evidence from network

meta-analyses (59). PDW directly reflects the variability in

platelet size, is considered to be an indicator of platelet

activation and function, and is thus related to the extent of

coronary artery disease (60). There are discrepancies in findings

among some studies regarding the effects of PRL on platelet

activation. Previous studies have demonstrated that

hyperprolactinemia can cause adenosine diphosphate (ADP)-

stimulated platelet activation, particularly in patients treated

with antipsychotics. This might explain the increased risk for

venous thromboembolism among them (61, 62). By contrast,

Reuwer et al. (63) have suggested that PRL does not affect

platelet aggregation or secretion in humans. Wahlberg et al.

(64) found that PRL affected platelets in hyperprolactinemic

patients in an indirect inhibitory way, indicating that it might
TABLE 4 Relative reporting ratios (RRR) of prolactin (PRL)-related adverse events for a given list of antipsychotics.

Antipsychotics Blood prolactin increased Hyperprolactinemia Blood prolactin decreased

Olanzapine 17.370 13.760 10.561

Risperidone 44.788 104.973 9.546

Sulpiride NAN NAN NAN

Amisulpride 77.880 51.690 0

Aripiprazole 11.205 11.822 45.908

Clozapine 7.576 3.613 2.567

Quetiapine 8.487 6.665 2.185

Ziprasidone 23.303 10.334 5.697

Paliperidone 103.214 95.116 13.100

Perphenazine 7.838 16.499 0
Sulpiride is not approved for marketing in the United States by the FDA, and therefore was not found in the openFDA’s names of substances.
A B C

FIGURE 6

(A) Plot of residuals vs. the predicted log-transformed PRL values. (B) The normal plot of the residuals. (C) Scatterplot of the predicted PRL
values vs. actual PRL values.
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have a protective role in thromboembolic disease. The positive

correlation between PDW and the log-transformed PRL in our

study suggests that hyperprolactinemia in OLZ-treated patients

might be associated with the increased risk of thromboembolic

events because PDW increases during platelet activation (65).

Moreover, PRL may have direct effects on the metabolism of

lipids—for example, reducing lipoprotein lipase activity in the

human adipose tissue (66). Nevertheless, the positive correlation

between the log-transformed PRL and Lp(a) in OLZ-treated

patients, which has not been reported in any previous study to

the best of our knowledge, indicates that increased

card iovascu lar r i sk in OLZ-trea ted pat ients wi th

hyperprolactinemia should be the focus of research in this

context, especially in males (5), as Lp(a) is an independent

marker of cardiovascular risk (67). Our study also revealed the

negative correlation between the log-transformed PRL and Na.

This result is in line with that of a previous study suggesting that

serum PRL may participate in sodium retention (68). CK, P, and

AFU also played contributory roles in the log-transformed PRL

levels, although few past studies have revealed the detailed

mechanisms underlying their relationships. They possibly

involve other physiological processes, such as bone mineral

liberation and glycoprotein metabolism (69, 70).

In addition to pathophysiological factors, the concomitant

use of risperidone, aripiprazole, and sulpiride were identified as

the top three pharmacological contributors to the effects of PRL

levels in OLZ-treated patients. These findings are largely

consistent with our disproportionality analyses of PRL-related

adverse events with antipsychotics, which suggest that

risperidone should be discontinued first in OLZ-treated

patients with hyperprolactinemia, and that the use of

aripiprazole may protect them from this adverse event.

Therefore, our study has highlighted the feasibility of AI-based

pharmacovigilance detection in resource-limited settings by

extracting various sources of data recorded in the EHR (71).

Compared with OLZ and other atypical antipsychotics,

risperidone is more likely to cause hyperprolactinemia owing

to its incomplete crossing of the BBB, where this results in higher

occupancy by DA D2 receptors in the pituitary gland than in the

striatum (72). Compared to OLZ, risperidone demonstrated a

more robust and persistent increase in PRL over a 24-h period in

rats following acute and chronic administration (73).

Aripiprazole is a partial agonist to the dopaminergic receptor

D2, and has been endorsed by some guidelines for the treatment

of antipsychotic-induced hyperprolactinemia (74, 75).

Adjunctive aripiprazole or switching to aripiprazole in

titration has been proved to be good PRL decrease effects

(more than 50 ng/mL) for ant ipsychot ic- induced

hyperprolactinemia (59). Our work revealed gender-specific

differences in these decreased effects (see Figure 5). Moreover,

as a suitable alternative for OLZ-induced hyperprolactinemia,

aripiprazole may not only diminish PRL levels but may also clear
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PRL-related symptoms that may occur with borderline or

normal standardized PRL values while maintaining clinical

stabilization (76). Notably, an abnormally low PRL level after

switching to aripiprazole might occur, and this is a potential

warning sign of a psychotic rebound. Routinely monitoring PRL

levels may help avoid such a rebound (77). Eftekhari et al. (78)

reported that oxidative stress and mitochondrial dysfunction

played key roles in liver injury caused by OLZ, indicating that

antioxidants, particular the nanoantioxidants involving

increased bioavailability, stability, and target specificity (79,

80), were able to prevent OLZ-induced toxicity related to

hyperprolactinemia (e.g., sexual dysfunction) (22, 23).

Components of chamomile, a fascinating, well-known, and

widely used medicinal plant, have effects on osteoporosis

prevention, as well as the potent antioxidant, anti-

inflammatory, and anti-cancer activities, which seem to be

effective in the treatment of idiopathic hyperprolactinemia (75,

81). Therefore, antioxidants and herbal medications could be

management options in OLZ-induced hyperprolactinemia when

switching the antipsychotic is not an option.

Several limitations of this study should be noted. First, the

small sample size might have affected the power of ML because

the smaller the dataset is, the less powerful and less accurate are

the results of ML algorithms (82). Thus, a larger number of

samples is needed to improve the model generalization

capability of the model. Second, although our findings were in

accordance with previous reports demonstrating no influence of

CYP2D6 variation on PRL levels in antipsychotic-induced

hyperprolactinemia (83), some candidate genes associated with

changes in PRL were not included in our study. For example,

DRD2 may influence the susceptibility to hyperprolactinemia

associated with OLZ treatment (84). Genetic associations of

alterations in PRL in OLZ-treated patients may warrant further

exploration. The confounding factors influencing the sex

differences of pharmacovigilance signals on PRL-related

adverse events and the pharmacogenetic mechanisms to

explain these sex risks may be our future works.
Conclusions

In this study, we constructed an ML-based model of PRL

prediction in OLZ-treated patients by using the XGBoost

algorithm and EHR data. Based on SHAP analyses, we also

identified multiple pathophysiological and pharmacological

confounders that influence PRL levels as tightly related to the

effectiveness of treatment and PRL-related side-effects in OLZ-

treated patients. Furthermore, our work suggests the feasibility

of AI-based pharmacovigilance detection by using EHR as a

source of data. In short, ML and EHR data can partner to

facilitate the detection of PRL levels and pharmacovigilance

signals in OLZ-treated patients.
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