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A recent paper [1] compared two well-known breast can-
cer risk prediction models (BCRAT and BOADICEA) with
eight different machine learning (ML) methods. The au-
thors found a striking improvement in cancer prediction
with ML. While their comparative assessment against
more classical approaches is timely, we are skeptical about
the results presented.
A recent review on ML methods in a clinical epidemio-

logical context shows that benefits of ML tend to arise in
biased comparisons [2]. In the analyses of Ming et al., the
ML methods were not specific for survival data and the
validation process was unfair. While the ML used fits to
binary outcomes prediction (having the disease or not),
BOADICEA/BCRAT computes the probability of develop-
ing breast cancer over time. Regarding the second aspect,
a fair comparison of the validity of the models would re-
quire data on unaffected women with prospective follow-
up, with like for like risk predictions (over the same time
period) for all methods. The comparisons in [1] were
based on retrospective data of families of unaffected/af-
fected individuals, and in the context of the BCRAT/BOA-
DICEA, it is unclear what the observed and predicted
events are. Furthermore, for the existing models, the study
assessed external validity, while the ML methods were fit-
ted on the same samples incorporating a tenfold cross-
validation procedure, which is only equivalent to internal
validation [3]. Internal validation is often overoptimistic in
comparison to external validation studies [4]. Although
the authors indicate the most important risk predictors in
the ML approaches, the final models are not provided. A
fair comparison would require the comparison of the final
models from the ML with the existing models in external,
prospective datasets. Moreover, discrimination is only one

measure of model performance: good calibration and clin-
ical utility assessment are also crucial [5]. Last but not
least, Ming et al. did not mention which version of BOA-
DICEA was used for the comparison with ML methods.
In conclusion, the practical relevance of ML methods
needs to be further investigated in this specific context,
based on more rigorous methodology.
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