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A B S T R A C T   

Erastin, a synthetic lethal compound against cancer expressing an oncogenic RAS, inhibits cystine/glutamate 
antiporters and causes ferroptosis. However, despite recent evidence for the mechanisms underlying ferroptosis, 
molecular biomarkers of erastin-dependent ferroptosis have not been identified. Here, we employed isogenic 
lung cancer cell models to show that a redox imbalance leads to glutathione depletion and ferroptosis. Subse-
quent transcriptome analysis of pan-cancer cell lines revealed that the activity of transcription factors, including 
NRF2 and AhR, serve as important markers of erastin resistance. Based on the integrated expression of genes in 
the nuclear receptor meta-pathway (NRM), we constructed an NRM model and validated its robustness using an 
independent pharmacogenomics dataset. The NRM model was further evaluated by sensitivity tests on nine 
cancer cell lines for which erastin sensitivities had not been determined. Our pharmacogenomics approach has 
the potential to pave the way for the efficient classification of patients for therapeutic intervention using erastin.   

1. Introduction 

Erastin (which derives its name from being an eradicator of RAS and 
ST-expressing cells) is a small molecule that was first reported as 
inducing synthetic lethality in cancer cells expressing the RAS oncogene 
[1] through an oxidative stress mechanism under strong RAS-RAF-MEK 
signaling [2]. The mode of action (MoA) for cell death was subsequently 
identified as ferroptosis, a unique iron-dependent form of nonapoptotic 
cell death [3]. Erastin inhibits system Xc

- (XCT), thus impairing the 
cystine/glutamate antiporter (encoded by SLC7A11) that is involved in 
the synthesis of glutathione (GSH) from imported cystine and creating a 
void in antioxidant defense that leads to ferroptosis [3]. Small molecule 
inhibitors of ferroptosis have since been developed for a variety of 
therapeutic applications to inhibit pathological cell death, including the 
treatment of neurodegenerative diseases, stroke, and ischemic injuries 
[4]. In particular, ferroptosis inducers (FINs) such as erastin have been 
extensively examined as novel anti-cancer therapeutics [5]. However, to 

date, clinical trials of FINs such as sulfasalazine, which is an inhibitor of 
XCT in glioma patients, have been unsatisfactory due to the lack of 
clinical response [6]. 

The high dependency of therapy-resistant mesenchymal cancer cells 
(with high ZEB1 expression) on the lipid peroxidase pathway governed 
by phospholipid glutathione peroxidase 4 (GPX4) increases their 
vulnerability to ferroptosis via GPX4 inhibition or GSH depletion with 
erastin treatment [7]. GPX4 dependency on erastin induced ferroptic 
cell death occurs in cell-type-specific manner [8], though the strength of 
this vulnerability varies in a cell-specific manner. As such, a variety of 
cellular and molecular components and processes, such as metabolic 
heterogeneity [9], mesenchymal properties [7], p53 status [10], 
signaling pathways (e.g. MAPK [11] or YAP [12]), GSH regulators [13], 
levels of monounsaturated fatty acid [14], and so on (reviewed in 
Ref. [15]), have been examined as determinants of ferroptosis vulner-
ability in a diverse range of cell model systems. Despite this, the varia-
tion in the susceptibility of cancer cells to ferroptosis, via either XCT or 
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GPX4 inhibition, depending on cellular and molecular characteristics 
has not yet been fully understood. In this regard, the establishment of a 
unique signature that enabled the prediction of erastin vulnerability 
would be useful for patient stratification, which would maximize the 
efficacy and minimize the toxicity of anti-cancer therapy using erastin 
analogs that are currently being tested in clinical trials [16]. 

The pharmacogenomics approach has advanced the understanding 
of the MoA of various drugs by systematically identifying molecular 
biomarkers that contribute to drug responses [17,18]. In this respect, 
gene expression data have been found to be the most informative of 
available omics datasets (e.g., genomic, proteomic, and epigenomic 
profiling data) in predicting the drug response of human cancer cells 
[19,20]. In precision oncology, transcriptomic profiling has been widely 
employed to screen for predictive gene signatures that effectively guide 
treatment decisions using a few to a thousand cultured cell lines as 
surrogates [7,21–23]. The key resources behind these efforts are the 
Cancer Cell Line Encyclopedia (CCLE) and the Cancer Therapeutics 
Response Portal (CTRP); these databases provide both transcriptomic 
data and data from the sensitivity screening of 860 cancer cell lines 
against 487 compounds [17,24]. These datasets make it possible to 
revisit the MoA of particular drugs by offering robust molecular signa-
tures from distinct features of cell lines that exhibit differences in their 
drug sensitivity. 

In the present study, we constructed an effective model for the pre-
diction of erastin sensitivity based on the basal gene expression and 
drug-response profiles of pan-cancer cell lines obtained from the CCLE 
and CTRP datasets. This model revealed that nuclear receptor-enriched 
gene signatures are important determinants of erastin-induced ferrop-
totic cell death. Our approach accurately predicts the erastin sensitivity 
of cancer cell lines based on their basal gene expression, indicating that 
it would be useful for identifying patients who could potentially respond 
to erastin treatment. 

2. Materials and methods 

2.1. RNA sequencing (RNA-seq) and data processing 

Total RNA was isolated using Trizol according to the manufacturer’s 
instructions. For library construction, we used the TruSeq Stranded 
mRNA Library Prep Kit (Illumina, San Diego, CA). Briefly, the strand- 
specific protocol included the following steps: (1) strand cDNA synthe-
sis, (2) strand synthesis using dUTPs instead of dTTPs, (3) end repair, A- 
tailing, and adaptor ligation, and (4) PCR amplification. Each library 
was then diluted to 8 pM for 76 cycles of paired-read sequencing (2 × 75 
bp) on an Illumina NextSeq 500 following the manufacturer’s recom-
mended protocol. 

The sequencing quality of the raw FASTQ file was assessed using 
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fast 
qc/). Low-quality reads and the adapter sequences were eliminated 
using BBDuk (http://jgi.doe.gov/data-and-tools/bb-tools/). Trimmed 
reads were aligned to the GRCh37 reference genome (build 38) using the 
STAR aligner (v2.6.0a). Gene-level transcripts per million (TPM) and 
read counts were calculated using RSEM v.1.3.1. with Gencode v19 
annotation. The FASTQ files and processed data are available in the 
Gene Expression Omnibus (GEO: GSE135402). Genes differentially 
expressed between A549 and TD cells were obtained using the DESeq2 
package in R. 

2.2. Cancer cell line RNA-seq and erastin sensitivity data 

Baseline gene-expression profiles of 932 cancer cell lines were 
downloaded from the NCI’s Genomic Data Commons (GDC, https://gdc. 
cancer.gov/) as BAM files. Gene-level TPM and expected counts were 
quantified using RSEM v.1.3.1. with Gencode v19 annotation. A total of 
18,965 protein-coding genes were retained for model training and 
subsequent analysis. The erastin drug-response profiles of 804 cancer 

cell lines were obtained from CTD2 Data Portal (https://ocg.cancer.go 
v/programs/ctd2/data-portal). Cell viability data were converted into 
growth inhibition data and adjusted to fall within a range of 0–100%. 
The adjusted growth inhibition data were subjected to four-parameter 
logistic regression and low-quality profiles (goodness of fit < 0.7) 
removed. The dose-response area under the curve (AUC) for sensitivity 
was normalized to a range of 0–1 using the maximum AUC, which was 
assumed to represent 0% growth inhibition, for a given concentration 
range. 

2.3. Predictive modeling of erastin sensitivity 

To identify the genes that were most predictive of erastin sensitivity, 
we adapted an elastic net regression approach, which is a penalized 
model widely used for feature selection, particularly with genome-scale 
data [25]. A total of 598 non-hematologic cancer cell lines with avail-
able RNA-seq (TPM) and erastin sensitivity (AUC) data were used to 
build multiple models, each of which considered the expression of genes 
within the top 16 individually enriched pathways as a feature set (i.e., 
one model per pathway). Each model was assessed using nested 
leave-one-out cross-validation (LOOCV) in which a single sample (i.e., a 
cell line) was used to test a model trained by the remaining samples (i.e., 
the other 597 cell lines). This process was repeated until all cell lines had 
been used as the test dataset. For each training run, the optimal pa-
rameters (α and λ) were taken to be those that minimized the mean 
square error for five-fold cross-validation with 10 iterations of the 
training data. Predicted AUC values from each test set were concate-
nated and then compared to the actual AUC data using Spearman cor-
relation to evaluate prediction performance. The same procedure was 
also applied to assess the generalized linear regression models in Fig. 4D. 
For interpretation and visualization purposes, the predicted AUCs were 
scaled to the distribution of the actual AUC data. The overall process was 
conducted using the glmnet and caret packages in R. 

2.4. Dual luciferase assay 

Cells were transfected with hNQO1-ARE-luciferase vector (5- 
CTCAGCCTTCCAAATCGCAGTCACAGTGACTCAGCAGAATC-3) and 
pRL vector. Cell lysate was extracted with 1X lysis buffer (5X lysis buffer 
diluted in ultrapure water to 1X) for 20 min. Cell pellet was downed 
through 13,000 RPM for 20 min, and supernatant was transferred to E- 
tube. Then, reporter assay was performed according to the Dual- 
Luciferase Reporter Assay System (E1980, Promega). 

2.5. Statistical analysis 

The statistical significance of any differences among three groups 
and between two groups was determined using one-way analysis of 
variance (ANOVA) with multiple comparisons and Student’s t-tests 
(two-tailed), respectively. P-value of the correlation coefficient was 
calculated using the cor.test function from the stats package in R. Sig-
nificance was set at P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***). The 
error bars represent the mean ± s.d. 

3. Results 

3.1. Higher sensitivity to ferroptosis in mesenchymal lung cancer cells 

In order to examine selective ferroptosis in therapy-resistant 
mesenchymal cancer cells [7], we used erastin to trigger ferroptosis 
because a potent analog of erastin, belonging to the group of class I 
inhibitors targeting XCT is currently undergoing clinical trials for the 
treatment of cancer [26] due to its in vivo suitable pharmacokinetics, a 
characteristic not shared by other FINs [27]. For the isogenic pairing of 
epithelial and mesenchymal lung cancer cells, the mesenchymal lung 
cancer cell lines (transdifferentiated lung cancer cells, hereafter referred 
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Fig. 1. Higher sensitivity to ferroptosis in mesenchymal lung cancer cells. (A) Schematic diagram of model for A549 and TD (left). Microscopic images of A549 
and TD cells 24 h after an indicative dose of erastin. (B) Flow cytometry for Annexin V and 7-AAD 24 h after 40 μM erastin treatment. (C) Flow cytometry for GFP- 
positive cells (A549-GFP) compared to GFP-negative cells (TD) two days after 40 μM erastin treatment. (D, E) Flow cytometry for Annexin V and 7-AAD 24 h after 40 
μM erastin treatment with or without ferrostatin (Fer-1) pretreatment (D) or Z-VAD (E). (F) Fold ratio of GSH/GSSG 24 h after treatment with 40 μM erastin in A549 
or TD cells. (G) Relative ratio of the fluorescent intensity of FreSHtracer after treatment with diamide in A549 (open circle) or TD (closed circle) cells at the indicated 
times. (H) Levels of cell death population of A549/TD cells after erastin treatment with or without GSH-MEE. 
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to as TD cells) derived from A549 cancer cells following chronic TGFβ 
exposure were used in this study (Fig. 1A). Consistent with previous 
reports [22,28–30], RNA-seq data analysis of the A549 and TD cells 
(GSE135402) revealed that mesenchymal and therapy-resistant gene 
signatures were upregulated in TD cells (Fig. S1A). Of particular interest 
was the fact that TD cells exhibiting chemoresistance [22,30] were 
highly sensitive to erastin-induced cell death (Fig. 1A and B). Selective 
cell death of TD cells after erastin treatment was highlighted when A549 
and TD cells were co-cultured (Fig. 1C and S1B and Movie S1). As with 
the selective death of TD cells, erastin-induced cell death was signifi-
cantly blocked by ferrostatin-1, a ferroptosis inhibitor (Fig. 1D), but not 
by a pan-caspase inhibitor (Fig. 1E). We thus concluded that the TD cell 
death induced by erastin was the result of ferroptosis. 

Supplementary data related to this article can be found at https:// 
doi.org/10.1016/j.redox.2020.101719. 

Given the important role of XCT in glutathione (GSH) synthesis, the 
higher sensitivity of TD cells to erastin (Fig. 1A and B) could be the result 
of the lower basal levels of reduced GSH compared to oxidized GSH due 
to the inhibition of XCT by erastin, as previously described [8]. As 
predicted, the ratio of reduced GSH to oxidized GSH (GSSG) was 
significantly lower in the TD cells, independent of erastin treatment 
(Fig. 1F). Thus, we also monitored the levels of reduced GSH in real-time 
using FreSHtracer, a recently validated real-time fluorescent thiol tracer 
[31]. Consistent with the results shown in Fig. 1F, the recovery of GSH 
after thiol-specific oxidant diamide treatment was significantly retarded 
in TD cells when compared to A549 cells (Fig. 1G). Importantly, sup-
plementation with GSH monoethyl ester (GSH-MEE), a cell-permeable 
derivative of GSH, markedly rescued TD cell death following erastin 
treatment (Fig. 1H). As a result, it is clear that the lower basal levels of 
the reduced form of GSH in TD cells cause high sensitivity to 
erastin-induced ferroptosis, as previously reported [21]. 

3.2. Expenditure of GSH due to the redox imbalance caused by NOX4 
induction 

To explain the consistently lower levels of the reduced form of GSH 
in TD cells, we first examined the reactive oxygen species (ROS) levels in 

A549 and TD cells. Interestingly, basal ROS levels and ROS levels 
induced by erastin treatment were much higher in TD cells (Fig. 2A). It is 
generally accepted that the redox imbalance in cancer cells leads to 
recurrence, drug resistance, and metastasis [32], which are typical 
characteristics of the epithelial–mesenchymal transition (EMT). 
Accordingly, it is assumed that the lower levels of the reduced form of 
GSH observed in TD cells result from the consistently high levels of ROS. 
Along the same lines, the anti-oxidants β-mercaptoethanol (BME) and 
N-acetyl-cystine (NAC) significantly attenuated erastin-induced ferrop-
tosis (Fig. 2B and C). 

The redox imbalance that leads to GSH depletion and higher fer-
roptosis sensitivity in TD cells could be caused by the induction of genes 
that may affect the mechanisms underlying the regulation of ROS. To 
identify these genes, we investigated the changes in global gene 
expression in A549 and TD cells. Of the genes upregulated in TD cells, 
we focused on ROS regulatory genes (Fig. S2A, red dots) and identified 
NADPH oxidase 4 (NOX4) as a candidate because of the obvious role of 
NOX4 in both ROS production [33] and ferroptosis [11] (Fig. 2D). 
High-level NOX4 expression in TD cells (Fig. 2E) was found to be 
responsible for erastin-induced ferroptosis because chemical inhibition 
using GKT-137831 (a NOX1/4 inhibitor) or the knockdown of NOX4 
using siRNA (Fig. S2B) rescued ferroptosis after erastin treatment in 
these cells (Fig. 2F and G). The high ROS levels in TD cells were also 
markedly reduced following NOX4 depletion (Fig. 2H). Similar results 
were obtained from the stable knockdown of NOX4 using shRNA (clone 
#4, Fig. S2C) (Fig. 2I and J). 

3.3. NOX4 as an insufficient marker for erastin sensitivity 

Because strong mitogenic signaling from RAS oncogenes produces 
ROS [2], which promote cell proliferation, it is possible that cancer cells 
with the RAS oncogene may be more susceptible to erastin [1,2], leading 
to the suppression of GSH synthesis. Thus, we examined erastin sensi-
tivity in seven in-house lung cancer cell lines with and without RAS 
mutations (Fig. S3A). Unexpectedly, it was found that the oncogenic 
mutation of KRAS was not associated with either erastin sensitivity or 
basal ROS levels (Fig. 3A and S3B). The seven lung cancer cell lines 

Fig. 1. (continued). 
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Fig. 2. Expenditure of GSH due to the redox imbalance caused by NOX4 induction. (A) Flow cytometry for DCF-DA 24 h after treatment with the vehicle (Cont) 
or erastin (Era) in A549 or TD cells (left). Graphical representation of the mean fluorescence intensity of DCF-DA (right). (B, C) Cell death population size of A549 or 
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could be classified into erastin-sensitive (erastin S: H1650, Calu1 and 
TD) and erastin-resistant (erastin R: H460, H1299, H358 and A549) 
groups regardless of the presence of a KRAS mutation or ROS levels 
(Figs. S3A and B). The time-dependent cell viability of Calu1 cells (the 
most sensitive to erastin of the tested cell lines) after erastin treatment 
was markedly restored by BME treatment and significantly delayed by 
ferrostatin treatment, confirming that Calu1 cells underwent 
erastin-induced ferroptosis (Fig. S3C). Similarly, pretreatment with 
GKT-137831 markedly rescued cell death in Calu1 cells (Fig. S3D), while 
the ectopic expression of NOX4 in erastin-resistant A549 and H358 cells 
sensitized them to erastin treatment (Fig. S3E). These results are 
consistent with a recent study that demonstrated that the NOX4 induced 
by TAZ treatment leads to ferroptotic cell death [34]. Because the 
high-level expression of NOX4 in TD cells appeared to be responsible for 
erastin-induced ferroptosis (Fig. 2), we hypothesized that cancer cells 
with high-level NOX4 expression would be susceptible to 
erastin-induced ferroptosis. Given that a few previous studies have 
demonstrated the importance of NOX4 in cancer malignancy [35], 
metastasis [36] and drug resistance [37] as well as in the regulation of 
EMT [38], erastin could be a promising candidate drug for the treatment 
of NOX4-expressing cancers with an otherwise poor prognosis [35]. 

To our surprise, the expression levels of NOX4 and other NOXs (e.g. 
NOX1, 2, 3 and 5) were not strongly associated with erastin sensitivity 
(Fig. 3B), in contrast to a previous study that reported a close correlation 
between NOX1 or NOX4 expression and the response to erastin [3]. In 
addition, the expression of ZEB1 and GPX4 in these cell lines was not 
closely correlated with erastin sensitivity (Fig. 3C). This was also 
observed in lung cancer cell line data obtained from the CCLE and CTRP 
(Fig. 3D). As a result, we concluded that the individual expression levels 
of these genes cannot be used to indicate the susceptibility of cancer cells 
to erastin-induced ferroptosis. 

3.4. Systematic investigation of the molecular mechanisms associated 
with erastin response 

To further examine the association between erastin sensitivity and 
known genomic characteristics in a variety of cancer cell lines, we 
explored cell-line omics profiles and drug response data from the CCLE 
and CTRP. Consistent with previous observations (Fig. 1), the expression 
profiles for the isogenic lung cancer cell models A549 and TD were 
clustered with those for the erastin R and S groups, respectively, of CCLE 
lung cancer cells (Fig. 4A, Fig. S4A). However, though erastin was 
initially employed to target oncogenic RAS, no consistent association 
between erastin sensitivity and status of RAS mutations was observed 
(Fig. S4B). Rather HRAS mutant cell lines exhibited moderate resistance 
to erastin (t-test, P < 0.05). In addition, a previous report has shown that 
therapy-resistant mesenchymal cancer cells that are highly sensitive to 
GPX4 inhibitors are also sensitive to erastin [7]. However, our correla-
tion analysis between cell-line mesenchymal scores [7] and drug sensi-
tivity found erastin had only a modest effect on the mesenchymal cancer 
cells (Fig. S4C). In fact, the sensitivity to erastin differed from the 
sensitivity to GPX inhibitors according to the cell type is still in question 
[39]. Taken together, neither RAS mutations nor mesenchymal signa-
tures are suitable as indicators of erastin sensitivity. 

We subsequently employed a two-step process to determine the 
molecular pathways that contribute to erastin sensitivity using pan- 
cancer transcriptome data. First, we conducted single-sample gene set 
enrichment analysis (ssGSEA) across 598 non-hematologic cancer cell 
lines using biological pathway information, which yielded 443 pathway- 
enrichment scores (PESs) for each cell line (Table S1). By correlating 
these cell-line PESs with sensitivity to erastin, the 16 pathways most 
strongly related to erastin sensitivity were selected (Fig. 4B). The A549 
and TD cell lines exhibited similar enrichment patterns for these path-
ways (Fig. 4C). In the second step, we applied elastic net regularized 
regression [25] to identify the subset of genes that were most strongly 

TD cells 24 h after 40 μM erastin treatment with BME (B) or NAC (C) pretreatment. (D) Venn diagram showing the number of shared genes involved in ROS 
regulation (GO: 0000302) and upregulated in TD compared to A549 cells. Upregulated genes that met the criteria of log2FC ≥ 4 and FDR ≤10-3 were selected using 
DESeq2. (E) mRNA expression of NOX4 in A549 and TD cells. (F, G) Cell death population size in A549 or TD cells 24 h after 40 μM erastin treatment following 
pretreatment with GKT (F) or NOX4 siRNA transfection (G). (H) Flow cytometry for DCF-DA 24 h after the introduction of siRNA for the control (siNC) or NOX4 
(siNOX4) in A549 or TD cells (left). Graphical representation of the mean fluorescence intensity of DCF-DA (right). (I) Graphical representation of the cell death 
population 24 h after 40 μM erastin treatment in the control (NC) or NOX4 knockdown cells (clone #4). (J) Flow cytometry for DCF-DA in the A549, TD control (NC), 
and NOX4-knockdown TD cells (TD#4) (left) and graphical representation of the mean fluorescence intensity of DCF-DA (right). 

Fig. 2. (continued). 
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associated with the response to erastin in each of the 16 pathways. 
Overall, regularized regression outperformed general linear regression 
and ssGSEA (Fig. 4D, Table S2), suggesting that erastin sensitivity can be 
predicted by the integrated expression of a set of designated genes in 
these pathways. In particular, the elastic net based on the nuclear re-
ceptor meta-pathway (hereafter referred to as the NRM) had the stron-
gest correlation (r = 0.456), which was surprisingly higher than that 
based on all genes (r = 0.429, the red line in Fig. 4D). 

3.5. The relationship between nuclear receptors and erastin resistance as 
revealed by predictive models 

To identify the most predictive gene signature in the NRM, we con-
structed an elastic net model using all 598 cancer cell lines employing 
the expression of the 312 genes involved in the NRM. This model 
included 43 predictor genes with non-zero coefficients (Fig. 5A), most of 
which were involved in one or more of the other 15 enriched pathways 
(Fig. 5B). Among them, nuclear factor erythroid 2-related factor 2 
(NRF2) and Aryl hydrocarbon receptor (AhR) pathways accounted for 
the largest proportion (Fig. 5C and Fig. S5A). Correlation analysis of the 
cell-line PESs and sensitivity to class II FINs (e.g. RSL3, ML162, and 
ML210, which are direct GPX4 inhibitors) revealed that NRF2- and 

oxidation-related genes were commonly associated with resistance to 
FINs (Fig. S5B). This is in line with previous reports that found that 
NRF2, a master regulator of oxidative stress responses, modulates fer-
roptosis [40,41]. However, the AhR pathway was found to be the only 
factor associated with resistance to erastin, unlike the NRF2 pathway, 
which is commonly associated with resistance to both erastin and class II 
FINs (Fig. 5D). Interestingly, an analysis of genome-wide CRISPR-Cas9 
loss-of-function screening data (DepMap 19Q2, https://depmap.org/por 
tal/) revealed the high dependency on GPX4 or genes encoding sele-
noproteins (SEPSECS, EEFSEC, and SEPHS2) in cells that are sensitive to 
all FINs (Fig. 5E, Fig. S5C), consistent with previous studies [8,42]. In 
contrast, the knockout of AHR (the gene encoding AhR) led to vulner-
ability in erastin-resistant cancer cell lines, while the deficiency of 
NFE2L2 (the gene encoding NRF2) increased sensitivity to both erastin- 
and GPX4 inhibitors-resistant cells (Fig. S5C). This suggests that the AhR 
signature, which complements the NRF2 signature, accounts for the 
unique dependency of erastin-resistant cells, thus increasing the pre-
dictive power of the NRM model for erastin response. 

3.6. High correlation between NRF2 activity and erastin resistance 

As predicted, the basal NRF2-dependent gene response determined 

Fig. 3. NOX4 as an insufficient marker for erastin 
sensitivity (A) Percentage of cell death population in 
the indicated lung cancer cell lines 24 h after 40 μM 
erastin treatment (erastin R: resistant, erastin S: sen-
sitive, * KRAS mutation). (B) mRNA expression of 
NOXs in the indicated lung cancer cell lines. (C) 
mRNA expression of ZEB1 (top) and GPX4 (bottom) in 
the indicated lung cancer cell lines. (D) Relationship 
between erastin sensitivity and the gene expression of 
NOX4, GPX4, and ZEB1 in 123 lung cancer cell lines. 
Erastin sensitivity (AUC) data from the CTRP and 
gene expression levels from the CCLE RNA-seq 
(log2TPM) are shown.   
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by the antioxidant response element (ARE) was significantly stronger in 
erastin R cancer cells than in erastin S cancer cells (Fig. 6A). From the 
CCLE proteome data [43], we also observed that NRF2 protein expres-
sion has a significant positive correlation with erastin resistance in lung 
cancer cell lines, regardless of KEAP1 mutation leading to the 
NRF2-dependent adaptive response in cancers [44] (Fig. 6B). In the 
isogenic pair with different sensitivity to erastin (A549 vs TD cells), 
induction of CHAC1, an NRF2 downstream gene that acts as a marker for 
ferroptosis [45], was significantly lower in TD cells (Fig. S6A). Consis-
tently, significant downregulation of typical NRF2 target genes was 
observed by RNAseq analysis in all experimental batches of TD cells 
(Fig. S6B). In addition, the activation of the NRF2-dependent gene 
response in Calu1 cells (with functional KEAP1) by 

tert-Butylhydroquinone (tBHQ), a well-established NRF2 activator, 
induced typical NRF2-dependent genes such as GCLC, GCLM, and NQO1 
in a dose-dependent manner (Fig. 6C). Under these conditions, the 
erastin sensitivity of Calu1 cells was significantly reduced (Fig. 6D). 
Conversely, the knockdown of NFE2L2 (which encodes NRF2) in erastin 
R cells sensitized them to erastin treatment (Fig. 6E). These results 
suggest that the NRF2 pathway is closely associated with erastin sensi-
tivity. Similarly, the mutation of KEAP1 was significantly correlated 
with erastin resistance, while RAS, TP53, or NFE2L2 mutations were not 
(Fig. S6C). The expression of six typical NRF2 target genes (SLC7A11, a 
molecular target of erastin, NQO1, GCLC, GCLM, ME1, and SRXN1) 
involved in anti-oxidant activity was significantly correlated with era-
stin sensitivity in lung cancer cells and all cancer cells (Fig. S6D). These 

Fig. 4. Prediction of the molecular mechanisms that contribute to erastin sensitivity. (A) Partial least square discriminant analysis (PLS-DA) of lung cancer cell 
lines (123 CCLE cell lines, A549, and TD) based on global gene expression profiles. To divide the CCLE cell lines into erastin sensitive (S) and resistant (R) groups, we 
roughly defined the cut-off (AUC = 0.7) with reference to the AUC values of two sensitive (Calu1, NCI–H1650) and four resistant (NCI–H1299, A549, NCI–H359, 
NCI–H460) cell lines tested beforehand (Fig. S4A). (B) The pathways most closely associated with erastin sensitivity. The association between the pathways and 
erastin sensitivity was measured using Pearson’s correlation between the cell-line pathway-enrichment scores (PESs) and erastin sensitivity (AUC). Pathways with an 
absolute z-normalized correlation coefficient greater than 2 were selected. Positive and negative correlations are shown in red and green, respectively. Gene an-
notations for the 443 pathways were obtained from Wikipathways. (C) Scaled PESs of the top 16 pathways in A549 and TD cells. (D) Performance of individual 
predictions of erastin sensitivity. The predictions were assessed using leave-one-out cross-validation (LOOCV) with the absolute Spearman’s correlation coefficient 
for the actual and predicted AUC. Predictions using an elastic net, a general linear model (GLM), and ssGSEA based on each of the 16 feature gene sets are rep-
resented. Elastic net predictions employing the expression of all genes (n = 18,965) are indicated by the red line. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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results support that conjecture that NRF2-associated genes are a major 
determinant of erastin sensitivity. 

3.7. Association between AhR dependency and erastin resistance 

Because the AhR signature was enriched in the NRM model, we 
sought to determine whether AhR activity differed between the erastin R 
and S groups. To achieve this, AhR activity was monitored in three cell 
lines each within the erastin R and S groups by measuring CYP1A1, a 
well-characterized AhR downstream target, after treatment with 
kynurenine (Kyn), a ligand of AhR [46]. As predicted, CYP1A1 was 
strongly induced by Kyn treatment in two out of the three cell lines in the 
erastin R group, while it was only moderately induced in all three cell 
lines in the erastin S group (Fig. 6F). 

Modulation of the AhR gene response was then compared for the 
isogenic pair of A549 and TD cells with different erastin sensitivities. 
Consistent with the data shown in Fig. 6F, the AhR gene response 

following Kyn treatment was markedly lower in TD cells, which showed 
higher sensitivity to erastin, compared to that of A549 (Fig. 6G). Similar 
results with AhR activation with Kyn (Fig. S6E) and high dose of tBHQ 
[47] (Fig. S6F) were reproduced in the comparison between A549 and 
Calu1. These observations led us to hypothesize that AhR activation in 
A549 may confer erastin resistance. Based on the increase in MT1G, 
which is induced during ferroptosis [48] (Fig. 6H), and in the number of 
dead cells (Fig. 6I) following AhR depletion and subsequent erastin 
treatment, we concluded that the depletion of AhR promoted ferroptotic 
cell death in A549 cells. In contrast, erastin sensitivity was attenuated by 
AhR depletion in Calu1 (Fig. 6J). Thus, the enrichment of the AhR 
pathways in the NRM model may account for the clear dependency of 
erastin sensitivity on AhR. 

3.8. Predictive performance of the NRM model for erastin sensitivity 

Next, we assessed the specificity of the NRM signature in terms of 

Fig. 5. Association of nuclear receptors with erastin resistance as revealed by the predictive models. (A) Bar plot showing the weight of the 43 predictor genes 
in the model for erastin sensitivity. (B) NRM model predictors involved in each of the top pathways. (C) Venn diagram of the number of shared genes involved in the 
NRF2 and AhR pathways from among the 43 predictor genes in the NRM model. (D) Venn diagram of representative functional terms accounting for the response to 
erastin and FINs (RSL3, ML210, and ML162). (E) Volcano plot highlighting CRISPR hits associated with erastin sensitivity across pan-cancer cell lines. Dependency is 
defined as the t-statistic calculated by testing the difference between erastin sensitivity (AUC) in the non-dependent and dependent cell lines for the correspond-
ing gene. 
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predicting erastin response. Correlating cell-line NRM predictions with 
the sensitivity to each of 543 drugs in CTRP showed that erastin, fol-
lowed by class II FINs (ML210, RSL3, ML162, and ML239), had the 

highest priority, but STATINs that have been shown to induce ferrop-
tosis [7] did not (Fig7A). The NRM gene signature was more effective in 
predicting erastin sensitivity than the three independent mesenchymal 

Fig. 6. High correlation between NRF2 activity and erastin resistance. (A) Relative luciferase activity of the NRF2 promoter in the indicated lung cancer cell 
lines. (B) NRF2 protein expression compared with erastin sensitivity of 29 lung cancer cell lines in the CCLE. NRF2 protein abundance quantified by mass spec-
trometry were obtained from https://gygi.med.harvard.edu/publications/ccle. Protein expression levels normalized on a logarithmic scale are shown. Cell line 
harboring KEAP1 mutation is indicated by a blue border. (C) Relative mRNA levels of NRF2 downstream genes (GCLC, GCLM, and NQO1) 24 h after tBHQ treatment 
at the indicated concentrations in Calu1. (D) Graphical representation of cell death population size 24 h after erastin treatment with 50 μM tBHQ treatment in Calu. 
(E) Cell death population size 24 h after erastin treatment in the control (siNC) or NRF2-knockdown cells with siRNA (siNRF2) in A549 and H1299 cell lines. (F, G) 
mRNA expression of CYP1A1 in the indicated lung cancer cell lines (F) and the isogenic pairing of A549 and TD cells (G) with or without kynurenine (Kyn: 100 nM). 
(H) Relative mRNA expression of MT1G in A549 8 h after 80 μM erastin treatment in AHR-knockdown cells with siRNA transfection. (I, J) Cell death population with 
Annexin V positive cells 24 h after 200 μM erastin treatment. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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signatures used to identify FINs as the best treatment option for 
mesenchymal cancer in a previous study [7] (P = 7.13 × 10-7, Fig. 7B). 
These results together suggest that the NRM signature allows specific 
predictions of cellular vulnerability to erastin-induced ferroptosis to be 
made, but not to FIN- or STATIN-induced ferroptosis. 

To evaluate the predictive performance using independent datasets, 
we applied the NRM model to gene expression data for A549 and TD and 
showed accurate predictions of erastin sensitivity in each cell line 
(Fig. 7C). We then compared our NRM prediction to recently published 
drug response data obtained from PRISM viability assay, a multiplexing 
screening with molecular barcoding method [20,49]. The PRISM dataset 
provides an erastin-sensitivity profile across 533 cancer cell lines, 457 of 
which have also been screened in the CTRP. Encouragingly, the PRISM 
profile was more closely correlated with the NRM prediction (Spear-
man’s r = 0.433) than the CTRP profile (Spearman’s r = 0.358) (Fig. 7D, 
left panel). We also observed overall agreement across the 76 cancer cell 
lines present only in the PRISM dataset (Spearman’s r = 0.27, P = 0.006) 

(Fig. 7D, right panel). For further validation, we additionally predicted 
the erastin sensitivity of 334 cancer cell lines not used in NRM modeling 
and selected nine test cell lines and three control cell lines (Fig. S7A, 
Table S3). The nine test cell lines were divided into responders (erastin 
S) and non-responders (erastin R) based on the NRM prediction of the 
control cell lines. The cell death population size of twelve cancer cell 
lines was examined after erastin treatment (Fig. 7E). The erastin sensi-
tivity of seven of the cancer cell lines (all except SW480 and HCC1359) 
was highly correlated with the NRM prediction (Fig. 7F). These results 
provide evidence that our NRM model is universally applicable, being 
able to accurately predict erastin sensitivity based on transcriptome data 
generated from different cohorts. 

4. Discussion 

It is generally accepted that mesenchymal-type cancer cells are 
responsible for malignant phenotypes. Thus, EMT-associated molecular 

Fig. 6. (continued). 
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targets that govern chemoresistance [22,30] or metastatic potential [28, 
29] have been extensively studied for the development of novel 
anti-cancer therapies. As such, the induction of the selective death of 
mesenchymal-type cancer cells using small molecules identified via li-
brary screening [50] or in silico gene signature-based analysis [7] has 
been highlighted as an effective potential strategy. 

Using isogenic lung cancer cell models, we observed that selective 
ferroptosis occurred in chemoresistant mesenchymal lung cancer cells 
[22,30] (Fig. S1A) following erastin treatment (Fig. 1) due to the redox 

imbalance caused by the high expression of NOX4 and subsequent 
depletion of GSH (Fig. 2). However, the mRNA expression levels of both 
NOX4 and previously identified determinants (e.g. GPX4, ZEB1, and 
other NOXs) were unable to be used as indicators of erastin sensitivity in 
other lung cancer cells due to cell-to-cell variation (Fig. 3). Therefore, 
we adopted a pharmacogenomic approach that utilized pan-cancer 
cell-line omics to fully explore predictive biomarkers for erastin sensi-
tivity. We initially examined whether known markers such as the KRAS 
mutation status or mesenchymal signatures explained erastin sensitivity, 

Fig. 7. Evaluation of the NRM model for erastin sensitivity (A) Prioritization of compounds based on the correlation between NRM-based LOOCV predictions and 
sensitivity profiles (AUC) for 543 compounds in the CTRP. (B) Receiver operating characteristic (ROC) curves illustrating the performance of the erastin sensitivity 
predictions using the NRM-based model (ROCAUC = 0.84) and three mesenchymal scores obtained from a previous study. The significance (P-value) of the difference 
in the ROC curves between the NRM prediction and the mesenchymal score (Taube et al.) was calculated using the roc.test function in the pROC package of R. A cell 
with an AUC lower than 0.7 was considered to be sensitive. (C) Distribution of NRM prediction scores for all CCLE cancer cell lines, A549, and TD cells. Cell-line R 
and S groups were determined by the AUC measured for each cell line (higher or lower than 0.7, respectively). (D) Comparison of NRM predictions to PRISM cell 
viability data (log2 fold change) with 2.5 μM erastin treatment. Primary screened data were obtained from https://depmap.org/repurposing. (E) Flow cytometry plot 
for the 7-AAD positive cell population size 24 h after 120 μM erastin treatment in the indicated cell lines. (F) Comparison of NRM predictions to cell viability with 7- 
AAD positive cells after 120 μM erastin treatment in the indicated cell lines. 
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but neither were able to predict erastin sensitivity in either lung cancer 
or pan-cancer cell lines. 

In our study, we applied a two-step strategy in which the molecular 
pathways associated with the erastin response were screened and then 
the 16 top pathways were assessed to identify the most relevant bio-
markers. Interestingly, we found that the NRF2 and AhR pathways were 
strongly associated with erastin resistance in pan-cancer cell lines 
(Figs. 4 and 5). The high dependency on the NRF2 pathway for the 
conferral of erastin sensitivity was then biochemically proven in cancer 
cell line models (Fig. 6). In particular, a diverse range of cancer malig-
nancies results from continuous ROS generation [51] following onco-
genic RAS mutations or elevated MAPK signaling [2], while excessive 
ROS can be sensitized to chemotherapeutics [51]. Thus, cancer cells may 
adapt to a high-ROS environment through the induction of anti-oxidant 
mechanisms, including KEAP-NRF2, which is why NRF2 has been 
studied as a promising molecular target within advanced cancers. 
Moreover, the AhR gene response, which was induced by erastin treat-
ment, was higher in erastin R cells than erastin S cells. Furthermore, the 
depletion of AhR sensitized only erastin R cells to erastin, while it 
desensitized erastin S cells (Fig. 6). 

The NRM model, with the enriched NRF2 and AhR signatures used as 
predictors, has the potential to readily predict the erastin response of 
any cell lines whose transcriptome data are available. The robustness of 
this model was assessed using an independent pharmacogenomic data-
set for pan-cancer cells and in-house isogenic lung cancer cells. The 
model was further experimentally validated using nine additional can-
cer cell lines whose erastin responsiveness had not yet been determined 
(Fig. 7). Given that an erastin analog is currently undergoing clinical 
trials for anti-cancer therapy [16], this approach would be useful for 
patient stratification in these trials to maximize their efficacy and for the 
selection of those patients most likely to respond to erastin-based 
anti-cancer therapy in the future. 
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