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Abstract

Metabolic dysfunction-associated steatotic liver disease (MA-
SLD) is currently a pressing public health issue associated 
with adverse outcomes such as cirrhosis, malignancy, trans-
plantation, and mortality. Lifestyle modifications constitute 
the most effective and fundamental management approach, 
but they often pose challenges in sustaining long-term clinical 
benefits. Hence, there is a critical need to enhance our under-
standing through pharmacological management, which un-
fortunately remains limited. Glucagon-like peptide-1 receptor 
agonists (GLP-1RAs) have emerged as a leading treatment 
in the fields of diabetes and obesity, with recent preclinical 
and clinical studies indicating significant benefits in the man-
agement and treatment of MASLD. Our article begins by re-
viewing the beneficial therapeutic components of GLP-1RAs 
in MASLD. Subsequently, from a clinical research perspective, 
we concluded with the liver outcomes of current primary GLP-
1RAs and co-agonists. Finally, we presented our insights on 
clinical concerns such as appropriate trial endpoints, manage-
ment of comorbidities, and future developments. In conclu-
sion, the benefits of GLP-1RAs in MASLD are promising, and 
background therapy involving metabolic modulation may rep-
resent one of the future therapeutic paradigms.
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Introduction
Nonalcoholic fatty liver disease has been used to describe 
hepatic steatosis without significant alcohol intake. However, 
in response to the growing understanding of the disease and 
its associated stigma, metabolic dysfunction-associated fatty 

liver disease was proposed by an international consensus 
panel in 2020.1 Later, the American Association for the Study 
of Liver Diseases led the adoption of a new multisociety Del-
phi consensus in 2023, proposing metabolic dysfunction-as-
sociated steatotic liver disease (MASLD) as another replace-
ment term for nonalcoholic fatty liver disease.2 Metabolic 
dysfunction-associated fatty liver disease and MASLD remain 
controversial but are not considered superior to each other. 
This review will use the term MASLD, defined as the presence 
of hepatic steatosis with no other discernible cause, in con-
junction with at least one cardiometabolic risk factor (CMRF), 
such as type 2 diabetes mellitus (T2DM), obesity, hyperten-
sion, or dyslipidemia.2 The spectrum of MASLD encompasses 
metabolic dysfunction-associated steatotic liver, metabolic 
dysfunction-associated steatohepatitis (MASH), liver fibrosis, 
and cirrhosis, representing a significant global public health 
threat. Recent epidemiological data indicate an overall inci-
dence of MASLD ranging from 46.1 to 46.9 new cases per 
1,000 person-years, with a prevalence estimated at 30.05% 
to 32.4%.3–5 Regional prevalence varies significantly due to 
ethnic, genetic, and lifestyle factors, with the lowest rates 
observed in Western Europe and the highest in Latin Amer-
ica, ranging from 25.1% to 44.3%.4 The burden of MASLD 
is projected to increase exponentially, with anticipated rises 
of 21% and 63% in cases of MASLD and MASH, respectively. 
Furthermore, MASLD-related mortality and the total number 
of advanced liver diseases are expected to double.6,7

Despite the current severe disease burden, effective medi-
cal management options for MASLD remain limited. Primary 
measures still rely on lifestyle improvements through diet 
and exercise. The first targeted therapy for MASLD, a selec-
tive thyroid hormone receptor-β agonist called resmetirom, 
was approved by the U.S. Food and Drug Administration 
(FDA) in March 2024 and is recommended in the latest Eu-
ropean Association for the Study of the Liver guidelines for 
MASLD with locally approved F2/F3 fibrosis.8 Based on data 
from the MAESTRO-NASH trial, resmetirom demonstrated 
histological benefits with a number needed to treat of five 
for the resolution of MASH and 8.5 for fibrosis regression,9 
thus posing significant economic challenges. Moreover, evi-
dence on the long-term efficacy and safety of prolonged use, 
as well as combination therapy with other drugs, remains 
insufficient.8 There is an urgent need to expand therapeutic 
options for MASLD.

Glucagon-like peptide-1 (GLP-1) is one of two known in-
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cretins, contributing to the regulation of glucose metabolism, 
pancreatic function, appetite, inflammation, and cardio-
vascular pathophysiology.10 GLP-1 receptor agonists (GLP-
1RAs), or incretin mimetics, are currently among the most 
promising drugs for adjusting metabolic function, playing 
significant roles in the management of T2DM, and some have 
been approved for obesity management. They are actively 
being studied in clinical research for other conditions, such 
as metabolic disorders related to skeletal muscle preserva-
tion,11 MASLD,12 and neurological disorders like Parkinson’s 
disease.13 Regarding the application of GLP-1RAs in MASLD, 
current understanding suggests they can serve as additional 
pharmaceutical options in lifestyle management for patients 
with complications like obesity and T2DM. However, there 
is no prioritized recommendation between glucose-lowering 
agents or weight-loss drugs, apart from avoiding sulfonylu-
reas that can cause weight gain.8,14,15 Although most ap-
proved GLP-1RAs and co-agonists have not yielded satisfac-
tory results in histological endpoint clinical trials, the future 
of managing and treating MASLD holds promise.

In this article, we will conclude with the potential pharma-
cological mechanisms of GLP-1 treatment for MASLD, includ-
ing clinical insights into GLP-1RAs and co-agonist drugs. Ulti-
mately, we will discuss the challenges and future prospects of 
GLP-1RA management and treatment of MASLD.

Therapeutic role of GLP-1RA in MASLD
Improvement of MASLD by GLP-1RA is multidimensional, en-
compassing three main aspects: its effects on overall meta-
bolic status, neuroregulatory functions, and its controversial 
direct effects on the liver (Fig. 1).

Systematic metabolic benefits
In circulation, GLP-1 is primarily produced by intestinal L 
cells and pancreatic α cells (its activity remains controver-
sial), stimulated by the digestion of food or bile acids. The 
overall physiological effects include promoting insulin secre-
tion, inhibiting glucagon release, delaying gastric empty-
ing, and influencing appetite.16 GLP-1RAs achieve sustained 
pharmacological effects by resisting degradation by DPP-4 in 
the body, consequently contributing to hyperglycemia and 

insulin resistance related to glucose metabolism,17,18 lipid 
profile alterations, changes in fat composition, visceral fat 
accumulation, and obesity related to lipid metabolism,19–21 
which constitute the systemic metabolic characteristics of in-
terest in MASLD management.

Glucose is a substrate for lipogenesis, and either dietary 
intake of glucose and fructose or hyperglycemia due to 
T2DM-associated insulin resistance can lead to hepatic de 
novo lipogenesis.22 The relationship between insulin resist-
ance and MASLD has not been fully elucidated, but potential 
mechanisms that promote MASLD/MASH include influencing 
hepatic lipid synthesis and catabolism, as well as impairing 
mitochondrial fatty acid β-oxidation function.23 Retrospective 
cohort studies indicate that T2DM significantly increases the 
risk of cardiovascular events, malignant tumors, and liver-re-
lated outcomes in MASLD patients.24 Another study reported 
that even within the normal range, elevated HbA1c is asso-
ciated with MASLD progression.25 Another systemic benefit 
of GLP-1RA is its improvement of lipid metabolism. Macro-
characterization consists of visceral fat and body weight, 
which can mutually promote insulin resistance by promoting 
lipogenesis and inflammation that affect the progression of 
MASLD.26 Lifestyle-induced weight loss of 7–10% can im-
prove MASH with fewer risk factors, and more than 10% can 
be beneficial for fibrosis.27

Interestingly, a meta-analysis discussed the efficacy of dif-
ferent types of drugs, including anti-fibrotic, anti-metabolic, 
and anti-apoptotic agents, on MASH and fibrosis. Overall, an-
ti-metabolic drugs performed the best in both aspects, with 
odds ratios of 2.15 and 1.35, while anti-fibrotic drugs showed 
ratios of 0.86 and 1.11.28 The overall metabolic improvement 
is indeed beneficial for MASLD.

Neuromodulation
There is substantial evidence demonstrating that liver neu-
roregulation influences hepatic metabolism, immunity, and 
regeneration processes. Neurostructural damage and func-
tional disruptions can interact with components such as 
steatosis, fibrosis, and inflammation, collectively forming 
the neuroregulatory phenotype of MASLD.29 In terms of the 
nervous system, GLP-1 receptor (GLP-1R) expression is en-
riched in central nervous system (CNS) regions, including the 

Fig. 1.  Systemic, neuromodulatory, and hepatic effects of GLP-1RA. GLP-1RA, GLP-1 receptor agonist; SNS, sympathetic nervous system; ER, endoplasmic 
reticulum; CHOP, C/EBP homologous protein; NLRP3i, NLRP3 inflammasome; PRC, Picrosirius red content; Φ, macrophages. ↓, decrease; ↑, increase. Image created 
with BioRender.com.
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hypothalamus, which regulates appetite, and the brainstem, 
which primarily secretes brain-derived GLP-1, as well as in 
the peripheral vagus nerve.30,31 On one hand, neuro-signals 
mediated by GLP-1 activation regulate food intake by con-
trolling appetite and satiety and modulate endocrine organs 
like the pancreas, thus affecting overall metabolism.32 On 
the other hand, local hepatic lipid metabolism is regulated by 
sympathetic neural signals through the brain-liver axis, while 
glucose metabolism receives CNS regulation, although the 
signaling pathways remain unclear.32,33

Under physiological conditions, besides the paracrine se-
cretion pathway in the gastrointestinal tract, most endog-
enous GLP-1 in circulation is locally deactivated by DPP-4 
and the liver,34 making it difficult to directly enter the CNS 
through the blood-brain barrier. Activation of the peripheral 
nervous system likely occurs primarily through stimulation 
of the hepatic vagal nerve in the portal area. Brain-derived 
GLP-1 pathways are generally not activated unless metabolic 
balance is disrupted, such as under stress conditions. Ad-
ditionally, the central and peripheral nervous pathways acti-
vated by GLP-1 are independent and synergistic.30,35 At ther-
apeutic doses, whether GLP-1RA can directly affect the CNS 
depends on the drug’s properties. For instance, exenatide 
can cross the blood-brain barrier, while semaglutide (SEMA) 
has a limited ability to do so.36 Generally, drugs with smaller 
molecular weights are considered to have more potential in 
this regard.32

Direct hepatic effect
The direct hepatic effects of GLP-1RA have not been fully 
elucidated. Preclinical experiments have shown that GLP-
1RA can ameliorate inflammation by modulating processes 
such as endoplasmic reticulum stress,37 mitochondrial dys-
function,38 oxidative stress,39 and macrophage function.40 
GLP-1RA can also influence hepatic stellate cell activation 
and extracellular matrix adjustment.41,42 In addition, lipid 
metabolism, inflammation, fibrosis, and cell death interact 
with each other, and the respective roles of GLP-1RA there-
in collectively comprise its therapeutic pathway in MASLD. 
However, controversy exists regarding whether these effects 
are mediated through the direct effects of GLP-1RA targeting 
intrahepatic cells.

One concern is the lack of conclusive evidence for GLP-1R 
expression in the liver. Some studies have reported GLP-1R 
expression identified through immunohistochemistry in hu-
man liver tissue or liver cell lines,43,44 but RNA sequencing has 
not detected GLP-1R in human liver tissue, including the non-
parenchymal Kupffer or stellate cells.45 A review based on 
recent data using next-generation antibodies suggests that 
GLP-1R is not expressed in the human liver, regardless of its 
structural integrity.46 On the other hand, some experiments 
seem to confirm direct hepatic effects of GLP-1RA. One study 
reported the presence of GLP-1R on the membrane of human 
liver cells, which undergoes endocytosis following GLP-1RA 
stimulation and acts by regulating downstream molecules of 
insulin signaling.47 However, whether these potential hepatic 
effects are fully or partially mediated through GLP-1 signal-
ing remains uncertain. There is a viewpoint suggesting that 
observed potential direct effects on liver cells may involve 
mechanisms independent of GLP-1 signaling entirely.46

The mainstream view holds that the canonical GLP-1 re-
ceptor is not expressed in the human liver, and any hepatic 
effects are likely mediated through extrahepatic mechanisms 
rather than direct action.12 Canonical GLP-1 receptor signal-
ing involves coupling GLP-1R with Gαs, a subtype of Gα sub-
unit, but GLP-1R can also initiate diverse signaling patterns 
through non-Gαs pathways.48 Given the structural absence 

of GLP-1R identified in human liver tissue, this appears to be 
a compromise.

Further clarification on the hepatic benefits of GLP-1RA is 
urgently needed, as these insights could contribute to ex-
plaining the pharmacological actions in MASLD and the for-
mulation of clinical strategies.

Status of GLP-1RA drug in developing MASLD indica-
tion
Generally, targeted drugs include single GLP-1R agonists and 
co-agonists, as well as combination formulations, innovative 
oral peptide preparations, and non-peptide small molecule 
agonists. GLP-1-targeted therapies have seen continuous 
updates over the past decades. Here, we primarily discuss 
GLP-1RAs that are currently approved and under considera-
tion for MASLD, along with some co-agonist strategies show-
ing promising results. Critical clinical trial outcomes and on-
going registered trials are summarized in Tables 1 and 2, 
respectively.49–53

Liraglutide
Liraglutide, developed by Novo Nordisk in Denmark, is cur-
rently the most widely used daily formulation of GLP-1RA, 
with a half-life of 13 h. The FDA approved liraglutide (Vic-
toza) at doses of 0.6 mg, 1.2 mg, and 1.8 mg daily for T2DM 
patients with unsatisfactory diet or exercise control, and 2.4 
mg and 3 mg as a chronic weight management drug.54

The LEAN trial first evaluated the anti-steatotic effects of 
liraglutide in patients with MASH. Compared to placebo, af-
ter 48 weeks of treatment with liraglutide 1.8 mg daily, the 
treatment group showed significant histological improvement 
[risk ratio = 4.3, 95% confidence interval (CI) = 1.0–17.7], 
including resolution of MASH and absence of liver fibrosis 
progression.49 Treatment with liraglutide 0.9 mg daily and 
1.2 mg daily after 96 weeks and six months, respectively, 
both demonstrated reductions in hepatic steatosis, and the 
0.9 mg treatment group underwent histological assessment 
revealing improvement in hepatitis.55,56 Furthermore, a trial 
conducted in patients without T2DM indicated that liraglutide 
3 mg daily provided benefits comparable to those of struc-
tured lifestyle changes in improving liver enzymes, insulin 
resistance, and weight, which are considered effective and 
fundamental measures for managing and improving MASLD/
MASH.15,57 Notably, liraglutide exhibits relatively clear anti-
fibrotic effects among GLP-1RAs, although statistically sig-
nificant improvements in fibrosis were not observed in clini-
cal trials.49,58

Considering that GLP-1RA’s beneficial effects on MASLD 
may relate to improving systemic metabolism rather than 
direct hepatic effects, comparing hepatic benefits among dif-
ferent antidiabetic medications is meaningful. Compared to 
sulfonylureas and metformin, liraglutide demonstrates ad-
vantages in glycemic control (assessed by HbA1c levels) and 
reduction of liver fat content (LFC) in patients with MASLD 
and T2DM, with a more significant difference observed over 
sulfonylureas.59 In MASLD patients with inadequate glyce-
mic control on metformin, sitagliptin (a DPP-4 inhibitor) and 
liraglutide 1.8 mg daily showed no significant differences in 
improving LFC assessed by MRI-PDFF, visceral adipose tis-
sue, and weight reduction; however, both were significantly 
better than insulin glargine.60 Additionally, there were no sta-
tistically significant differences in glycemic control between 
the two medications, and neither demonstrated significant 
benefits for liver fibrosis.60

Currently, there is no discussion regarding the differen-
tial efficacy of different doses of liraglutide in the treatment 
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of MASLD. Current understanding suggests that anti-obesity 
drugs cannot be used alone for diabetes management in 
obese patients with diabetes; they need to be used in com-
bination with other hypoglycemic drugs or insulin, thereby 
posing a risk of hypoglycemia related to the type of combined 
drug and dose.61 In clinical trials of liraglutide for MASLD, 
the dose setting is still mainly based on the diabetes condi-
tion. Clinical experience targeting T2DM has shown that the 
3 mg dose is more effective than the 1.8 mg dose in manag-
ing T2DM in combination with other hypoglycemic drugs and 
improving weight. Although gastrointestinal adverse events 
(AEs), such as nausea, are more common in the 3 mg treat-
ment group, other AEs such as hypoglycemic episodes and 
pancreatitis did not show dose dependency.62 Another study 
demonstrated that the obesity control dose of liraglutide can 
significantly reduce the risk of progression to diabetes in pa-
tients with prediabetes.63 Considering that T2DM and MA-
SLD can reciprocally cause and affect each other, and given 
liraglutide’s potential therapeutic characteristics for MASLD, 
which may be beneficial for anti-fibrosis, more aggressive 
use of higher doses may bring greater clinical benefits in 
some groups, such as those with higher-grade fibrosis with 
or without T2DM.

SEMA
SEMA, a weekly GLP-1RA developed by Novo Nordisk, en-
hances its affinity for albumin by incorporating two amino 
acids into human GLP-1, resulting in resistance to degrada-
tion in the body.64

SEMA has demonstrated clear clinical improvements in 
MASLD/MASH and allows use beyond the instructions, par-
ticularly in patients with T2DM and obesity.15 Phase II trials 
targeting MASH have shown that treatment with SEMA 0.4 
mg daily for 72 weeks resulted in more patients with liver 
fibrosis stage F2/F3 achieving improvement in MASH with-
out progression of liver fibrosis (odds ratio = 6.87, 95% CI 
= 2.60–17.63) compared to placebo.50 Moreover, SEMA has 
significant benefits in improving clinical symptoms and qual-
ity of life for patients as well.65,66 A network meta-analysis 
ranked SEMA 0.4 mg first in the resolution of MASH among 
alternative treatments [surface under the cumulative rank-
ing (SUCRA) = 0.89], higher than liraglutide (SUCRA = 0.84) 
and resmetirom (SUCRA = 0.44).67

Due to effective management of weight, metabolism, and 
LFC, it is expected to yield clinical benefits in liver fibrosis. 
However, current data from SEMA clinical trials indicate that 
therapeutic effects on liver fibrosis are unclear, with potential 
benefits possibly involving the delay of fibrosis progression.50 
In vitro experiments suggest that SEMA may participate in 
regulating the fibrosis process by improving factors such as 
inflammatory or metabolic triggers of fibrosis, like IL-6 and 
free fatty acids, as well as fibrotic structural features.68–70 
However, in patients with cirrhotic conditions (fibrosis stage 
4), there is no difference in MASH regression compared to 
placebo treatment after SEMA 2.4 mg weekly.51 The insuf-
ficient trial duration and the weakened ability of higher-grade 
fibrosis to change, secondary to factors like weight loss, are 
considered the primary reasons for the lack of positive out-
comes.71 Differences in pathological mechanisms between 
fibrosis and cirrhosis are also assumed to contribute to these 
outcomes.72 Interestingly, a meta-analysis reported that 
SEMA significantly reduces liver stiffness (mean difference 
= −3.08 kPa; 95% CI: −3.39, −2.77), although subgroup 
analysis based on formulation and dosage was not conduct-
ed.73 Currently, a Phase III trial (NCT04822181) investigat-
ing SEMA’s effect on improving liver fibrosis is ongoing and is 
expected to conclude on April 25, 2029.

The oral SEMA formulation was approved by the FDA as 
an adjunct to diet and exercise to improve glycemic control 
in adults with T2DM. A Japanese study discussed the safety 
and efficacy of oral SEMA 14 mg in patients with MASLD and 
T2DM.74 Besides the expected improvements in metabolism 
and hepatic steatosis, liver fibrosis markers, including the 
fibrosis-4 index, ferritin, and type IV collagen 7s, were ob-
served to decrease after 24 weeks of treatment. However, 
there was no significant change in liver stiffness. Enhancing 
understanding of SEMA’s oral formulation in MASLD is neces-
sary, as it may improve compliance and thus lead to better 
clinical outcomes. A tocopherol and/or actos-controlled clini-
cal trial (NCT05813249) concluded on April 2, 2024, assess-
ing the effects of oral and subcutaneous SEMS on hepatic 
steatosis and fibrosis improvement in MASLD with T2DM. 
Relevant data from this trial have not yet been published.

Exenatide
Exendin-4 is a hormone extracted from the venom of the 
lizard Heloderma suspectum, exhibiting biological effects 
similar to human GLP-1. Exenatide, a synthetic version of 
exendin-4 produced industrially, was the first GLP-1RA ap-
proved for the market [exenatide twice daily (EX-BID)], fol-
lowed by a long-acting formulation that improved the deliv-
ery system [exenatide once a week (EX-QW)].75

A comparative study conducted in China over 24 weeks 
evaluated the treatment of MASLD and T2DM in patients 
not receiving additional glucose control medications.76 EX-
BID demonstrated superior outcomes compared to insulin 
glargine in liver-related indicators such as LFC, FIB-4 index, 
and liver enzymes, as well as metabolic indicators like post-
prandial glucose and LDL-C. A meta-analysis based on low-
quality data reported that EX-BID was the most effective 
method for reducing LFC compared to liraglutide and long-
acting formulations like EX-QW.77 However, there is currently 
no histological evaluation data confirming these findings for 
EX-BID; other investigations have shown that LFC reduction 
associated with metabolic disorder improvement and a rela-
tive decrease of 30% combined with an improvement in ALT 
may be predictive of a more active histological response.78,79 
A retrospective study conducted in Turkey reported that 
treatment with EX-BID led to significant decreases in NFS 
and APRI scores, although FIB-4 showed a completely op-
posite trend.80 The small sample size (n = 50) may have 
contributed to this discrepancy. Another notable issue is the 
heterogeneity of metabolism, which could be crucial in treat-
ing MASLD. T2DM patients combined with MASLD appear to 
respond better to EX-BID or EX-QW compared to those with-
out MASLD, resulting in greater benefits in terms of LFC and 
cardiometabolic improvement.81,82 Additionally, EX-BID has 
been shown to increase adiponectin levels, potentially offer-
ing cardiovascular benefits.81

Unlike long-acting formulations, there is a general consen-
sus that EX-BID is used as an add-on therapy to oral anti-
diabetic medications or insulin, which is why its efficacy is 
usually compared to insulin glargine. This strategy is more 
flexible and may offer potential additional benefits. A six-
year study in the United States indicated that combination 
therapy with pioglitazone/exenatide (twice daily)/metformin 
effectively reduced the incidence of high-stage liver fibrosis 
(7% vs. 26%) and steatosis (31% vs. 69%) compared to 
single medications such as metformin, glipizide, or insulin.83 
Interestingly, EX-QW appears not to have a significant addi-
tive effect. In the DURATION-8 trial, dapagliflozin as mono-
therapy and in combination with EX-QW showed trends fa-
voring improvements in LFC, glucose and lipid metabolism, 
and liver fibrosis scores at the end of the study, but no sig-
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nificant statistical differences were observed.84 Similar re-
sults were found in trials evaluating hepatic lipid changes in 
patients with T2DM.82 The effects of short-acting agents on 
MASLD are likely multifactorial, and these issues will be fur-
ther discussed in the section on lixisenatide.

Dulaglutide
Dulaglutide, developed by Eli Lilly, achieves its long-acting ef-
fect by being linked to a human IgG4-Fc heavy chain, which 
helps resist degradation by DPP-4.85 Dulaglutide 1.5 mg has 
demonstrated non-inferiority in diabetes control compared to 
liraglutide 1.8 mg, and comparable weight reduction efficacy 
to oral SEMA (Orforglipron) 3 mg.86,87

Differing from the effects observed in T2DM, the thera-
peutic efficacy of dulaglutide for MASLD is not particularly 
compelling based on current statistics. A small retrospective 
study in Japan reported that dulaglutide 0.75 mg improved 
liver enzymes, glucose metabolism, and liver stiffness in pa-
tients with MASLD and T2DM after 12 weeks; however, it also 
resulted in an undesired elevation in the controlled attenua-
tion parameter (evaluating LFC).88 Interestingly, one patient 
underwent histological evaluation before and after treat-
ment, showing a complete histological improvement from a 
NAS score of 6 and fibrosis stage 1 to normal histology after 
treatment. A prospective clinical trial conducted in India re-
ported a significant decrease in LFC, but liver enzymes, liver 
stiffness, and pancreatic fat did not show statistically signifi-
cant differences after 24 weeks of treatment with dulaglutide 
1.5 mg in patients with MASLD and T2DM.89 Glucose levels 
were balanced between groups by other glucose-lowering 
medications, suggesting a potential mismatch in liver ben-
efits. However, it is noteworthy that a 26-week treatment 
of dulaglutide 1.5 mg or tirzepatide 5 mg showed compa-
rable outcomes in improvements of MASH and liver fibrosis 
biomarkers, including liver enzymes, keratin-18, procollagen 
III, and adiponectin.90 A recent clinical trial assessing the 
histological benefits of tirzepatide for MASH reported that 
tirzepatide 5 mg achieved at least one-stage improvement 
in fibrosis for 55% of patients without worsening MASH, 
and 43.6% of patients experienced MASH resolution with 
no worsening fibrosis.52 Therefore, the potential benefits of 
dulaglutide for MASLD may be promising. Clinical trial data 
from NCT03648554 evaluating dulaglutide based on histo-
logical assessment have not been published, and further 
clinical trials are needed to comprehensively assess the liver 
benefits of dulaglutide.

Lixisenatide and beinaglutide
Lixisenatide and beinaglutide, including EX-BID as discussed 
earlier, are classified as short-acting GLP-1RAs based on 
pharmacokinetic characteristics such as clearance half-life 
and concentration-time distribution.91 In essence, long-act-
ing formulations can achieve sustained therapeutic drug con-
centrations in the body, whereas short-acting formulations 
produce transient concentration peaks shortly after injection.

Lixisenatide is a daily GLP-1RA developed by Zealand 
Pharma, which prolongs its half-life through structure-induc-
ing probe technology based on exendin-4/exenatide.92 Data 
from diabetes trials indicate that lixisenatide can improve liv-
er transaminases, especially ALT.93 Another study compared 
the efficacy of lixisenatide, dapagliflozin, sitagliptin, or piogl-
itazone, combined with basal metformin use over 72 weeks 
in patients with MASLD and T2DM.94 The lixisenatide group 
demonstrated significant advantages in both glycemic con-
trol and liver fibrosis prediction indicators, such as the AST to 
platelet ratio index.

Beinaglutide is another short-acting recombinant human 
GLP-1RA that closely resembles human GLP-1(6-37), ap-
proved in China for the indications of type 2 diabetes mellitus 
and weight loss. In the context of patients with MASLD and 
diabetes, only one clinical study evaluated the benefits of 
beinaglutide treatment over 24 weeks compared to recom-
mended standard lifestyle management for T2DM. Beinaglu-
tide demonstrated significant advantages in weight reduc-
tion, but no significant differences were observed between 
the two groups in terms of improvements in liver stiffness, 
HbA1c control, liver enzymes, and blood lipids.95

Short-acting GLP-1RAs are generally less studied in MA-
SLD. EX-BID stands out unexpectedly. On one hand, exena-
tide is a prototypical GLP-1RA known for its potent effects 
on weight reduction and lowering LFC, instilling confidence 
in its use for MASLD. On the other hand, limitations in avail-
able GLP-1RA choices have led to selection biases, particu-
larly in the early 2010s and in regions where access to other 
GLP-1RAs was relatively delayed.76,81,96,97 The main factor 
contributing to the lack of greater investment in lixisenatide 
and other short-acting agents for MASLD may be their influ-
ence on metabolic function, including pharmacokinetic dif-
ferences induced by a single-dose method and their effects 
on gastric emptying,91 which could limit their effectiveness 
in improving glycolipid metabolism.98 Indeed, different tem-
poral patterns of GLP-1RAs tend to correspond to different 
clinical characteristics.99 Short-acting GLP-1RAs, regarded 
as postprandial GLP-1, are typically used as add-on therapy 
for T2DM. However, in terms of MASLD, short-acting agents 
still hold potential clinical advantages. From a management 
perspective, with the necessity of glucose-lowering medi-
cations like metformin or basal insulin in populations with 
T2DM complications,61 combination products with routine in-
jections or basal insulin may offer compliance advantages, 
simpler titration strategies (adjusting to maximum mainte-
nance dose only once), and lighter economic burdens. From 
a therapeutic benefit standpoint, impaired GLP-1 secretion 
mediated by blood glucose has been observed in MASLD 
patients.100 Short-acting GLP-1RAs mimicking physiologi-
cal processes may provide a gentler and more personalized 
treatment strategy.101 Therefore, the long-term liver benefits 
of short-acting agents warrant further attention in personal-
ized medicine.

Co-agonist strategy
Glucose-dependent insulinotropic polypeptide (GIP) and 
glucagon receptor (GCGR) are currently the primary targets 
alongside GLP-1R for combined stimulation. GIP, another 
type of incretin, contributes to improving white adipose tis-
sue function by increasing fat storage and reducing visceral 
ectopic deposition. It also directly contributes to insulin sen-
sitization and expands the therapeutic domain of GLP-1RA by 
targeting the CNS to reduce nausea.102 The latter, glucagon, 
is a basic glucose-regulating hormone with catabolic and 
thermogenic actions, but it also increases glucose levels and 
the risk of gluconeogenesis.103 Moreover, GCGR is expressed 
in the liver and shows direct hepatic benefits, including a re-
duction in lipid content and an increase in metabolic expendi-
ture.45 Currently, the strategy of multiple receptor stimula-
tion is actively expanding indications in metabolic disorders, 
particularly in MASLD, and some medications have reported 
more potent therapeutic efficacy compared to single GLP-
1RA.

Tirzepatide is an approved GLP-1R/GIP dual agonist de-
veloped by Eli Lilly, garnering significant attention alongside 
SEMA in the field of T2DM and weight loss. A phase 2 trial 
(SYNERGY-NASH) first demonstrated in vivo that GLP-1RA 
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can achieve histological reversal of hepatic fibrosis in MA-
SLD.52 Patients with MASH and F2/F3 stage fibrosis were 
treated with tirzepatide at doses of 5 mg, 10 mg, and 15 mg 
for 52 weeks, of which 58% of patients had T2DM. Regres-
sion of MASH showed dose dependency, with the 15 mg dose 
exhibiting the best response at 62% (vs. placebo 10%, risk 
difference = 53, 95% CI = 17–50). There was no significant 
difference between treatment groups in the improvement of 
liver fibrosis; the 5 mg dose of tirzepatide showed the best 
performance, with 55% of patients responding (vs. placebo 
30%, risk difference = 25, 95% CI = 5–46). Safety profiles 
were favorable, with no significant differences in the inci-
dence and profile of AEs between tirzepatide and placebo. 
Rough estimates based on the number needed to treat sug-
gest tirzepatide is superior to resmetirom in both MASH re-
gression and fibrosis improvement (1.9 vs. 5 and 4.8 vs. 
8.5, respectively), and it shows a slight advantage in MASH 
regression over SEMA (1.9 vs. 2.4).9,50 A phase 3 trial is not 
yet registered but is anticipated to commence soon.

Survodutide (BI 456906) is a GLP-1R/GCGR dual ago-
nist developed by Boehringer Ingelheim, with outcomes of a 
phase 2 trial in MASLD and a phase 1 trial in cirrhosis pub-
lished almost simultaneously with tirzepatide. In patients 
with MASH and F1-F3 stage fibrosis treated with survodutide 
for 48 weeks across doses ranging from 2.4 to 6.0 mg, re-
gression of MASH without fibrosis progression did not show 
a dose-dependent trend, with the best response observed at 
4.8 mg (62% vs. placebo 14%). Improvement in fibrosis was 
also assessed, showing a dose-dependent trend, with 34% of 
patients achieving at least a 1-stage improvement in fibrosis 
without MASH progression in the 6 mg group (vs. placebo 
22%), although this did not reach statistical significance.53 
Survodutide is generally well tolerated in patients with com-
pensated or decompensated cirrhosis, of which more than 
80% are diagnosed with MASLD. It showed potential benefits 
in patients assessed at Child-Pugh A/B stages, including re-
ducing liver volume and weight, and possibly improving liver 
stiffness and fibrosis (95% CI spans a wide range).104

Cotadutide by AstraZeneca and efinopegdutide by Merck 
Sharp & Dohme are other GLP-1R/GCGR dual agonists. Cur-
rently, there are limited clinical trials evaluating the efficacy 
of these two drugs in MASLD. Cotadutide has shown greater 
promotion of liver glycogen and fat consumption compared 
to liraglutide.105 However, exploration of the MASLD indica-
tion was terminated in the U.S. based on strategic pipeline 
considerations (NCT05517226), although it is still ongoing in 
the EU (2021-005484-53). As for efinopegdutide, a 10 mg 
dosage demonstrated stronger reduction in LFC compared 
to SEMA 1 mg, despite a relatively higher safety risk.106 Two 
additional clinical trials are being conducted to gather more 
data on adverse effects in different situations of liver injury, 
and a phase 2 trial investigating treatment effects for MASH 
with fibrosis based on histological assessment is ongoing 
(NCT05877547).

Problems in GLP-1RA development

Cost-effective and reliable trial endpoints for MASLD 
medication
Assessing long-term liver benefits in clinical trials has re-
mained a complex issue. Clinical outcomes such as cirrhosis 
progression, liver transplant, and all-cause mortality are rec-
ognized as solid endpoints for evaluating drug efficacy in MA-
SLD. It is estimated that clinical trials evaluating liver-related 
events in patients with MASLD and compensated or decom-
pensated cirrhosis would require a minimum recruitment of 

2,886 patients with at least four years of follow-up and 1,602 
patients with at least two years of follow-up, respectively.107 
This poses a significant challenge for both the pharmaceuti-
cal industry and research activities. To date, no prospective 
clinical study of drug treatment has completed a compre-
hensive assessment of clinical benefits in MASLD. The inter-
pretation of clinical outcomes in some retrospective studies 
remains problematic. In patients with T2DM and chronic liver 
disease attributed to MASLD, the risk of major adverse liver 
outcomes after GLP-1RA treatment over 10 years fails to de-
crease (15.8% vs. 11.2%, hazard ratio = 1.41, 95% CI = 
0.53–2.23).108 Another retrospective study reported that in 
a population with T2DM and previously diagnosed MASLD/
MASH, GLP-1RA is associated with a decreased incidence of 
hepatocellular carcinoma (HCC) and a reduced risk of hepat-
ic decompensation events compared with other antidiabetic 
agents.109 These controversial findings may be attributed to 
issues of dosing strategy, statistical bias,110 and the clinical 
stage of MASLD.

Short-term predictive indicators that are strongly corre-
lated with clinical outcomes in MASLD are highly anticipated, 
but reliable surrogate endpoints are currently lacking.111 The 
only acceptable alternative endpoint in drug development, 
histological evidence, consists of the resolution of steato-
hepatitis and no worsening of liver fibrosis, or improvement 
in liver fibrosis of at least one stage without worsening of 
steatohepatitis.112 However, histological assessments are 
recognized to have variability in pathological readings and 
an unignorable placebo response. For instance, in phase 2 
trials of SEMA 2.4 g, a substantial reduction in placebo re-
sponse was observed in composite endpoints of MASH and 
fibrosis.51,113 Based on indications for the drug industry re-
leased by the FDA in 2019, candidate drugs achieving histo-
logical outcomes can be conditionally approved, and there 
remains a necessity to refine the assessment of clinical out-
comes in the future.112 However, in recent years, the FDA has 
introduced the patient-focused drug development initiative, 
where patient-reported outcomes such as improvements in 
quality of life and healthy life years in MASH patients follow-
ing treatment can serve as trial endpoints, potentially influ-
encing final approval based on these data.114 This may rep-
resent a pivotal shift, particularly for GLP-1RA, as it is based 
on metabolic improvement and has already been explored in 
some trials for exploratory research.49,66

Metabolic benefits of GLP-1RA in the management of 
weight-related MASLD
MASLD is highly correlated with other metabolic disorders 
and may even be a mutual cause, compounded by a wide 
range of disease development stages, making its manage-
ment highly complex. GLP-1RA appears advantageous in this 
regard. The metabolic benefits of GLP-1RAs are summarized 
in Table 3.115–133 It is noteworthy that these data primar-
ily derive from clinical trials in T2DM or obesity, and given 
the heterogeneity of metabolic disorders, caution should be 
exercised. T2DM is the most significant and extensively stud-
ied comorbidity in MASLD, as reviewed recently.134 Here, we 
specifically focus on the understanding of GLP-1RA in an-
other critical metabolic disorder: obesity.

Overweight, including obesity (BMI ≥ 25 kg/m2; 23 in par-
tial Asian regions), is a manifestation of metabolic disorders 
and can constitute one of the diagnostic criteria for MASLD.2 
The relationship between obesity and MASLD is tightly inter-
twined. An estimated 51.3% of MASLD patients are obese, 
and the percentage rises to 81.8% in MASH,22 with approxi-
mately 10–20% categorized as lean MASLD.135 It is notewor-
thy that MASLD patients exhibit diverse clinical character-
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istics, including biochemical markers, histology, and clinical 
outcomes due to varying body types,136,137 which can lead 
to different treatment benefits.138 Recommended treatments 
for MASLD, including lean MASLD, still emphasize lifestyle 
interventions such as diet and exercise for weight loss.139

GLP-1RA presents two considerations regarding weight-re-
lated factors in MASLD. Firstly, whether overweight or obese 
patients can achieve greater benefits at higher doses or anti-
obesity doses with acceptable risks of side effects. Based on 
data from semaglutide and tirzepatide, the improvement in 
MASH with GLP-1RA appears to be dose-dependent,50,52 but 
there are no additional data to explain this. With the recent 
confirmation of the therapeutic role of GLP-1RA in MASLD, a 
broader dosage spectrum is needed to respond to individual-
ized treatments with different metabolic profiles. Secondly, 
whether lean MASLD patients can benefit from GLP-1RA-re-
lated weight loss. Despite reasons to believe that GLP-1RA 
maintains similar glycemic regulation capabilities in patients 
of different body weights,140 its comprehensive metabolic 
capability and resulting hepatic outcomes have not been 
thoroughly evaluated. Expert reviews differ on whether lean 
MASLD patients should aim for weight loss.15,139 The latest 
guidance from the European Association for the Study of the 
Liver recommends a 3–5% weight reduction even in normal-
weight patients, though solid histological evidence support-
ing this is lacking.8 Therefore, given the increasing burden of 
lean MASLD in some populations and the benefits of GLP-1RA 
in weight management, more clinical attention is warranted.

Potential benefits of GLP-1RA in complex liver-relat-
ed etiologies
MASLD is no longer considered a diagnosis of exclusion based 
on current understanding and thus can coexist with other 
liver conditions. A global retrospective study reported that a 
single hepatic cause of MASLD resulted in HCC in only 12% of 
cases, while a combination of other hepatic causes was found 
in 39%.141 Management of multiple liver etiologies of MASLD 
is therefore an important aspect of avoiding adverse clini-
cal outcomes. A recent review summarized the interaction 
between hepatitis B virus or hepatitis C virus (HCV) infection 
and MASLD.142 We discuss here the potential benefits of GLP-
1RA for these patients.

The impact of MASLD on long-term hepatic outcomes, 
such as liver fibrosis and HCC in co-infection with hepatitis 
B virus, is controversial and may depend on disease severity 
and the presence of metabolic syndrome.142,143 Early simple 
steatosis and abnormal lipid metabolism in MASLD may be 
protective factors.144,145 It is worth considering the combined 
outcomes from the full effect of GLP-1RA on hepatic steato-
sis and metabolic syndromes such as T2DM and dyslipidem-
ia. Thus, individualized regimens should be anticipated for 
groups with different metabolic profiles and clinical stages.

MASLD and chronic HCV infection share similar pathologi-
cal features, such as insulin resistance and risk factors such 
as T2DM.142 Both conditions appear to synergistically con-
tribute to liver disease progression and poor prognosis. HCV 
infection increases the risk of advanced fibrosis,146 and MA-
SLD increases the risk of HCC through the mediation of CM-
RFs.147 Notably, viral clearance of HCV infection may increase 
the risk of cardiovascular events.148 One retrospective cohort 
did not find an increased risk of developing atherosclerotic 
cardiovascular disease; however, the trial only assessed ca-
rotid plaque.149 Thus, the potential of GLP-1RA for MASLD 
with co-existing HCV prognosis is promising, and early initia-
tion seems necessary in this population.

Interestingly, the process of HCV infection and replication 
is associated with lipid synthesis and insulin resistance.150 

Although metabolic adjustments based on GLP-1RA, such as 
improvements in insulin resistance, do not provide additional 
benefits beyond direct antiviral therapy for HCV,142 the direct 
antiviral benefits of GLP-1RA against HCV remain in question. 
Few in vitro trials have explored this issue,151 but no addi-
tional data are available to clarify it.

MASLD associated with increased alcohol consumption 
(20–50 g/day for females and 30–60 g/day for males) is de-
fined as MetALD,2 and individuals in this population may have 
previously been diagnosed with alcohol-related liver disease 
(ALD). Currently, the respective contributions of alcohol and 
metabolic factors to liver disease are not elucidated in this 
population.8 The applicability of GLP-1RA to this additional 
group of patients is intriguing; however, no clinical data based 
on alcohol intake are available. Exendin-4 (exenatide) has 
been shown to be effective in a mouse model of ALD, ame-
liorating hepatic steatosis and improving metabolic markers 
such as insulin resistance and lipid levels.152 A recent study 
reported that the histologic features of fibrosis in ALD com-
bined with metabolic syndrome are similar to those of MA-
SLD, especially in the diabetic group.153 Therefore, GLP-1RA 
may be effective in MetALD and may provide benefits for 
the metabolic components of ALD. The influence of low al-
cohol intake on MASLD remains controversial.142 It appears 
that the risk of fibrosis increases with higher alcohol intake 
or among individuals with metabolic syndrome.154 Improve-
ment in T2DM with GLP-1RA seems beneficial for reducing 
fibrosis risk.155 However, whether this can be extrapolated 
to other CMRFs, and whether there is a pharmacoeconomic 
imperative, needs further clarification.

GLP-1RA for the treatment of pediatric MASLD
MASLD is highly prevalent in children and adolescents, with 
an estimated overall global prevalence of 7.4%, rising to 
52.49% in the context of obesity.156 A recent expert con-
sensus discussed but did not reach agreement on the po-
tential therapeutic role of GLP-1RA in pediatric MASLD,157 
which may be attributed to considerations of safety and ef-
ficacy. GLP-1RA is safe for use in children and adolescents 
over the age of 10 years, and some formulations have been 
approved for pediatric T2DM or obesity.158,159 However, there 
is a lack of safety data for younger age groups, and earlier 
studies reported a prevalence of 0.7–3.3% in this popula-
tion.160 Similar disease characteristics exist between children 
and adults with MASLD, but there are differences in epidemi-
ology, histology, and clinical diagnosis.157 These differences 
necessitate a re-examination of clinical experiences in adults 
for application to children. Currently, histologic improvement 
remains the primary criterion for evaluating effective out-
comes in MASLD, but invasive tests are often not accepted 
in the pediatric population. Future studies need to rely on 
more reliable non-invasive predictors to assess the effective-
ness of GLP-1RA therapy. Moreover, pediatric MASLD is as-
sociated with T2DM, cardiovascular metabolism, and renal 
risk,157 indicating that GLP-1RA can act as a metabolic modi-
fier, thereby improving prognosis, especially in patients who 
have difficulty adhering to lifestyle changes.

In conclusion, GLP-1RA is a promising candidate drug 
therapy for pediatric MASLD, and patients may benefit from 
metabolic improvement even if the liver disease ameliorating 
effects are not yet clear.

Safety considerations for GLP-1RA use
Based on current data from clinical trials in MASLD and long-
er-term cohorts in T2DM and obesity, GLP-1RA is generally 
considered safe. Gastrointestinal symptoms are the most 
common side effects, particularly nausea, vomiting, and di-
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arrhea. Major trials conducted in patients with MASLD have 
reported prevalence rates of 42–46%, 19–38%, and 15–19% 
for these symptoms, respectively.49–52 The proportion of sub-
jects withdrawing from trials due to gastrointestinal symp-
toms is about 5%. Tolerance can generally be built up by 
titrating the dose in steps and increasing the duration of use. 
Some other serious adverse effects of note include thyroid C-
cell tumors, acute pancreatitis (AP), pancreatic tumors, and 
renal impairment, which have raised concerns in preclinical 
studies or post-marketing reports.161 However, these prob-
lems have not been shown to have a clear causal relationship 
with GLP-1RA in the general population, and there is a lack of 
data specific to the MASLD population, especially in individu-
als without co-existing T2DM.

Among these serious adverse effects, AP has raised ad-
ditional concerns, as MASLD clearly increases the risk of 
incidence and severity.162,163 Some trials have reported el-
evated pancreatic enzyme levels,50,53 and further clarification 
is needed as to whether this indicates low-grade pancreatic 
inflammation.164 Notably, larger doses or longer durations of 
GLP-1RA therapy have been associated with an increased risk 
of cholelithiasis,165 a primary risk factor for AP. Long-term 
follow-up assessments are necessary. On the other hand, pa-
tients with MASLD and a history of AP are expected to gain 
greater benefits from GLP-1RA. GLP-1RA interventions may 
reduce the incidence of recurrent AP, particularly SEMA and 
tirzepatide.166 In fact, only a portion (37.5%) of recurrent AP 
cases exposed to GLP-1RA may be attributable to pharmaco-
logic factors.167 Careful use of GLP-1RA in MASLD patients, 
with or without a history of AP, may be beneficial, but more 
prospective studies are needed to confirm this.

Feature of GLP-1RA
As emphasized, MASLD encompasses a wide range of diseases 
with distinctive clinical features. There is no clear consensus 
on when to initiate drug management for MALFD. Based on 
current data predicting liver outcomes by fibrosis stage, pa-
tients with stages F2-F4 are considered likely to benefit from 
antifibrotic medication, often seen as a signal to initiate drug 
intervention.168 Indeed, liver biopsies confirm that the preva-
lence of clinically significant fibrosis in MASLD and MASH pa-
tients is only 20.27% and 35.14%, respectively,169 with lower 
proportions in patients with normal or lean body weight,170 
suggesting that antifibrotic treatment may not be necessary 
for a larger proportion of patients. A prospective trial assess-
ing clinical outcomes across different stages of fibrosis in MA-
SLD showed parallel increases in liver adverse outcomes and 
all-cause mortality with fibrosis severity; however, no signifi-
cant difference was observed in cardiovascular event rates 
across stages.111 Lifestyle management is integral through-
out MASLD, with some perspectives advocating for initiation 
as long as metabolic risk factors are present.8 Concerningly, 
lifestyle improvements are often difficult to sustain, under-
scoring the potential benefits of early initiation and back-
ground therapy with GLP-1RA due to its benefits on metabolic 
disorders (Table 3) and chronic liver disease.108 Some have 
proposed a substantial model of “induction” therapy consist-
ing of targeted therapy with drugs that have specific mecha-
nisms of action, followed by metabolism-regulating drugs to 
maintain long-term benefits.113 This could be the paradigm in 
which GLP-1RAs are indicated for MASLD with complications. 
Moreover, existing data indicate that single-target GLP-1RAs 
such as SEMA and liraglutide show promising capabilities for 
fibrosis improvement, and the initial success of the dual ago-
nist tirzepatide suggests potential benefits of dose titration 
therapy in the monotherapy management of MASLD.

Conclusions
MASLD is one of the pressing public health issues; yet, un-
fortunately, there is a scarcity of available pharmacologi-
cal management options. GLP-1RAs have transformed the 
treatment landscape for diabetes and obesity, making them 
promising candidates for MASLD. GLP-1RAs contribute to 
metabolic adjustments in MASLD by controlling fat deposi-
tion, inflammation, and potentially fibrosis. However, more 
evidence is needed to clarify their systemic effects and con-
troversial direct hepatic benefits. GLP-1RAs and co-agonists 
have shown promising outcomes in the clinical management 
of MASLD. In the future, GLP-1RAs and co-agonists may 
serve as supplements for personalized therapies targeting 
metabolic control, anti-inflammation, and even anti-fibrosis 
effects. Moreover, their potential as monotherapy for sequen-
tial control of MASLD warrants further investigation.
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