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Abstract

Motivation: Applied research in machine learning progresses faster when a clean dataset is available and ready to
use. Several datasets have been proposed and released over the years for specific tasks such as image classification,
speech-recognition and more recently for protein structure prediction. However, for the fundamental problem of
RNA structure prediction, information is spread between several databases depending on the level we are interested
in: sequence, secondary structure, 3D structure or interactions with other macromolecules. In order to speed-up
advances in machine-learning based approaches for RNA secondary and/or 3D structure prediction, a dataset inte-
grating all this information is required, to avoid spending time on data gathering and cleaning.

Results: Here, we propose the first attempt of a standardized and automatically generated dataset dedicated to RNA
combining together: RNA sequences, homology information (under the form of position-specific scoring matrices)
and information derived by annotation of available 3D structures (including secondary structure, canonical and non-
canonical interactions and backbone torsion angles). The data are retrieved from public databases PDB, Rfam and
SILVA. The paper describes the procedure to build such dataset and the RNA structure descriptors we provide.
Some statistical descriptions of the resulting dataset are also provided.

Availability and implementation: The dataset is updated every month and available online (in flat-text file format)
on the EvryRNA software platform (https://evryrna.ibisc.univ-evry.fr/evryrna/rnanet). An efficient parallel pipeline to
build the dataset is also provided for easy reproduction or modification.

Contact: louis.becquey@univ-evry.fr or fariza.tahi@univ-evry.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A major part of any data-science work consists in finding appropri-
ate data that contains enough signal to tackle the problem we are
interested in. Then, cleaning the data to ensure uniformity of the
measures, compatibility of the various data sources and protocols,
and a reasonable amount of noise is sometimes the most time-
consuming step.

Data-based methods have been popular for a long time in the
field of RNA structural bioinformatics, for structure prediction (e.g.
with Do et al., 2006) or for mining and classification of interactions
in motifs and networks (Petrov et al., 2013; Reinharz et al., 2018).
Machine learning prediction methods start to rise [recent example
with Singh et al. (2019)] following, with a few years delay, their rise
in the field of protein structure prediction. However, past works use
specialized datasets built on-purpose, probably using time and effort
or databases focused on secondary structure only, for example. As
we expect future developments in the field, in particular regarding
3D structure prediction, an annotated dataset of RNA 3D structures
is needed. To our knowledge, the only available dataset is BGSU’s

RNA Structure Atlas (https://rna.bgsu.edu/rna3dhub/pdb). It pro-
vides annotations of all RNA 3D structures in a browseable website,
but their annotations cannot be downloaded as a whole and ready-
to-use dataset for machine learning applications. Indeed, such data-
set is needed to allow quick testing of new ideas, and to perform
benchmarks and comparisons between future knowledge-based
structure prediction algorithms.

We propose in this paper a standardized RNA dataset integrat-
ing and connecting together various pieces of information related to
the RNA families, their sequences, their secondary and 3D struc-
tures. It is automatically built, allowing regular updates and
improvements. This work was inspired by a recent publication by
AlQuraishi (2019b), who proposed a standard dataset for protein
structure prediction, called ProteinNet (mimicking the names of the
famous WordNet and ImageNet reference datasets of vocabulary
and images commonly used in machine-learning community). Our
RNA dataset, accordingly called RNANet, differs from ProteinNet
in several points. A much lower amount of available 3D data with a
high proportion of identical chains (like ribosomal and transfer
RNAs), as well as missing software tools adapted to RNA force us
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to forsake some pertinent ProteinNet strategies. Here, we propose a
first attempt to build a usable dataset dedicated to RNA following
the ProteinNet philosophy, using the currently available RNA data
and tools. With the growth of databases and certainly successful
use-cases in the future, the dataset will evolve, to reach, we hope,
the size and quality of ProteinNet.

Specificities of RNA also make the corresponding dataset easier
to build on some points. Among the key differences between RNA
and proteins, we can cite the lower diversity of the residues: there
are only four main nucleotides. When consensus residues exist, they
are often related to structural features of the bases (purine or pyrimi-
dine, weak or strong) rather than the physico-chemical properties
that are used for amino-acids (acido-basicity, hydrophobicity).
Then, it is easier to encode the three-dimensional conformation of a
nucleotide, because the 3D descriptors are defined in the same way
for all residues. This is not the case with amino-acids, one example
being the number of torsion angles to consider differs depending on
the considered amino-acid. The interactions between residues also
are easier to encode. Most models consider that each base can inter-
act one time on each of its 3 sides. This makes the interaction space
of a nucleotide finite, while we have to consider many faces and
rotamers when working with amino acids.

A common first problem in RNA computational biology is the
prediction of structure from sequence. The basis for a dataset is then
to gather sequences and their experimentally verified secondary
structure and tertiary (3D) structure descriptors. A good start is to
get the Watson–Crick basepairs, which permits to describe stems
and various loops (hairpin loops, or multiple junctions).

Then, to capture the 3D structure, two kinds of descriptors can
be used in complementarity: those which focus on the backbone
configuration (helix forms, ribose configurations, torsion angles),
and those which focus on all the base–base and base-backbone inter-
actions [the 12 variants of Leontis–Westhof base–base pairing no-
menclature (Leontis and Westhof, 2001), plus stacking interactions
and base-phosphate interactions]. The different levels of approxima-
tion of an RNA structure are illustrated onFigure 1. The full-atom
3D structure in Figure 1A can be encoded, as a first approximation,

into a sequence of letters, the primary structure (Fig. 1B), because
we know, by convention, to which composition of atoms each of the
letters corresponds. The next step is to describe the interactions be-
tween each of the bases. Such description is proposed on Figure 1C,
with the secondary structure graph of the same molecule and its
non-canonical interactions. Yet, the global shape and folding of the
polymer appear. The finest level of description is to describe every
atom’s position using geometrical parameters. On Figure 1D, we an-
notate the three nucleotides highlighted by a red rectangle on
Figure 1A, B and C using geometrical descriptors.

Finally, on top of the structural descriptors of each RNA chain,
the most recent developments in structural bioinformatics have
shown the importance of capturing the folding information of mac-
romolecules families, so that the family fold can be used later when
trying to predict how one sequence will fold in space [e.g. Xu,
(2019) and AlQuraishi (2019a) with proteins, or Magnus et al.
(2019) in the field of RNA]. Therefore, it is useful to include
position-specific scoring matrices computed on homologous sequen-
ces in addition to every chain sequence, to reflect diversity or conser-
vation inside a family of molecules. For that reason, one of the key
elements of the dataset, which brings novelty to this work, is to pro-
vide nucleotide frequencies at every position of the RNA 3D struc-
tures from the PDB (as illustrated below the sequence on Fig. 1B).

To summarize, for each RNA chain, we provide descriptors
about the sequence and sequence variation, about the secondary
structure and pairing scheme of each nucleotide (with non-canonical
interactions and multi-basepairs), and fine descriptors of the 3D
conformation (angles, torsions). We provide the data in an SQLite
database and flat text format (CSV files) to be opened in a spread-
sheet or parsed by user scripts. The dataset is updated every month
to take into account newer data.

In the next section, we go through the steps of the pipeline, start-
ing from the public databases, to the final dataset. We explain the
choices made and why it differs from ProteinNet. We then provide
some descriptive statistics about the obtained data and its quality in
Section 3.

Fig. 1. Different ways to encode the structural information of an RNA molecule. (A) Full-atom structure of an example RNA molecule (PDB 6sy6, chain D). (B) Primary se-

quence of this chain, using conventional A, C, G and U one-letter codes to describe commonly observed ensemble of atoms (the nucleotides). Residue numbers are indicated in

light blue. When homologous sequences are available, it is possible to compute nucleotide frequencies at every position (a.k.a. position-specific scoring matrices or PSSMs). (*)

Residue n81 is not resolved in 3D and not represented on the figure. (**) The example values are fictive since 6sy6-D does not belong to a particular RNA family to our know-

ledge. (C) Secondary structure graph of the chain, with the number of base contacts for each base (in red), the base symbol in dot-bracket notation (light gray) and the non-ca-

nonical interactions between bases in Leontis–Westhof nomenclature (in black). The first letter c or t indicates a cis or trans configuration, and the two following uppercase

letters H, S and W, are the base’s sides interacting (illustrated on nucleotide 17 in D). (*) A question mark (?) is used when the nucleotide interacts with only one atom, which

is not enough to define a base side. (D) Detailed 3D geometric descriptors illustrated on nucleotides 15, 16 and 17 of the chain. Nucleotide 15 is annotated with its torsion

angles (in light blue). Nucleotide 16 is annotated with virtual bond systems and their pseudotorsion angles g and h (in yellow) and g0 and h0 (in green). Nucleotide 17 is anno-

tated with a label on each base edge: H on the Hoogsteen edge, W on the Watson–Crick edge, S on the sugar edge. These three residues are highlighted by a red box in (A), (B)

and (C)
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2 Materials and methods

To build the RNANet dataset, we developed a pipeline whose differ-
ent stages are summarized in Figure 2. The pipeline gathers a list of
RNA chains from the BGSU RNA research group website (Leontis
and Zirbel, 2012), and searches for mappings of these chains to
Rfam RNA families (Kalvari et al., 2018). The identified mappings
allow then to download known homologous sequences and realign
them with the 3D chain sequences, to get sequence variation statis-
tics. In parallel, three-dimensional structures are downloaded and
annotated by DSSR (Lu et al., 2015) to yield descriptors of the 3D
structure. Finally, the two kinds of per-position information are re-
mapped one to each other, and the dataset is saved. We thus obtain
a list of various nucleotide descriptors at each scale: sequence and its
variability, secondary structure and non-canonical interactions and
precise geometrical descriptors, including sugar puckering and tor-
sion angles. The complete list is presented in Supplementary Table
S1 in Supplementary Material. Details on the choices made for each
of the steps are given in the following sections.

2.1 Data selection
The first step is to identify RNA chains of sufficient quality in the
3D data available in the PDB. To do so, we use the list kept up-to-
date by the BGSU RNA research group (Leontis and Zirbel, 2012).
We include all the RNA chains with resolution better than a desired
resolution threshold (4.0 Angströms by default, which can be
changed using a command-line option). The number of available
RNA chains as a function of structure resolution is presented in
Supplementary Figure S3. Note that we keep the redundant chains.
This is motivated by the lack of data: as we have few 3D data, we
need to exploit every variant of the same molecule if several struc-
tures are available. Because replica of crystallography or EM experi-
ments may vary a little in the position of nucleotides, interactions
and 3D descriptors like angles or sugar pucker may also vary a little.
This gives information about the probability distributions of these
parameters. Redundancy could be eliminated or controlled later by
the user, by further re-filtering the final dataset. The BGSU list is not
exhaustive of the RNA chains available in 3D (it lacks, for example,
all the available NMR structures). But, the RNA chains in the BGSU
list are organized by redundancy in so called ‘equivalence classes’,
and we find it useful to identify more links between 3D chains and
homologous sequences.

An important bottleneck is to identify homologous sequences for
all these chains, so that we can compute nucleotide frequencies at
every position in the chain. A good strategy proposed in AlQuraishi
(2019b) for proteins is to use the jackHMMER tool (Johnson et al.,
2010), which performs an iterative search of homologous sequences
against wide sequence databases. Unfortunately, the tool does not
support nucleic acid sequences. However, the HMMER software
tools, excluding jackHMMER, have been specialized for DNA/RNA
sequences resulting in the Infernal tools (Nawrocki and Eddy,
2013). These tools work with the pre-computed covariance models
of the Rfam RNA families (Kalvari et al., 2018). With every Rfam
family comes a covariance model and a list of sequence hits from ref-
erence genomes. Infernal can realign sequences with the covariance
model to get a multiple sequence alignment. Moreover, Rfam pro-
vides a list of 5567 mappings between PDB structures and Rfam

families, which is why we decided to use it as our basis to get hom-
ologous sequences. Using them may not be the way leading to the
highest number of hits between the existing 3D chains and homolo-
gous sequences. Indeed, Rfam is evolving since release 13.0 to a
high-quality database based on non-redundant genomes and prob-
ably lacks some species and ‘families’. We may detect more homolo-
gous sequence clusters by scanning more genomes ourselves.
However, we do not wish to compete with Rfam, and prefer to rely
on their expertise and regular updates. Hence, we filter the previous
list of 3D RNA chains to keep only those with an available mapping
to an Rfam family, namely, a covariance model. We also retain 3D
structures for which no mapping is directly available, but a mapping
exists to another 3D chain from the same equivalence class in the
BGSU redundancy list. Considering all the data without a resolution
requirement, the filtering reduces the number of chains from 11 702
to 6282 (53%). When no mapping from Rfam is available, but sev-
eral mappings to different families can be inferred using the equiva-
lence class, the chain is copied and truncated to save the portion
corresponding to each mapping, respectively. This procedure
increases the counter to 6668 chains, including the copies of chains
that are mapped several times. Optionally, as the Rfam-PDB map-
pings are relative to portions of PDB chains, the user can provide an
option in the command line to extract the desired portions only
from the source mmCIF files, excluding the other uninteresting
chains, waters, ligands and ions.

2.2 Annotation of the 3D chains
Now that we have a collection of data points (one datum corre-
sponding to one RNA chain), we need to use an annotation program
to provide a list of descriptors of these chains. The list of RNA-
containing mmCIF files is therefore fed to the RNA annotation soft-
ware tool DSSR (Lu et al., 2015), to extract position-specific infor-
mation at every nucleotide. This includes nucleotide sequence, with
DSSR’s wide support of modified bases, base–base interactions in
both DSSR and Leontis–Westhof (Leontis and Westhof, 2001)
nomenclatures and with support of multiple interactions per base.
This also includes geometric descriptors of the bases, riboses and
backbone: first, the six torsion angles of the backbone, commonly
denoted by a, b, c, d, � and f; then, the ribose-base torsion angle v,
and the associated label ‘syn’ or ‘anti’; and then, the five torsion
angles of the ribose, commonly denoted by �0 to �4. Then come the
pseudo torsion angles of virtual bond systems g/h, g0/h0, g00/h00, sum-
marizing the backbone with only P and C40 atoms for g/h, P and C10

for g0/h0 or P and base center position for g00/h00 [see Keating et al.,
(2011) for a good introduction to the backbone description sys-
tems]. DSSR also provides the phase angle of the ribose cycle and its
amplitude, and the associated ‘sugar puckering’ label. Two descrip-
tors concern the position of the 30-phosphorus. Finally, if the nucleo-
tide is involved in a stem, the stem type (A, B or Z) is reported. A
detailed description of computed 3D descriptors is available in the
third group of Supplementary Table S1 in Supplementary Material.
Note that using the whole mmCIF structures for annotation permits
to yield both intra-chain and inter-chain interactions in the descrip-
tors. The ‘pair_type’ fields contain information about both. But the
‘paired’ field, which gives the index value of the corresponding

Fig. 2. Pipeline of the RNANet dataset construction from public databases PDB, Rfam and SILVA
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nucleotide for intra-chain interactions, is set to zero if an interaction
is inter-chain.

2.3 Alignment of the sequences
As the RNA sequences of the chains have now been extracted using
DSSR, we can now compute position-specific nucleotide frequen-
cies. To do so, we use the previously retrieved PDB-Rfam mapping
of every chain. We gather together all the sequence hits of a given
Rfam family, plus the sequences of the 3D chains that are mapped
to this family, in a single file. A multiple sequence alignment is then
recomputed using Infernal’s cmalign program. Technical limits (in
particular the cmalign memory requirements) make it impossible to
realign the largest families on regular computer hardware. It is the
case of the ribosomal sub-units [families from Rfam clans CL00111-
SSU (Small Sub-Units) and CL00112-LSU (Large Sub-Units)]. So,
we decided to re-align these sequences differently. Instead of using
Infernal and Rfam sequences, we consider the specialized database
SILVA (Pruesse et al., 2007) and its aligner SINA (Pruesse et al.,
2012). The SILVA data are larger than Rfam hits on the above fami-
lies’ covariance models, hand-curated, and their specialized aligner
is faster and uses less memory. As ribosomal RNAs are a consequent
portion of the whole RNA 3D dataset, it is worth using specialized
tools. Both SINA and cmalign output multiple-sequence alignments.
Multiple sequence alignments are then summarized into position-
specific scoring matrices (PSSM), which basically are a summary of
the base counts per column in the alignments.

2.4 Re-mapping strategy
The final step is to merge the per-position data concerning the RNA
3D chain with the per-position nucleotide frequencies in the multiple
sequence alignments. As each sequence extracted from a 3D chain
has been realigned with its homologs, it now contains gaps in its
aligned version. On the 3D chain side, gaps may only occur if some
residues are not resolved. On the multiple sequence alignment side,
cmalign produces two kinds of gaps: gaps to the family consensus
whose symbols are ‘-’ and describe an important deletion with re-
spect to the family pattern, and gaps whose symbols are ‘.’ that are
just padding because another sequence contains an insertion with re-
spect to the family consensus. Starting with the two different gapped
sequences, our mapping strategy is the following:

• If the two sequence symbols (nucleotide letter or gap) match, we

merge the position descriptors, and move to the next position.
• If the 3D chain contains a gap (‘-’ symbol) but does not face a

gap to the consensus in the multiple alignment, we first try to

search for a real gap to the consensus in the following positions

(ignoring insertion gaps ‘.’ until a resolved nucleotide letter

comes). If one is found, we map the two positions together. If

none is found, we search for an insertion gap ‘.’. If no gap is

found at all, we map the 3D chain descriptors with unknown

homology descriptors (NaN values). This happens when the

alignment is locally incorrect.
• If the aligned sequence contains a gap, but not the 3D chain, we

just skip this position and move to the following.
• If the sequence symbols do not match but are not gaps, we throw

an error. This never happens in practice.

2.5 Special attention paid to specific cases
In order to maximize the amount of data, problematic cases were
not discarded. We try to overcome particular situations as much as
possible to include all the data. First, it is very common to observe
missing residues in RNA chains, because of unresolved portions in
the mmCIF file. Their positions are marked as gaps in the sequence.
By default, they are later replaced by the most common nucleotide
at this position among the homologous sequences in a dedicated
database field (nt_align_code). A gap character ‘-’ remains in the
main field (nt_code, see Supplementary Table S1). This can be

turned off with an option. Another common case is the presence of
ligands and small molecules crystallized with the RNA chain. DSSR
often detects them as residues and tries to annotate them like nucleo-
tides. This leads to wrong ‘modified bases’ (which are not bases at
all) at the end of chains. We automated the detection and removal of
such ligands, but unfortunately we cannot guarantee that all were
correctly detected. We also tackle various particular cases where
nucleotides are numbered in a non-standard way in the mmCIF files,
e.g. using letters, negative numbers, numbers augmented by a thou-
sand to indicate an artificial nucleotide in the biological sequence,
and many others. Such anomalies are very common. Our processed
chains are numbered from one to their length. Finally, we do not re-
move base–base interactions which do not fit in one of the Leontis–
Westhof nomenclature descriptions. This concerns, for example,
bases interacting using only the Guanine N2. We include them, but
label them in a group named ‘other’.

2.6 Implementation details
RNANet is built automatically using a Python script available on
the EvryRNA website (https://EvryRNA.ibisc.univ-evry.fr/evryrna/
rnanet). It heavily relies on the BioPython package (Cock et al.,
2009) to parse mmCIF and alignment files. It depends on a working
installation of SINA, DSSR and Infernal. A Docker container is pro-
vided to ease the installation. Running it on a multi-core computer
greatly speeds up the computation, but requires more memory, at
scale. Fifteen hours are required to compute all the dataset for the
first time on a 32-core server (Intel Xeon E7-4850 v4
@32x2.10 GHz), with 48 GB of RAM. Later runs will, by default,
only perform necessary computations to keep the database up-to-
date more quickly.

3 Results and discussion

3.1 Dataset files and database
The pipeline organizes the information in a collection of tables in an
SQLite3 database (the database scheme is provided in
Supplementary Fig. S1). This makes it easy to query specific data. By
default, all the per-position information is extracted to CSV files,
one per RNA chain. It is possible to re-extract a different set of files
using for example a different structure resolution threshold. We pro-
vide a few example using Python and the sqlite3 package on
EvryRNA.

Another example of filtering criterion is the data publication
date. With ProteinNet, AlQuraishi proposes pre-computed versions
of his dataset with only the available data at some points in time,
corresponding to rounds of the CASP protein-folding competition.
This allows users to compare their prediction methods or tools with
all the popular ones that have been participating a past CASP com-
petition. Users might want to do the same with the RNA-Puzzles
problems (Miao and Westhof, 2017). No time-frozen releases of the
dataset are pre-computed, but it is possible to query our SQLite
database to yield only the chains whose release date is earlier than a
certain RNA-Puzzles problem.

3.2 General statistics over the dataset
Using the SQL database, it is easy to query various statistics over the
available RNA structural data to date. For example we can query
the most common RNA family, which is RF00005 corresponding to
transfer-RNAs, with 1694 chains.

To date (September 2020) and without further filtering based on
structure resolution, we registered 10 173 RNA 3D chains available
in the PDB. Rfam provided 5505 mappings to known families
(54%). Using BGSU’s redundancy lists (v3.145), we extended this
list to 6217 unique RNA chains, or 6602 chains if we accept to map
copies of chain portions to different Rfam families. These figures are
slightly lower than the ones given in Section 2.1, because they ex-
clude chains that are too short, contain no nucleotides (backbone
only), or are incorrectly parsed by DSSR. The chains were mapped
to 92 Rfam families. The number of homologous sequences found
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by family ranges from 5 (RF00044) to 1 429 931 (tRNAs from
Rfam, RF00005), or 2 225 272 (SSU sequences from SILVA).
Detailed numbers of families as a function of the resolution thresh-
old considered, and numbers of sequences mapped to each Rfam
family are given in Supplementary Figure S2 and Supplementary
Table S2 in Supplementary Material.

Concerning the nucleotide distribution over the RNA families,
Figure 3 presents both a histogram of RNA chain lengths, and the
distribution of Rfam families within that histogram. As we can see,
the longest chains are from Large ribosomal Sub-Units (LSU), fol-
lowed by the Small Sub-Units (SSU). In general, the dataset is mainly
composed of ribosomal RNAs, which also are the longest chains,
followed by transfer RNAs. The majority of other RNA families are
represented by fewer chains, and are often less than 500 bases long.
Nucleotide frequency statistics by RNA family are provided as an
additional CSV file to download on EvryRNA.

To quantify the redundancy among RNA families, we compute
sequence identity matrices for every Rfam family. The sequence
identity matrices can also be used to perform a hierarchical cluster-
ing over chains. The result is presented graphically on Figure 4. As
expected, a majority of the 92 families consists of a very few, or very
similar sequences. A high average identity in a RNA family is reas-
suring regarding the quality of the sequence alignment, but also is a
sign of great redundancy in the sequence space at least. However,
the RNA chains which share a common sequence may present differ-
ent secondary and 3D structures, since the sequence does not com-
pletely determine the structure. We do not further filter the data to
eliminate redundancy (yet), but users are encouraged to do so by
themselves, at the level of redundancy they chose to keep, and at the
cost of data reduction.

3.3 Joint distribution of the g/h pseudotorsions
In Wadley et al. (2007), the authors identified that non-helical
nucleotides usually have discrete possible conformations. To show
evidence, they measured and plotted the joint distributions of the
pseudotorsion angles g and h in non-helical nucleotides, like
Ramachandran did with amino-acids in proteins. For a nucleotide i,
gi is defined as the torsional angle between the four atoms C0i�1

4 , Pi,
C0i4 and Piþ1. Similarly, hi is defined as the torsion angle between Pi,
C0i4; Piþ1 and C0iþ1

4 . These pseudotorsions have been proven easier
to use than the six regular torsion angles of the RNA backbone
(Duarte and Pyle, 1998). They propose a list of clusters linked to a
particular conformation of the nucleotides. As an example use case
of the dataset, we try to reproduce the same clusters with the 2020
data. The joint distribution plot of the g/h pseudotorsions in our
dataset is given on Figures 5A1 and A2, to compare with Figure 6a
and b of Wadley et al. (2007) respectively. With the growth of the
amount of solved structures, all of the C30-endo clusters except the
large central one have vanished. However, we still find the C20-endo
clusters, plus a small new fifth one.

The simplest hypothesis about the difference of clusters between
Figure 5A1 and the original plot from Wadley might be the growth
of the amount of data dissolving small peaks that were significant in
2007 in a widespread mass of points. We indeed can observe the old
clusters if we decide to relax the average plus one standard deviation
threshold to only average, for example (data not shown). This
threshold was originally proposed by Wadley et al. to focus on sig-
nificant peaks. Nevertheless, the proportion of these small peaks
relatively to the large central one has changed over the years. The se-
cond hypothesis could be a difference in the way we filter non-
helical nucleotides, which fall in the central region. We indeed
removed nucleotides annotated by DSSR as being part of an A-form,
B-form or Z-form 3D stem. As many nucleotides may not fulfil
DSSR’s detection criteria, but still be part of or near a helix, they are
included and participate to the massive peak.

A few years later, Keating et al. proposed to use another defin-
ition of the pseudotorsions, called g0 and h0, which uses carbons C01
instead of C04 (Keating and Pyle, 2010). Indeed, because base planes
are easy to solve, C01 are the most precisely located atoms in X-ray
crystallographic RNA structures. So we recompute the plot with g0

and h0, and the results are given on Figure 5B1 and B2, for non-
helical C03-endo and C02-endo nucleotides respectively. Here, we ob-
serve slightly different cluster positions, including small peaks on
the C30-endo plot, pointed by arrows on Figure 5B1. They are well
conserved compared to the 2007 dataset.

3.4 Shortcomings compared to ProteinNet
Besides the fact that the inspiration for RNANet came from
ProteinNet, the two are actually different, because of methodology
variations and because of the gap in the available amount of data be-
tween proteins and RNA.

3.4.1 Small amount of data

The convenience of the Rfam/Infernal ecosystem, providing precom-
puted hits of non-coding RNA sequences on the families covariance
models, comes at the price of heavy data reduction. Because a map-
ping is not (yet) available for every 3D chain, more than a third of
the available chains are unused. This can be critical to deep-learning
models. The development of a nucleic-acid equivalent of
jackHMMER (Johnson et al., 2010), used in ProteinNet to find se-
quence homologs (AlQuraishi, 2019b), could be of great use. First,
it would allow to take into account all the available 3D chains.
Second, it would find more homologous sequences for every chain,
using even larger RNA databases (Rfam is built only on a collection
of reference genomes as a basis, and only non-coding RNAs).

3.4.2 Data diversity and pre-computed splits of training, testing and

validation sets

As Figure 4 shows, sequences are very close to each other inside a
family. And even across several families, sequences are dependant

Fig. 3. Distribution of sequence lengths among RNA families (logarithmic scale). The longest families are the 4 LSU families (RF02540, RF02541, RF02543 and RF02546 for

archaeal, prokaryotic, eukaryotic and mitochondrial ribosomes, respectively) with over 2500 nucleotides. SSUs follow (RF00177, RF01960 and RF02545), around 1600

nucleotides long. Transfer RNAs are the most common family, but they are less than 300 bases. The group labelled ‘Other’ contains various RNAs from 82 families, all smaller

than 500 nucleotides long
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on each other and linked by evolutive relations, e.g. the three fami-
lies of large ribosomal sub-units in the three great living domains.
So, without further filtering, RNA chains of the dataset cannot be

considered independent and identically distributed. This also means
that the dataset cannot be naively split randomly to get training and
test sets. To overcome this, the ProteinNet approach (AlQuraishi,

2019b) proposes to carefully select sequences to build training and
test subsets without having two sequences with too much similarity
in one of each. This would indeed constitute a leak of information

between the training and test sets. Such work is even harder with
RNA. First, we cannot reproduce the same filtering algorithm yet,
because the tools used for the multiple-sequence alignment based

clustering, HHBlits (Remmert et al., 2012) and MMSeqs2
(Steinegger and Söding, 2017), do not support nucleic acid sequen-
ces for now. As for jackHMMER, support of these tools for nucleic
acid sequences would allow similar strategies. Second, any other

automated or manual approach would still be difficult, because of
the small amount of data. As a consequence, we have to provide the
un-split dataset for now, and let the users decide how they want to
build the splits. Splits may come in a later release if a pertinent strat-
egy is found, or if new software tools are released.

3.5 Upcoming plans and new descriptors
RNANet will be continuously updated to integrate newer data as
the PDB grows. The first thing to do, as soon as the data permits it,
would be to further cluster all the RNA chains by similarity and de-
fine sets of points with enough distance between them to be consid-
ered independent. This would allow pre-computed training, testing
and validation sets.

Moreover, if an equivalent of the protein tools jackHMMER,
HHBlits or MMSeqs2 is released with support for RNA sequences,
improvements would become possible to closer follow the
ProteinNet strategy. A sequence-alignment-based clustering step
could then be added, and the search for homologous sequences
upgraded.

In addition, more descriptors would be easy to compute and
could be added in future versions. For example, the BGSU RNA
Structure Atlas which uses annotations by FR3D (Sarver et al.,
2007) instead of DSSR does not compute the 3D geometric descrip-
tors, but proposes annotations of stacking interactions, base-
phosphate interactions, and loop types (hairpin, internal or multiple
loops). DSSR also proposes a way to identify splayed-apart confor-
mations of some nucleotides, which could be integrated to our ana-
lysis. Such features might be added in a future release of the dataset.

4 Conclusion

To speed up the development of machine-learning based RNA struc-
ture prediction tools, we developed a pipeline which builds a multi-
scale dataset, called RNANet, from public data. Both the dataset
and pipeline code are available on the EvryRNA software platform
(https://EvryRNA.ibisc.univ-evry.fr/evryrna/rnanet).

The dataset gathers information about the sequences, the second-
ary structures and the tertiary structures of available RNA chains
chosen with resolution better than a given threshold. We propose a
list of various descriptors, including nucleotide frequencies com-
puted on sequences from the Rfam and SILVA databases known to
be homologous to the chains, realigned with the 3D chains
sequences.

The dataset can be easily sub-sampled or filtered on demand
using custom SQL queries. For example, structures available before
a certain date can be retrieved, to allow comparisons with previous
RNA-Puzzles benchmarks (Miao and Westhof, 2017). A structure
resolution criteria, or a gap percentage threshold, or a minimum

Fig. 4. Sequence identity matrices of RNA chains mapped to various Rfam families (clustered by Ward’s method). The more yellow (or light gray) a distance matrix is, the

more similar the sequences are. The more blue (or dark gray) the matrix is, the more distant the sequences are. Families with less than three chains available in 3D are not rep-

resented (20 families)

Fig. 5. Ramachandran-like plots of the couples of pseudotorsions (g; h) in A1 (non-

helical C30-endo nucleotides) and A2 (C20-endo nucleotides), and (g0 ; h0) in B1 (non-

helical C30-endo nucleotides) and B2 (C20-endo nucleotides). Gaussian kernel dens-

ity estimates are superposed to scatter plots. The line contours correspond to qþ
r; qþ 2r and qþ 4r where q is the average height of the kernel and r its standard

deviation. The used nucleotides are from unique chains of resolution 4.0 Å or better.

Plots of the distributions using more restrictive thresholds at 3.0 and 2.0 Å are avail-

able in Supplementary Section S4
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number of certain types of basepairs can also be applied to yield
only the required data.

The amount of data, being directly dependant on the content of
public databases like the PDB, is for now an obvious limit when it
comes to deep models, which would be subject to over-fitting issues.
In the meantime, the dataset is useful to compute descriptive statis-
tics about RNA structures [e.g. reproducing (Wadley et al., 2007)
results, motif discovery or recurrent interaction patterns descrip-
tion]. Simple supervised learning models, trying to predict some of
the structural descriptors using sequence and homology data, can
still make a great use of RNANet. The automated pipeline will keep
the RNANet dataset up-to-date on EvryRNA, as long as the public
databases grow.
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