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The widely spreading COVID-19 has caused thousands of hundreds of mortalities over the world in the
past few months. Early diagnosis of the virus is of great significance for both of infected patients and doc-
tors providing treatments. Chest Computerized tomography (CT) screening is one of the most straightfor-
ward techniques to detect pneumonia which was caused by the virus and thus to make the diagnosis. To
facilitate the process of diagnosing COVID-19, we therefore developed a graph convolutional neural net-
work ResGNet-C under ResGNet framework to automatically classify lung CT images into normal and
confirmed pneumonia caused by COVID-19. In ResGNet-C, two by-products named NNet-C,
ResNet101-C that showed high performance on detection of COVID-19 are simultaneously generated
as well. Our best model ResGNet-C achieved an averaged accuracy at 0.9662 with an averaged sensitivity
at 0.9733 and an averaged specificity at 0.9591 using five cross-validations on the dataset, which is com-
prised of 296 CT images. To our best knowledge, this is the first attempt at integrating graph knowledge
into the COVID-19 classification task. Graphs are constructed according to the Euclidean distance
between features extracted by our proposed ResNet101-C and then are encoded with the features to give
the prediction results of CT images. Besides the high-performance system, which surpassed all state-of-
the-art methods, our proposed graph construction method is simple, transferrable yet quite helpful for
improving the performance of classifiers, as can be justified by the experimental results.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

The outbreak of a new coronavirus, which was later named as
COVID-19, has surprised the world with its high infectivity and
fatality rate [1]. Currently, more than seven million people around
the world have been diagnosed with the virus while more than 406
thousand of them have died because of the virus, until 9/
June/2020. Due to the influence of the virus, millions of cities have
locked down which severly caused the economy damage all over
the world to slow the spreading of the virus as there is no vaccine
available yet. Patients being infected may show symptoms like
having fever, coughing in a few days and could develop into severe
illness or even die quickly. An early diagnosis turns out to be the
most effective way for the necessary treatment and stopping the
spreading of the virus. Viral nucleic acid test and CT screening
are the two most widely used techniques for clinical diagnosis.
However, the viral nucleic acid test requires sophisticated devices
and takes a long time to give the diagnostic result [2]. Additionally,
the high false-negative rate indirectly facilitates the spread of the
viral COVID-19. Compared to the viral nucleic acid test, chest CT
images are reported of high sensitivity [3]. However, manual inter-
pretation of CT scanned images is time-consuming and is unstable
due to the personal experience of radiologists and artefacts such as
fatigue. Therefore, developing an automated computer-aided diag-
nostic system with high accuracy is demanding.
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Recent years, we have witnessed significant advancement of
deep learning, which was highly featured by Convolutional neural
network (CNN). In 2012, a new structured CNN named AlexNet
showed incomparable superiority to other traditional methods on
natural image classification task [4]. Later on, the performance of
CNNs has been greatly improved thanks to the upgraded hardware
and novel architectures. Compared to the Central Processing Unit
(CPU), Graphics Processing Unit (GPU) shows more powerful paral-
lel computing power in graphics processing. New generations of
GPUs, which benefit from the advancement of Integrated Circuits
(IC) and electron components, have been equipped with even
stronger computation capability. Besides the improvement of
hardware, structural innovations of CNNs considerably boosted
the performance of the state-of-the-art networks. By increasing
the depth and width of networks, GoogLeNet [5], a 22-layer net-
work, more efficiently utilizes the computing resources in the net-
work compared to the previously developed networks. However,
one problem brought in by the increase of networks’ depth and
width is gradient vanishing in the training process. To mitigate
the training difficulty, residual networks [6], which incorporated
residual learning, achieved even better performance on ImageNet
while the complexity remains lower than VGG [7]. Compared to
traditional convolution, depthwise separable convolution produces
fewer parameters when the same sizes of the generated output are
given [8]. Novel convolution technique named dilated convolution
was proposed to enable a larger receptive field of convolutional
kernels without introducing extra parameters. Alongside the
improved performance of CNNs, CNNs have also been widely used
in engineering, business, medicine [9–11]. CNNs have demon-
strated powerful capability on extracting and combining spatial
features to form high-level features, which turn out to be more
representative compared to manual-crafted features. Recently
numerous reports also demonstrated the success of AI and
machine learning [13–22], and other applications on brain func-
tional network [23–27], indoor detection [28,29], fingerspelling
[30–32], and image analysis [33]. However, the applications of
CNNs are greatly hindered because the underlying relationships
between each element are ignored. Graph convolutional neural
network (GCN), which can better deal with graph-structured data,
therefore, is receiving more attention from different areas. Each
element in GCNs is taken as a node while the relationships
between elements are denoted by edges. Aggregation of neigh-
bourhood features is one of the keys that differentiates GCNs from
CNNs. Given the advantages of GCNs, they have also been widely
used in areas including image classification and semantic segmen-
tation [12]. Considering the benefits of GCNs, we developed a high-
performance system for the detection of COVID-19 based on GCNs.
In this paper, we first proposed a novel ResGNet framework, and
then we proposed three different models for the detection of
COVID-19 when implemening models under the framework:

(i) We first proposed ResNet101-C model, which takes
ResNet101 as the backbone. The models ending with ‘‘-C”
here and after stands for the classifiers that detect COVID-
19. The purposes of the proposition of ResNet101-C are
two folds. (a) ResNet101-C alone can be used to classify lung
CT images into normal and pneumonia and therefore detect
COVID-19. (b) More importantly, after training with the
interested training set, ResNet101-C is enabled to extract
more representative features for the rest two models
NNet-C and ResGNet-C. We first add more layers to the top
of ResNet101, which is close to the output, to obtain
ResNet101-C and have it trained with the training set.
High-level features of 128 dimensions are then extracted
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from the activation layer in the ResNet101-C for further clas-
sification though ResNet101-C alone can work as a classifier
for the binary classification task here.

(ii) NNet-C, a one-layer neural network, is a simple classifier
that takes features extracted by ResNet101-C as input. Also,
the proposition of NNet-C mainly comes from two parts. One
is that NNet-C alone is a high-performance classifier on
detection of pneumonia caused by COVID-19. Another main
reason is that NNet-C, which shares the same architecture as
the graph neural network (GNN) in ResGNet-C, can be used
as the model for comparison with models built under
ResGNet-C framework.

(iii) ResGNet-C. In ResGNet-C, ResNet101-C is reutilized for fea-
ture extraction. Graphs of the extracted features are con-
structed accordingly and are then combined with the
extracted features as the input to a 1-layer GNN in
ResGNet-C for classification. To build graphs, images both
in the train set and test set are divided into batches to obtain
features in batches. In each batch of the train set, each fea-
ture is taken as one node of the graph while the edges
between nodes are built according to the top k neighbours
with the highest similarities. Inspired by [34], we hypothesis
that there are edges between one node and other top k near-
est nodes. The distance between nodes is measure by Eucli-
dean distance while edges are quantified by the adjacency
matrix. The 1-layer GNN, though shallow in terms of depth,
however, showed powerful performance after trained with
graph-combined features.

Experiments on our COVID-19 dataset demonstrated that our
proposed ResGNet-C achieved the highest accuracy on the dataset
by using the 5-cross-validations, which surpasses all of the state-
of-the-art models. The contributions of this paper are mainly
three-folds. One is that this is the first attempt to date to combine
graph representation with CNN on COVID-19 detection. Another is
that we proposed a ResGNet framework that easily integrates
graph representation of features, which is also extendable to other
diseases detection area. The last and most important one is that we
developed three different models for the detection of COVID-19
while ResGNet-C performed best. This paper is organized as fol-
lows. In Section 2, we will briefly introduce the basic of GCN. Then
we will move to implementations of ResGNet framework in Sec-
tion 3. Experiment design and results will be presented in Sections
4 and 5, respectively, while we conclude this paper in Section 6.

2. Background

Our world has been flooded with countless data from areas of
chemistry, biology and computer science. To represent the under-
lying relationships of data, graphs are widely used. GNNs are there-
fore developed to the process the graphs constructed based on the
data. Given the graph G and one of its nodes n, GNNs can be repre-
sented as learnt functions that map G and n to vectors of reals:

f ðG;nÞ 2 R
m ð1Þ

where m is the dimension of Euclidean space [35].
GNNs can be extended to GCNs by introducing convolutions.

There are considerable works that successfully built graphs for
application of GCNs in various areas [12,36]. A Text GCN was built
in [37] that achieved better performance than the state-of-the-art
techniques on text classification. The single text graph was created
according to word-occurrence in the particular corpus. The recom-
mendation system is another popular application scenario of GCN.
In [38], authors encoded graph convolution with RNNs to mine
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possible pattern of users and items. There are also successful works
of GCNs on medical image analysis. To overcome the shortcomings
of patched-based in colorectal cancer grading, Yanning et el. pro-
posed so-called CGC-Net that takes the nucleus in a histology
image as nodes while cellular interactions are mapped as edges
[39]. Another GCN for cervical cell classification was developed
in [34]. k-means clustering is applied to features extracted by CNNs
to acquire centroids, based on which each node is depicted by the
nearest centroid. The element in the adjacency matrix is set to one
when two nodes are found to be neighbours to each other accord-
ing to the Euclidean distance.

As the global situation is worsening due to COVID-19, experts
are devoted to solving the global issue collaboratively. To facilitate
the detection of COVID-19, researchers from both clinical area [40–
42] and computer science area [43–45] have contributed their
valuable efforts. Bilateral pulmonary parenchyma ground-glass
and consolidative pulmonary opacities are typical CT findings,
which, therefore, could be determinants on making the diagnosis
of COVID-19. It was found by Wang et al. [46] that multilobe
lesions appeared in most patients while those lesions were usually
shown in the peripheral zone and the central zone. Patchy shad-
ows, ground-glass opacity and consolidation change are demon-
strated among patients. Similar conclusions were found by Zhao
et al. [47]. As pointed out by them, chest CT images of patients
being infected by COVID-19 are highly featured by lungs that were
in the presence of bilateral ground-glass lesions. The progressive
lesions are, however, consolidations with no migratory lesions. In
the computer science community, there are also considerable
works that aim at giving reliable diagnostic results based on
images. A deep learning model named (COVID-Net) feed with X-
rays images was proposed to detect COVID-19 cases. The results
on open source repositories showed promising results while the
developed AI system is publically available. In [43], the authors
developed a detection system by using inception blocks [5]. How-
ever, the accuracy, which was 0.7310, is still quite low compared to
other existing models. In another work [44], the authors developed
a 3D deep learning framework by deploying ResNet50 as the back-
bone. The sensitivity and specificity were also more than 0.90,
which gave an overall accuracy of 0.96. Clinically, sensitivity is
more important than specificity to some extent. In work [45], the
author developed an automatic detection system that achieved
100% sensitivity.

Though experts are consolidated on providing diagnostic results
in faster and more accurate ways. However, there are still many
challenges ahead. For radiologists, artificial factors such as fatigue
and personal experience would heavily harm the accuracy of the
diagnostic results. Also, it is challenging for radiologists to provide
accurate results in a limited time. For the automatic detection sys-
tems, high sensitivity for most of the systems is still one main
obstacle that prevents them from gaining better accuracy given
the complexity of images and other possible factors. Also, all of
the methods mentioned above ignored to consider the underlying
relation between each chest images. Considering this, we proposed
our ResGNet framework to pave the way for future research on the
application of GCN to the detection of COVID-19. Besides, two
other models named ResNet101-C and NNet-C that showed certain
capability on detection of COVID-19 are developed as well.
3. Methodology

3.1. Proposed framework: ResGNet

ResGNet frameworks, which is flexible for transplanting to dif-
ferent image classification tasks, consists of pre-trained CNNs for
feature extraction and GNN for classification. The pre-trained CNNs
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could be trained on different image data sets and then be directly
transferred to the classification task. However, many works
showed that the performance of pre-trained CNNs would be signif-
icantly improved if they can be fine-tuned by datasets that are
highly similar to the interested datasets [48,49]. Considering this,
the CNNs that are pre-trained on natural images are firstly trained
on the concerned datasets. Therefore, the top layers, which are
close to the output, of the pre-trained layers have to be modified.
After training with the interested datasets, the pre-trained CNNs
is then implemented in ResGNet framework. Though the pre-
trained networks can be directly used for classification, the perfor-
mance can be further improved by introducing GNN.

After feeding pre-trained networks with images, features can
then be extracted from fully-connected layers in the network.
We then take each feature as one node in graph G to build graph
representation for GNN,. Graph G is paired with (V, E), where V
denotes nodes in the graph while E is the set of edges [35]. For a
node classification task, v i 2 V i 2 RN

� �
for each node in the graph

while N is the number of nodes in the graph G. Therefore,
v i;v j
� � 2 E stands for the edge between node v i and v j. As E is

abstract, the adjacency matrix A2 RN�N is used to depict the edges
betweeen nodes. When there is an edge between nodes i and j, the
corresponding location in the adjacency matrix Aði; jÞ is set to be
one. We assume that there is an edge when the node falls into
the top k nearest neighbours of another node according to Eucli-
dean distance as shown in Fig. 1. Compared to other graph gener-
ation model [50], our method of constructing structured graphs is
simple and straightforward. Instead of iteratively updating nodes
in the graph, we predefined the number of nodes according to
batch size N while edges are updated concerning the adjacency
matrix.

Let the extracted features of our chest CT images be X 2 RN�M, Xi

and Xj 2 R 1�M corresponds to node i and node j in X, then distance
Disij between node i and node j is calculated according to:

Disij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

m¼1
Xim � Xjm
� �2r

ð2Þ

By introducing a knn search method, which looks for top k near-
est neighbours with minimum Euclidean distance, we can find the
closest top k nearest neighbours. Given node i and a vector of reals

Disi ¼ Disi1 � � �Disij � � �DisiN
� � ð3Þ

we can find and record k neighbours by simply sorting Disi. We used
knn(Xi) to refer to the k nearest neighbours of node Xi. Therefore, the
adjacency matrix is built as follows:

Ai;j ¼
1; if Xj 2 knn Xið Þ
0; otherwise

�
ð4Þ

Correspondingly, a degree matrix D that has the same dimen-
sions as A can be calculated according to the following equation:

Dii ¼
XN

j¼1
Ai;j ð5Þ

where Dii is the trace of degree matrix D. Given the features
X 2 RN�M in a GCN with multi-layers, node features are updated
according to the following rule:

Fhþ1 ¼ d að Þ ð6Þ

a ¼ A
�
FhWh ð7Þ

Fhþ1 2 RN�Mhþ1
and Fh 2 RN�Mh

stands for the nodes’ feature rep-
resentation in (h + 1)th layer and hth layer, respectively.

a 2 RN�Mhþ1
. Mh+1 is the dimension of feature representation in
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(h + 1)th layer. Wh 2 RMh�Mhþ1
is the weights between hth layer and

(h + 1) layer. d(�) is the softmax activation function, which can be
defined as:

dðaiÞ ¼ eaiPMhþ1

j¼1 eaj
ð8Þ

A
�
2 RN�N indicates the normalized adjacent matrix A. The pro-

cess of normalizing A can be demonstrated as [51]:

A
�
¼ D�1

2AD�1
2 ð9Þ

As GNNs are usually no more than two layers [34,51], we build a
one layer GNN in this work. Bias term b is introduced to improve
the performance of fitting. Therefore, we have:

F1 ¼ d A
�
F0W0 þ b0

� 	
ð10Þ

Specifically,

F0 ¼ X ð11Þ
which is the features extracted by pre-trained CNNs. The combina-
tion of features extracted by pre-trained networks and graph is the
key of GNN in the proposed framework. However, we found it effec-

tive by simply multiplying A with the extracted features, which
means:

Fcombined ¼ A F0 ¼ AX ð12Þ
Fcombined is then used as the input of GNN to optimizeW0 and b0. The
error between F1 and the expected output Y can be written as:

DE ¼
X

j
Y jlnðF1

j Þ ð13Þ

where Yj is the ture category of feature j and F1
j is the predicted cat-

egory of feature j. W0 is then updated according to:

W0 ¼ bW0 þ ð1� bÞ @DE
@W0 ð14Þ

b0 ¼ bb0 þ ð1� bÞ @DE
@b0 ð15Þ

where b is the momentum rate.
By training GNN with the combined input Fcombined, we finally

have a model under ResGNet framework. The pseudocode code of
ResGNet model is given in Algorithm 1.
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Algorithm 1. Proposed ResGNet Framework

Step 1: Load pre-trained networks trained on ImageNet;
Step 2: Replace top layers with new top layers for the

classification task;
Step 3: Train modified pre-trained network on the target

dataset with predefined hyperparameters;
Step 4: Generate features through activation layers in the

fine-tuned network;
Step 5: Divide the features into batches;
Step 6: Find top k nearest neighbours for each feature in the

batches and build graphs;
Step 7: Combine features with graph representation by

multiplying features with the normalized adjacency

matrix A;
Step 8: Train GNN in ResGNet with the combined features and

update parameters.

We, therefore, implemented ResGNet-C under our proposed
ResGNet framework. Simultaneously, we then have ResNet101-C
for preliminary classification and feature extraction and NNet-C
for further classification and comparison. Flow chart of constructing
three models is shown in Fig. 2.

3.2. Proposed model 1: ResNet101-C

To obtain the pre-trained network under ResGNet framework,
we choose to use ResNet101 to build ResNet101-C. The reason
why we use ResNet101 as the backbone here is that ResNet101
showed powerful performance on the image classification task
[6]. Same as other networks, ResNet101 includes convolution,
batch normalization and pooling units. Convolution is imple-
mented by multiplying images with sliding windows, namely con-
volution kernels. Usually, the group of convolution kernels
increases and the size of output features decreases while the net-
work goes into deeper. Convolutions are usually stacked to form
convolution blocks where features within the block remain the
same size as the input while the size shrinks due to a larger stride
of convolution and pooling. Given the size of the input to convolu-
tion is

SizeInput ¼ CI � CI � CGI ð16Þ

nstruction.



Fig. 2. Acquisition of three models.
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where CGI is the number of channels of the input, the size of convo-
lutional kernels is defined as

SizeKernel ¼ CF � CF � CGI � CGO ð17Þ
where CGO is the number of channels of the output. If we have the
stride of convolution CS and assume the size output is

SizeOutput ¼ CO � CO � CGO ð18Þ
then the numerical relationship between the size of output and
input and kernels are:

CO ¼ CI � CF

CS
þ 1 ð19Þ

Similarly, the size of features shrinks as well after max-pooling
when the stride is greater than 1. By doing so, the more abstract
features with much fewer dimensions can be extracted. However,
what makes ResNet different from other networks was the pro-
posed residual learning. Given identity Z and its mapping F(Z), it
was assumed that the underlying mapping of features H(Z) after
a series of stacked layers was related to F(Z) and Z by:

F Zð Þ ¼ H Zð Þ � Z ð20Þ
H(Z), therefore, can be represented by:

H Zð Þ ¼ F Zð Þ þ Z ð21Þ
It was believed that H(Z) can then be optimized by optimizing

mapping F(Z). Adding of F(Z) and Z is implemented by shortcut
connections that skip several convolutional layers and have iden-
tity Z added to F(Z) directly.
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To obtain ResNet101-C for the classification task, we inserted a
dropout layer and two fully connected layers with 128-neurons
and 2-neurons as output size between FC1000 layer and the Soft-
max layer in original ResNet101. Given that the original connec-
tions in ResNet101 are FC1000-softmax-classification, then the
adapted connections are FC1000-Dropout-FC128-FC2-softmax-clas
sification. Dropout layer is introduced to prevent the overfitting
[52]. Also, FC128 is a transitional layer that prevents significant
information loss, which could otherwise happen when inputting
the features directly into the final FC2 layer. The pseudocode code
of implementing ResNet101-C is given in Algorithm 2. By doing so,
we can have the architecture of ResNet101-C in following Fig. 3.

Algorithm 2. Implementation of ResNet101-C

Step 1: Load ResNet101 trained on ImageNet;
Step 2: Remove the top layers above FC1000 layer;
Step 3: Add a dropout layer as new top layers;
Step 4: Add FC128 and FC2 as new top layers;
Step 5: Add the softmax layer and classification layer for

output, which gives ResNet101-C;
Step 6: Training ResNet101-C with the training set of

COVID-19.
for i = 1: number_of_epochs
Step A: shuffle images in the train set
Step B: divide train set into batches
Step C: train ResNet101-C with each batch

end
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Fig. 3. Architecture of ResNet101-C (Residual block denotes previous layers before
FC1000 in the original ResNet101. FC1000, FC128 and FC2 are fully connected layers
with output sizes of 1000, 128 and 2 respectively. Dropout layer drops part of
connections between FC1000 and FC128 during the training session to prevent
overfitting.).

Fig. 4. Architecture of NNet-C.

Fig. 5. ResGNet-C.
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3.3. Proposed model 2: NNet-C

To provide a fair comparison with our GNN in ResGNet, we pro-
posed a simple neural network NNet-C that has the same structure
as our GNN while the main difference is the input. Given a batch of
images X 2 RH�W�3�N , H, W, N stands for height, width, batch size,
respectively. Then the output features X0 of ResNet101-C can be
obtained by:

X0 ¼ ResðXÞ ð22Þ

where the features X0 2 RN�128. Resð�Þ is the operation of feature
extraction by applying ResNet101-C. For NNet-C, the input is the
features extracted by ResNet101-C in the layer FC128. Our GNN in
ResGNet shares the same architecture of NNet-C while NNet-C is
also an independent classifier. The architecture of NNet-C is shown
in Fig. 4.

3.4. Proposed model 3: ResGNet-C

For COVID-19 detection, we term our model as ResGNet-C that
was implemented under the proposed framework ResGNet.
ResNet101-C is used to provide GNN in the proposed ResGNet-C
with high-level features. ‘‘ResGNet101-C-FC128” means only layers
including layer FC128 and before in ResGNet101-C in Fig. 5 are
reutilized in ResGNet-C. In Fig. 5, the asterisk in the circle means
the production of the adjacency matrix of graphs and features.
The proposed GNN in ResGNet has the same structure as NNet-C
597
while the main difference is GNN takes the combined features as
input while the input of NNet-C is only the high-level features.

3.5. Training

When training our proposed ResGNet-C, images have to be
divided into batches while the size of batches N can be customized.
Empirically, we set the batch size to be 2P, N = 2P. The details about
choosing Pwill be presented in the experimental section. However,
the number of images in the data set doesn’t necessarily to be
divisible by the batch size N. Images in the second last batch will
be reused in the last batch to make the size of the last batch to



Fig. 6. Batch acquisition.
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be N. The detailed process of acquiring each batch in the data set is
shown in Fig. 6. The top red bar denotes the sequence of images in
the data set, which could either be the training set or test set. Given
the number of images in the data set is O, the batch size is N, the
number of batches

S ¼ O=N½ � ð23Þ
where d�e is the ceiling operation.

Each batch of images is first forwarded to ResNet101-C for fea-
ture acquisition. Then the graph within features is built by the
aforementioned knn algorithm. By multiplying the normalized
adjacency matrix with the features, the graph-combined features
can then be forward to the classification layer to calculate the
errors. The errors are then back-propagated to update the weights
in GNN. The data flow of training data in the training period of
three proposed models is shown in Fig. 7. The pseudocode of train-
ing ResGNet-C is given in Algorithm 3.

Algorithm 3. Training process of ResGNet-C

Step 1: Generate training features through ResNet101-C;
Step 2: for k = 1: number_of_epochs

for n = 1: STr (STr is the number of batches in the training
set, which is calculated through equation (23)

Step A: Construct relation graph in each batch of
features;

Step B: Combine features with graph;
Step C: forward combined features to GNN;
Step D: backwards the errors to update weights in

GNN;
end

end
Step 3: Save and store the weights of ResGNet-C.
3.6. Inference

In the inference phase, we followed a similar pattern to build and
embed graphs. When inferring new images with the trained
ResGNet-C, however, the size of batches is suggested to remain the
same as the setting for the training set to maintain the best perfor-
mance of the trainedmodel. If there are no sufficient images for test-
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ing, samples from the training set can be utilized to form at least one
batch of images. Details of inference are given in Algorithm 4.

Algorithm 4. Testing process of ResGNet-C

Step 1: Load trained ResGNet-C;
Step 2: Generate testing features through ResNet101-C;
Step 3: Divide images in the test set into STe batches according

to equation (23).
Step 4: Get the predicted categories for images in the test set.

for n = 1: STe
Step A: Construct graph for each batch of features;
Step B: Combine features with the graph;
Step C: forward combined features to GNN;
Step D: Get the predicted categories of each batch;

end
Step 5: Calculate the accuracy by comparing the predicted

categories to real categories.
4. Experiment design

4.1. Metrics of validation

When measuring the performance of our proposed models, five
indicators including specificity, sensitivity, accuracy, precision, and
F1 score, are used in our experiment. True Positive (TP), False Pos-
itive (FP), True Negative (TN) and False Negative (FN) are four main
components involved in the calculation of the above indicators. TP
indicates the number of correctly classified pneumonia caused by
COVID-19; TN indicates the number of correctly classified normal
images; FP indicates the number of images that are misclassified
as pneumonia caused by COVID-19; FN indicates the number of
images that are misclassified as normal.

Specificity reflects how our models perform on recognizing nor-
mal images from the test set and can be calculated through:

Specificity ¼ TN
TN þ FP

ð24Þ

Sensitivity is the percentage of true positive (COVID-19 con-
firmed pneumonia) images that are correctly recognized and can
be defined as:



Fig. 7. Data flow of train set in three models.

Table 1
Variable allocation in optimal k and N for knn algorithm.

Variable name Meaning

k Number of neighbours considered
ks A constant denotes the increment stride of k
k* The variable that stores the best k so far
N Batch size
Ns A constant value denotes the increment stride of N
N* The variable that stores the best N so far
Current_Accuracy A variable that stores the highest accuracy on the test set

so far.
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Sensitiv ity ¼ TP
TP þ FN

ð25Þ

Accuracy demonstrates the capability of our model on correct
classification and can be written as:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð26Þ

Precision describes the percentage of predicted patients are true
patients by

Precision ¼ TP
TP þ FP

ð27Þ

F1 score measures the classification ability:

F1 score ¼ 2� Precision� Sensitiv ity
Precisionþ Sensitiv ity ð28Þ
4.2. Choice of best k and N

In ResGNet framework, N determines the sizes of graphs to be
built while k determines the number of neighbours that should
be consdered when calculating the adjacency matrix A in the
graph. Therefore, the choice of k and N should be carefully chosen
while training ResGNet-C. To choose the best k and N for our
ResGNet-C, we vary both k and N until best k and N found. We
use overall accuracy to measure the performance of GNN when dif-
ferent k and N are introduced.

ðk�;N�Þ ¼ argmax½Cðk;NÞ� ð29Þ
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where C(k, N) means the overall accuracy of GNN on test set when k
and N are used as the number of neighbours and batch size respec-
tively. k* and N* are the ideal values of k and N. The reason why we
use the accuracy on test set is that we aimed at designing models
that performed best on unseen data. The search domain of two vari-
ables are set as

k 2 kLB; kUB½ � ð30Þ
N 2 ½NLB;NUB� ð31Þ

where kLB and kUB stands for the lower bound and upper bound of k.
NLB and NUB stands for the lower bound and upper bound of N. The
relationship between k and N is that k < N. In total, seven variables,
shown in Table 1, are defined in our algorithm. Details of searching
for k* and N* can be seen in Algorithm 5.



Table 3
Hyperparameters of GNN.

Parameter Value

Lower bound NLB 16
Upper bound NUB 32
Stride Ns 16
Lower bound kLB 3
Upper bound kUB N � 5
Stride ks 4
Maximum training epoch 40
Initial learning rate 10-4

Learning rate drop period 5
Learning rate drop rate 0.5
Optimization method SGDM
Shuffle of the train set Each epoch

Table 2
Hyperparameters of ResNet101-C and NNet-C.

Parameter Value

Maximum training epoch 40
Initial learning rate 10-4

Batch size 8
Learning rate drop period 5
Learning rate drop rate 0.5
Optimization method SGDM
Shuffle of the train set Each epoch
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Algorithm 5. Choice of optimal k and N for knn

Criterion: C = Overall Accuracy on the test set
Objective Function: See equation (29).
Search domain: See equations (30) and (31).
Procedures:
Step 0: Variable Allocation
See Table 1.
Step 1: Initialization
Initialize k*, k with kLB,

k* = k = kLB
Initialize N*, N with NLB.

N* = N = NLB

Initialize variable Current_Accuracy = 0
Set the increment stride of k to be ks and the stride of N to be

Ns.
Step 2: Retrain
Train GNN with k, N and obtain C(k, N) on test set;
Step 3: Update Current_Accuracy & k* & N*
if C(k, N) > Current Accuracy % find a better solution

Current Accuracy ¼ Cðk;NÞ;
k* = k;
N* = N;

end
Step 4: Update k

if (k + ks < kUB) && (k + ks < N)
k = k + ks;
Then go back to Step 2;

else
Go to Step 5;

end
Step 5: Update N

if N + Ns<NUB

N = N + Ns;
Then go back to Step 2;

else
Go to Step 6;

end
Step 6: Output k* and N*.

When inference the test images, all of the test images are fed to
trained ResNet101-C to get the features. These features can be
directly forwarded to NNet-C for classification without partitioning
into batches. However, they have to be divided into batches for GNN
in ResGNet-C because graphs between features nodes have to be
built in a batch-wise form. But the order of images in the test set
doesn’t necessarily to be the same when repeatedly redoing test
on same test images. The graph representations are robust and
are intrinsic with the features of images. Therefore, images in the
train set can be sampled to form a batch of the testing images when
there are not enough images to be classified.

4.3. Experiment setting

In this paper, all of the experiments are carried out on a per-
sonal laptop with 16G RAM and GPU GTX1050. There are two sets
of parameters for training ResNet101-C, NNet-C and GNN in
ResGNet-C. When training ResNet101-C, we have 40 as maximum
training epochs, initial learning rate 10�4, batch size 8. The initial
learning rate is 10�4 while it halves every five epochs. The stochas-
tic gradient descent with momentum (SGDM) is used as an opti-
mization algorithm. During the training session, the train set
shuffles at every epoch. NNet-C is trained with the same hyperpa-
rameters. Details are shown in Table 2.
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The training parameters for GNN are set throughout all of the
experiments if no other specifications are given. Batch size and
number of neighbours in knn algorithm are two parameters that
could significantly affect the performance of ResGNet. The maxi-
mum training epoch is 40. When training our GNN with extracted
features, the training set shuffles each epoch. Considering that the
size of the testing is small, we set the following parameters when
searching for best k and N, as can be seen in Table 3. It would be
meaningless when kUB is too close to N, we, therefore, defined
the upper bound kUB according to N by:

kUB ¼ N � 5 ð32Þ
5. Results and discussions

In this section, we will have a detailed introduction to the data-
set used in this research, followed by metrics of validation used in
the research. To design the best ResGNet model, we tried different
batch size N and the number of neighbours k to determine the best
parameters for the COVID-19 detection task. By having an internal
comparison within three proposed models, it was justified that
ResGNet-C performed best though it has great similarity to
ResNet101-C and NNet-C on certain aspects. We end up this sec-
tion by comparing our ResGNet-C with the state-of-the-art meth-
ods and found that our ResGNet-C still performs best among all
of the methods compared.

5.1. Dataset acquisition

There are in total of 132 cases utilized for analysis in this
research. 66 of them, who have confirmed pneumonia caused
COVID-19 by the Fourth People’s Hospital of Huai’an City, con-
tributed 148 CT scans that are scanned between January 2020
and March 2020. To balance the data set, we used another 148
CT scans from 66 cases that are randomly selected from 159
healthy examiners. The instrument and settings for CT acquisition
are Philips Ingenity 64 row spiral CT machine, Mas:240, KV:120,
layer spacing 3 mm, layer thickness 3 mm, Mediastinum window



(a) Normal (b) Pneumonia caused by COVID-19

Fig. 8. Sample of images.

Table 4
Composition of training and test set of each trial.

Set COVID-19 Healthy Total

Training 118(119) 118(119) 236(238)
Test 30(29) 30(29) 60(58)
Total 148 148 296

a(b) represents the number of images may vary from a to b.
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(W: 350, L: 60), thin layer reconstruction according to the lesion
display. Two experienced radiologists collaboratively read the
radiographs to provide the diagnostic results. When there are dis-
agreements on the diagnostic results, a third radiologist is involved
in reaching consensus. Each slice of CT scans is selected based on
the following rules: The largest level of the lesions caused by
COVID-19 are ensured to be presented in the COVID-19 confirmed
images while a random level of the image is selected for normal
examiners. Two examples of the images in the data set are given
in Fig. 8 below.

Five cross-validation method was deployed to validate the
effectiveness of our proposed models. Therefore, 80% of images
were portioned into the train set, while 20% left for testing. Details
about the train set and test set are given in Table 4. In each trial of
cross-validation, the number of images in the test set is either 58 or
60. The reason why the number varies is that the total number of
images in the dataset, which is 296, can not be perfectly divided
into 5 batches that of the same size, which results in some batches
have 1 or 2 fewer images than the rest of the batches. Therefore,
numbers of images in the train set and the test set vary slightly.
Table 6
Performance of ResGNet-C when batch size N = 32 and k = 3, 7, 11, 15, 19, 23, 27.

k Specificity Sensitivity F

3 0.9467 ± 0.0691 0.9115 ± 0.1133 0
7 0.9591 ± 0.0446 0.9733 ± 0.0365 0
11 0.9462 ± 0.0301 0.9448 ± 0.1234 0
15 0.9126 ± 0.0732 0.9586 ± 0.0925 0
19 0.9260 ± 0.0499 0.9241 ± 0.1696 0
23 0.9120 ± 0.0196 0.9517 ± 0.1079 0
27 0.9186 ± 0.0201 1.0000 ± 0.0000 0

Table 5
Performance of ResGNet-C when batch size N = 16, k = 3, 7, 11.

k Specificity Sensitivity F

3 0.9933 ± 0.0149 0.9248 ± 0.0959 0
7 0.8864 ± 0.1625 0.9655 ± 0.0771 0
11 0.9393 ± 0.0375 0.9724 ± 0.0617 0
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5.2. Exploration of the best k and N

When N = 16, the results are given shown in Table 5. In Table 5
and onwards, bold font indicates the most desirable results. Inter-
estingly, the best performance achieved when batch size N is 16
while k = 3. However, the accuracy of ResGet-C seems to fluctuate
when k increases though the Sensitivity increases when k becomes
larger. To search for the best k and N in the search domain, we pre-
sented the results of classification when N = 32 in Table 6.

As can be seen, all models with different nearest k neighbours
showed over 0.92 accuracies on the classification task here while
the model with k = 7 performed best. Also, the accuracy indicates
that the performance of the ResGNet-C is not proportional to k
but turns out to be best when a proper number of k is chosen.

Also, we noticed that ResGNet-C performed best when k is
0.25*k � 1 of batch size as it was coherent in Fig. 9. Surprisingly,
the sensitivity increases with k while the batch size is fixed. How-
ever, the specificity decreases when k increases. Therefore, we may
roughly conclude that models trained with different parameters
sacrifice specificity for sensitivity when k increases. Therefore, a
pair of best k and N that gives the best model can be found. And
from the above experiment, we found that the proposed
ResGNet-C model performed best when k is 7 while N is fixed to
be 32. For the experiment afterwards, we fixed batch size to be
32 while the k is fixed at 7 if there is no other specification.

5.3. Method comparison

We also internally compared three proposed models. As men-
tioned before, both of GNN in ResGNet and NNet-C are trained with
1 Precision Accuracy

.9255 ± 0.0633 0.9501 ± 0.0626 0.9291 ± 0.0571

.9665 ± 0.0114 0.9621 ± 0.0407 0.9662 ± 0.0122

.9420 ± 0.0570 0.9496 ± 0.0282 0.9455 ± 0.0467

.9360 ± 0.0374 0.9229 ± 0.0606 0.9356 ± 0.0349

.9180 ± 0.0859 0.9327 ± 0.0442 0.9251 ± 0.0656

.9307 ± 0.0653 0.9141 ± 0.0242 0.9318 ± 0.0589

.9610 ± 0.0093 0.9250 ± 0.0171 0.9593 ± 0.0101

1 Precision Accuracy

.9555 ± 0.0524 0.9935 ± 0.0144 0.9591 ± 0.0452

.9315 ± 0.0624 0.9112 ± 0.1130 0.9260 ± 0.0751

.9560 ± 0.0183 0.9437 ± 0.0342 0.9559 ± 0.0160



Fig. 9. Error bar of choices of best k and N.

Fig. 10. The simplified Receiver Operating Characteristic curves of models.

Table 7
Performance of three proposed models.

Model Specificity Sensitivity

NNet-C (Ours) 0.8575 ± 0.1186 0.8044 ± 0.0949
ResNet101-C (Ours) 0.9733 ± 0.0365 0.8584 ± 0.0354
ResGNet-C (Ours) 0.9591 ± 0.0446 0.9733 ± 0.0365

Fig. 11. Comparison of three proposed models.
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the same parameters and feed with same features extracted by
ResNet101-C. Also, we compared our ResGNet-C with the
ResNet101-C to prove the improvement of performance. The sim-
plified receiver operating characteristic curves (ROC) of three mod-
els are given in Fig. 10. The performance of the three models is
given in Table 7 and Fig. 11.

As can be seen from the Fig. 10, the ResNet101-C has already
achieved high sensitivity, which contributed to the overall good
performance on classification. However, the performance of
NNet-C becomes even worse.

The reason could be the training parameters are not optimal in
terms of feature classification. The other possible reason is the sim-
plicity of NNet-C, which only has no hidden layer but 2 neurons in
the last layer. Nevertheless, our proposed ResGNet-C performed
best amongst all three models though GNN has the same structure
as NNet-C.

It is worth notifying that the accuracy of our model has been
significantly increased compared to the accuracy of NNet-C, even
surpassed the accuracy of ResNet101-C by a big margin. Therefore,
integrating the graph into the classification turns out to be reason-
able and helpful. The simplified ROC curves also implied that our
proposed method of graph construction is plausible and simple
to implement.

5.4. Comparison of our method and state-of-the-art methods

To further validate our proposed ResGNet-C, we compared our
method with state-of-the-art methods. The results are given in
Table 8 below. Our model performed best in terms of specificity,
F1 score, precision, and overall accuracy. Though sensitivity is
quite high while comparable to 100%, which is promising via a five
cross-validation on the dataset.

The reasons why ResGNet-C performed best amongst all of the
methods are mainly two folds. One is the architectural superiority
of ResNet101-C that extracted enough representative features. As
can be seen from Table 7, ResNet101-C has achieved an average
accuracy at 0.9159, which is already higher than most of the
state-of-the-art methods. The other reason is the feature embed-
ding of GNN. As there is no structural difference between NNet-C
and GNN, graphs built serve to enhance the features by combining
the underlying relationships between features.
F1 Precision Accuracy

0.8262 ± 0.0648 0.8592 ± 0.0916 0.8309 ± 0.0659
0.9107 ± 0.0347 0.9703 ± 0.0407 0.9159 ± 0.0326
0.9665 ± 0.0114 0.9621 ± 0.0407 0.9662 ± 0.0122



Table 8
Comparison with SOTA methods.

Model Specificity Sensitivity F1 Precision Accuracy

K-ELM [53] 0.5682 0.6136 0.5952 0.5909 0.5814
ELM-BA [54] 0.5500 ± 0.0258 0.7636 ± 0.0244 0.6997 ± 0.0244 0.6568 ± 0.0192 0.6156 ± 0.0225
Wang [43] 0. 6700 0.7400 – – 0.7310
Li [44] 0.9000 0.9600 – – 0.9600
Mangal [45] – 1.0000 – – 0.9050
ResGNet-C (Ours) 0.9591 ± 0.0446 0.9733 ± 0.0365 0.9665 ± 0.0114 0.9621 ± 0.0407 0.9662 ± 0.0122
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In this paper, we proposed a new graph convolutional neural
network framework named ResGNet for the detection of pneumo-
nia caused by COVID-19. The key of building ResGNet-C under the
framework was to choose the best number of neighbours k and
batch size N. By training ResGNet-C for multiple times with differ-
ent values of k and N, best k and N were chosen when trained
ResGNet-C performed best on the test set. To ensure a best-
performed model on the test set, transductive learning has been
widely used [55,56]. In transductive learning, samples in the train
set and test set are not individually considered for labelling or for
classification. Instead, information of neighbours, whether neigh-
bours are in train set or in the test set, is introduced to guide the
model to give more desirable results on the test set. Similarly, in
our proposed framework, we borrowed the idea of using neighbour
information to direct the proposed GNN towards better perfor-
mance. However, the difference is that we used local neighbour
information that is extracted from neighbours that belong to the
same batch of the interested sample. Also, in our case here, sam-
ples in the test set are completely hidden during the training per-
iod, which differentiates our inductive model from the
transductive model in the beginning.
6. Conclusion

In this paper, we developed an effective COVID-19 detection
system with high sensitivity and specificity. ResGNet, which is a
GCN with novel network architecture, is proposed to extract repre-
sentative features and to classify features into being healthy and
being infected. The residual network ResNet101 is used to create
ResNet101-C for its high performance on features extracting. By
reutilizing ResNet101-C, features are extracted for the graph con-
struction, which contributes to improving the performance of the
subsequent GNN in ResGNet-C. It is the first attempt at combining
graph knowledge into the detection of COVID-19 and could be the
cornerstone for future research. The method we proposed to build
the graph is quite simple yet adaptive, which can be easily trans-
planted to other similar works. Experiments also supported our
graph-construction method and the proposed models.

However, there are also some limitations to our work. One is the
limited number of images in this research, which indirectly con-
strains the performance of our models. Also, the search domain
of the size of batch N and the number of neighbours k needs further
explorations and will be listed in our future works.
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