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Abstract: Metformin is an oral hypoglycemic agent widely used in clinical practice for treatment of
patients with type 2 diabetes mellitus (T2DM). The wide interindividual variability of response to
metformin therapy was shown, and recently the impact of several genetic variants was reported. To
assess the independent and combined effect of the genetic polymorphism on glycemic response to
metformin, we performed an association analysis of the variants in ATM, SLC22A1, SLC47A1, and
SLC2A2 genes with metformin response in 299 patients with T2DM. Likewise, the distribution of
allele and genotype frequencies of the studied gene variants was analyzed in an extended group
of patients with T2DM (n = 464) and a population group (n = 129). According to our results, one
variant, rs12208357 in the SLC22A1 gene, had a significant impact on response to metformin in
T2DM patients. Carriers of TT genotype and T allele had a lower response to metformin compared
to carriers of CC/CT genotypes and C allele (p-value = 0.0246, p-value = 0.0059, respectively). To
identify the parameters that had the greatest importance for the prediction of the therapy response
to metformin, we next built a set of machine learning models, based on the various combinations
of genetic and phenotypic characteristics. The model based on a set of four parameters, including
gender, rs12208357 genotype, familial T2DM background, and waist–hip ratio (WHR) showed the
highest prediction accuracy for the response to metformin therapy in patients with T2DM (AUC = 0.62
in cross-validation). Further pharmacogenetic studies may aid in the discovery of the fundamental
mechanisms of type 2 diabetes, the identification of new drug targets, and finally, it could advance
the development of personalized treatment.

Keywords: type 2 diabetes mellitus; metformin; pharmacogenetics; therapy response variability;
gene polymorphism; machine learning model

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by insulin
resistance and progressive pancreatic Beta cell dysfunction. The etiology of the disorder is
known to have a significant genetic component that is confirmed by family- and twin-based
studies [1]. Metformin is an oral hypoglycemic agent, a member of the biguanide class of
drugs widely used as the first-line medication for the T2DM treatment, according to the
clinical guidelines [2]. Despite the popularity of metformin in diabetes treatment, the exact
mechanism of its action remains poorly understood and controversial [3]. The key target of
metformin is thought to be the liver. The clinical studies in patients with T2DM confirmed
the inhibition of hepatic glucose production (HGP) without concomitant increases in plasma
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insulin concentrations as the primary mechanism of action [4]. Metformin is taken up into
the hepatocytes via the organic cation transporter 1 (OCT1). Metformin is supposed to
inhibit the activity of the mitochondrial respiratory chain complex I, resulting in decreased
ATP synthesis and an accumulation of AMP, which leads to the activation of AMP-activated
kinase (AMPK) by promoting the formation of the AMPKαβγ heterotrimeric complex. Ac-
tivation of the AMPK by metformin induces CBP phosphorylation at S436, resulting in the
disassembly of the CREB-CBP-CRTC2 complex that causes the inhibition of gluconeogenic
gene expression and HGP. In addition to the activation of classical AMPK signaling, several
AMPK-independent mechanisms of action of metformin were also proposed [5–7]. The
wide, interindividual variability of the responses to the therapy was recently shown for
metformin treatment in various independent studies. Moreover, metformin therapy was
associated with a higher rate of gastrointestinal symptoms (range 2–63% in different clinical
trials) than most other oral antidiabetic agents. In approximately 4% of cases, this may
cause the premature termination of therapy [8–10].

Over the past few years, several studies showed the association between the variants
in the ATM, SLC22A1, SLC47A1, and SLC2A2 genes and therapeutic responses to metformin.
A protein encoded by the ATM gene belongs to the phosphatidylinositol 3-kinase family
of proteins involved in the processes of DNA repair and/or cell cycle control. Mutations
in this gene play a causative role in ataxia telangiectasia, an autosomal recessive disorder.
The variant rs11212617 near the ATM gene was demonstrated to be associated with the
response to metformin therapy in a GWA study in a GoDART (Genetics of Diabetes Audit
and Research in Tayside) cohort of European ancestry, and in some other studies [11]. The
SLC22A1, SLC47A1, and SLC2A2 genes encode the transmembrane transporters OCT1,
MATE1, and MATE2, respectively, which are known to be involved in the pharmacokinetics
of a variety of environmental toxins and drugs, including metformin. Recent findings indi-
cate that several polymorphic variants of these genes can make a significant contribution to
the modulation of the glycemic response [12–15]. The discovery of the genetic determinants
influencing the glycemic response can provide new knowledge of the underlying molecular
mechanisms of T2DM patients’ response to therapy. That might finally allow progress in
the therapy of T2DM and elaboration of the algorithms for tailored and precision treatment
of this disorder. Despite the widespread incidence of T2DM in the Russian population [16],
very few studies on the pharmacogenetics of T2DM were performed in Russia [17].

In this study, we aimed to analyze whether the genetic variants in the ATM, SLC22A1,
SLC47A1, and SLC2A2 genes influenced the glycemic response to metformin in a cohort
of patients with T2DM in Russia and, furthermore, to reveal the integrated contribution
of the genetic factors and phenotypic features to therapeutic response, using the machine
learning approach.

2. Materials and Methods
2.1. Study Cohorts and Participants

A total of 464 unrelated patients with type 2 diabetes and 129 healthy volunteers
were recruited. This study was performed using large-scale research facilities #3076082
“Human Reproductive Health”. Written informed consent for the research was obtained
from all of the patients and healthy donors. T2DM was diagnosed based on the World
Health Organization criteria. Patients with newly diagnosed diabetes mellitus (less than
1 year), type 1 diabetes, gestational diabetes, acute and/or decompensated liver and kidney
disease, autoimmune disorders, malignancies, and under 30 years of age were excluded
from the study. The level of HbA1c was determined in a fasting blood sample, body height
and body weight were measured, and the body mass index (BMI) and waist–hip ratio
(WHR) were calculated for all of the patients. The clinical parameters of the participants
are shown in Table 1. Among the 464 T2DM patients examined, 299 patients were under
continuous treatment with metformin for at least 6 months—131 individuals took it as
monotherapy, and 168 took it in combination with other oral hypoglycemic agents. The
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metformin treatment response was estimated by an assessment of the decrease in HbA1c
level after 6 months of therapy and by the achievement of the HbA1c individualized target.

Table 1. Clinical characteristics of T2DM patients and healthy controls.

Characteristics All T2DM Patients (n = 464)
T2DM Patients

Taking Metformin
(n = 299)

Controls (n = 129)

Male (n) 155 93 91
Female (n) 309 206 38
Age (years) 61.11 ± 13.65 60.92 ± 13.00 40 ± 14.28

BMI (kg/m2) 31.96 ± 8.2 32.58 ± 6.51 24.43 ± 2.79
FBG (mmol/L) 7.88 ± 2.4 7.87 ± 2.36 4.66 ± 0.37

Family history of diabetes (n) 158 108 0
Creatinine (mmol/L) 0.09 ± 0.03 0.09 ± 0.02 NA

WHR 0.98 ± 0.097 0.95 ± 0.090 NA
HbA1c (%) 7.53 ± 1.14 7.44 ± 1.17 NA

Data are expressed as mean ± SD; BMI: body mass index; FBG: fasting blood glucose; WHR: waist–hip ratio; NA:
not assessed.

2.2. DNA Isolation and Genotyping

The peripheral blood samples from patients were collected in tubes with EDTA. The
genomic DNA was extracted from peripheral blood leukocytes, using the protocol for
salt/chloroform DNA extraction with modifications [18]. The SNPs were selected based on
the reported results of previous GWA and candidate gene studies. The information on the
genetic variants analyzed in our study is shown in Table 2.

Table 2. Genetic variants analyzed in the study.

# Gene Symbol Region dbSNP ID Nucleotide Change Amino Acid Change Function References

1 ATM 11q22.3 rs11212617 intron C/A - ↑ [11,19–21]
2 SLC22A1 6q25.3 rs628031 c.1222A > G Met408Val ↑ SE [22,23]
3 SLC22A1 6q25.3 rs12208357 c.181C > T Arg61Cys ↓ [12]
4 SLC47A1 17p11.2 rs2289669 intron G/A - ↑↓ [24,25]
5 SLC2A2 3q26.2 rs8192675 intron A/G - ↑ [26,27]

↑—increased response to therapy (in relation to the minor allele); ↓—reduced response to therapy (in relation to
the minor allele); SE—side effects.

The SNPs were genotyped via polymerase chain reaction, followed by the restriction
fragment length polymorphism (PCR-RFLP) method. Amplification was performed as
follows: denaturation at 95 ◦C for 4 min; followed by 37 cycles of denaturation at 95 ◦C for
30 s; primer annealing at 60 ◦C for 30 s; and elongation at 72 ◦C for 30 s; and final extension
at 72 ◦C for 5 min. The primers were designed by means of Oligo 6.0 software and NCBI
BLAST tool. The sequences of the primers used and restriction enzymes for each analyzed
SNP are given in Table S1, Supplementary Materials.

2.3. Statistical Analysis
2.3.1. Association of Independent Variables with Response to Metformin Therapy

To determine whether the polymorphism of the ATM, SLC22A1, SLC2A2, and SLC47A1
genes affects the therapy response, the genotype/allele frequencies were analyzed in four
groups of metformin-treated patients: (i) metformin monotherapy and no response to
treatment; (ii) metformin monotherapy/combination therapy and no response to treatment;
(iii) metformin monotherapy/combination therapy and positive response to treatment;
(iv) metformin monotherapy and positive response to treatment. To exclude possible biases
in the results of the association analysis caused by ethnic differences, a comparative analysis
of the frequencies of the genotypes/alleles of the ATM, SLC22A1, SLC2A2, and SLC47A1
genes in the population cohort and the group of patients was carried out. Additionally, we
compared the MAFs in the Russian population with reported data in European populations.
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For the comparison, we used the data presented in the resources 1000 Genomes Project and
GnomAD (Genome and Exome sequence data) [28,29]. To analyze the association between
the categorical variables, such as genotype/alleles frequencies and metformin response,
as well as validating the Hardy–Weinberg equilibrium in the groups, Fisher’s exact test
was used. A p-value ≤ 0.05 was considered to be statistically significant. All of the data
were analyzed by using SPSS (SPSS Inc., Chicago, IL, USA) software. The odds ratios were
estimated with 95% confidence intervals.

2.3.2. Prediction of Response to Metformin Therapy Using Machine Learning

To predict the response to metformin therapy, we constructed a set of machine learning
models, based on various sets of parameters. In total, 13 different variables were used
in different combinations: fasting glucose; glycated hemoglobin (HbA1C), and creatinine
levels in plasma; age and sex of the patient; BMI; WHR; familial T2DM background; and
genotypes at five studied variant sites: rs11212617 in ATM; rs628031 and rs12208357 in
SLC22A1; rs2289669 in SLC47A1; and rs8192675 in SLC2A2. Prior to model fitting, the SNP
genotypes were transformed to numeric variables indicating the number of minor alleles
at each locus. Next, Pearson’s correlation between the variables was assessed to test for
predictor collinearity. No significant correlation between predictor variables was found,
except for two LD-linked variants in SLC22A1 (Figure S1, Supplementary Materials).

The model training was performed using the caret package for R [30]. The patients
with a positive response to metformin therapy were used as cases, and the non-responding
patients were labeled as controls. Logistic regression was used as the main method for
prediction; non-linear methods, such as decision tree and random forest, were also tried but
showed a worse performance compared to regression. For the dimensionality reduction
and feature selection, a Lasso regression approach [31] was used, with lambda values from
0.00068 to 0.125 used during the model tuning.

Due to the low sample size and a heavy class imbalance in the data, model training
and validation were performed, using a custom permutation-based approach. At each step
of the algorithm, a random set of 44 cases was drawn and then combined with 44 controls
to construct a training set of 88 samples. Such a strategy allows us to train models with
equal sizes of “positive’ and “negative” samples, which is known to increase the accuracy
of model fitting. The obtained set of 88 samples at each step was used to train each type
of model. For the model validation, two different metrics were then computed. First,
the area under the receiver-operator curve (ROC/AUC) was evaluated, using a four-fold
cross-validation (CV). While this value can be considered as the most unbiased measure of
classifier performance, the splitting of the training data during CV might negatively affect
the accuracy of the model fitting on smaller samples, decreasing the final estimate of model
performance. Hence, we also used an alternative method of model evaluation. To do so,
an independent non-overlapping set of 44 cases was drawn from the initial dataset and
combined with the same 44 control individuals. The ROC/AUC value was then computed
for such a ‘validation’ set (this approach is further referred to as “case-shuffling”).

Prior to further analysis, we evaluated the accuracy of the predictive model perfor-
mance estimate by CV and case-shuffling methods. To this end, we attempted to classify
random noise variables (different numbers of noise variables were simulated, ranging from
1 to 13). Expectedly, the mean AUC estimate in four-fold CV was close to 0.5 and did
not depend on the number of predictors; at the same time, the AUC estimated using the
training dataset was higher and increased substantially by adding random variables to the
model (Figure S2, Supplementary Materials). Most importantly, the mean estimated AUC
in case-shuffling for classification using random noise was only slightly greater than for
four-fold CV (mean AUC = 0.54) and did not depend on the number of predictor variables
(Figure S2, Supplementary Materials). As a result, the case-shuffling procedure can be used
to compare the performance of different types of models, though the AUC = 0.54 value
should be used as a corrected baseline.
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To evaluate the importance of the predictor variables in the final models, scaled
t-statistic values were computed, using the varImp function from the caret package. The
data visualization was performed using the ggplot2 package [32].

3. Results

The distribution of the genotype frequencies in the group of T2DM patients and the
control individuals followed the Hardy–Weinberg equilibrium. The allele frequencies of
genetic variants of ATM, SLC22A1, SLC47A1, and SLC2A2 genes in patients with T2DM
and healthy controls are shown in Table S2 (Supplementary Materials). The comparative
analysis of the distribution of genotype/allele frequencies of the studied SNPs found
no statistically significant differences between the patients with T2DM and the control
group (p-value > 0.05). According to our results, the MAF of rs12208357 in the SLC22A1
gene was found to be slightly statistically higher, and the rs2289669 in SLC47A1 gene
and rs8192675 in SLC2A2 gene significantly lower than those in the European cohorts
(p-value < 0.05). The MAFs of the rs628031 and rs2289669 variants in the Russian patient
groups were commensurate with those of other European populations (p-value > 0.05)
(Table S3, Supplementary Materials).

The distribution of the genotype and allele frequencies for genetic variants in the four
groups of T2DM patients with different responses to metformin therapy is shown in Table 3.
In all of the studied groups, the distribution of genotype frequencies followed the Hardy–
Weinberg equilibrium. Comparison of the genotype and allele frequencies of the rs11212617
(ATM), rs628031 (SLC22A1), rs2289669 (SLC47A1), and rs8192675 (SLC2A2) variants in the
responders and non-responders, we did not find any statistical differences. According to
our results, the frequency of the T allele of the rs12208357 variant in the SLC22A1 gene was
increased in the group of non-responders in comparison with both the group of patients with
a positive response to monotherapy/combination therapy with metformin (p-value = 0.0059),
and the group with a positive response to monotherapy with metformin (p-value = 0.0418).
Additionally, the association analysis of the rs12208357 variant with response to metformin
showed that the TT genotype was statistically more common (p-value = 0.0250), and the
CC genotype was significantly less common (p-value = 0.0246) in the non-responders, in
comparison with the group with monotherapy/combination therapy.

Table 3. Genotype and allele frequencies of studied variants in patients with glycemic response to
metformin treatment and non-responder patients.

Genotype/
Allele

Patients with Glycemic Response Non-Responder Patients p-Value
(Monotherapy/Combination

Therapy) n (%) (Monotherapy) n (%) (Monotherapy/Combination
Therapy) n (%) (Monotherapy) n (%)

rs11212617 ATM

AA 66 (26) 37 (31) 11 (25) 5 (42)
p1 = 1.0000
p2 = 0.5622
p3 = 0.3126
p4 = 0.5208

AC 133 (52) 61 (51) 25 (57) 4 (33)
p1 = 0.6255
p2 = 0.5975
p3 = 0.2455
p4 = 0.3646

CC 56 (22) 21 (18) 8 (18) 3 (25)
p1 = 0.6923
p2 = 1.0000
p3 = 0.7310
p4 = 0.4599

A 265 (52) 135 (57) 47 (53) 14 (58) p1 = 0.8182
p2 = 0.6168
p3 = 0.6768
p4 = 1.0000

C 245 (48) 103 (43) 41 (47) 10 (42)
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Table 3. Cont.

Genotype/
Allele

Patients with Glycemic Response Non-Responder Patients p-Value
(Monotherapy/Combination

Therapy) n (%) (Monotherapy) n (%) (Monotherapy/Combination
Therapy) n (%) (Monotherapy) n (%)

rs628031 SLC22A1

AA 28 (11) 13 (11) 8 (18) 0 (0)
p1 = 0.2080
p2 = 0.2908
p3 = 0.6219
p4 = 0.6079

AG 128 (50) 64 (54) 22 (50) 7 (58)
p1 = 0.1000
p2 = 07253
p3 = 0.7695
p4 = 1.0000

GG 98 (39) 42 (35) 14 (32) 5 (42)
p1 = 0.5004
p2 = 0.7143
p3 = 1.0000
p4 = 0.7549

A 184 (36) 90 (38) 38 (43) 7 (29) p1 = 0.2329
p2 = 0.4435
p3 = 0.5236
p4 = 0.5081

G 324 (64) 148 (62) 50 (57) 17 (71)

rs12208357 SLC22A1

CC 219 (87) 100 (84) 32 (73) 11 (92)
p1 = 0.0250
p2 = 0.1179
p3 = 1.0000
p4 = 0.6913

CT 32 (13) 18 (15) 9 (20) 1 (8)
p1 = 0.1627
p2 = 0.4776
p3 = 1.0000
p4 = 1.0000

TT 2 (1) 1 (1) 3 (7) 0 (0)
p1 = 0.0246
p2 = 0.0604
p3 = 1.0000
p4 = 1.0000

C 470 (93) 218 (92) 73 (83) 23 (96) p1 = 0.0059
p2 = 0.0418
p3 = 1.0000
p4 = 0.7036

T 36 (7) 20 (8) 15 (17) 1 (4)

rs2289669 SLC47A1

AA 37 (14.5) 20 (17) 11 (25) 4 (33)
p1 = 0.1163
p2 = 0.2638
p3 = 0.0940
p4 = 0.2312

AG 88 (34.5) 36 (30) 10 (23) 1 (8)
p1 = 0.1637
p2 = 0.4340
p3 = 0.0667
p4 = 0.1773

GG 130 (51) 63 (53) 23 (52) 7 (59)
p1 = 1.0000
p2 = 0.8623
p3 = 0.7702
p4 = 0.7705

A 162 (32) 76 (32) 32 (36) 9 (37.5) p1 = 0.3911
p2 = 0.5078
p3 = 0.6547
p4 = 0.6485

G 348 (68) 162 (68) 56 (64) 15 (62.5)

rs8192675 SLC2A2

AA 147 (58) 71 (60) 20 (45) 5 (42)
p1 = 0.1404
p2 = 0.1134
p3 = 0.3720
p4 = 0.3578

AG 90 (35) 39 (33) 21 (48) 7 (58)
p1 = 0.1306
p2 = 0.0998
p3 = 0.1293
p4 = 0.1110

GG 17 (7) 9 (7) 3 (7) 0 (0)
p1 = 1.0000
p2 = 1.0000
p3 = 1.0000
p4 = 1.0000

A 384 (76) 181 (76) 61 (69) 17 (71) p1 = 0.2323
p2 = 0.2538
p3 = 0.6287
p4 = 0.6190

G 124 (24) 57 (24) 27 (31) 7 (29)

p-value ≤ 0.05 was considered statistically significant and is shown in bold; p1: p-value calculated for all
patients with glycemic response (taking metformin as monotherapy/as combination therapy) compared to all
non-responder patients (taking metformin as monotherapy/as combination therapy); p2: p-value calculated
for patients with glycemic response (taking metformin as monotherapy only) compared to all non-responder
patients (taking metformin as monotherapy/as combination therapy); p3: p-value calculated for all patients with
glycemic response (taking metformin as monotherapy/as combination therapy) compared to non-responder
patients (taking metformin as monotherapy); p4: p-value calculated for patients with glycemic response (taking
metformin as monotherapy) compared to non-responder patients (taking metformin as monotherapy).

To assess the influence of gene polymorphism on the glycemic response to metformin
depending on the gender of the T2DM patients, we performed an analysis of the genotype
and allele frequencies of studied variants in the groups of metformin responders and non-
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responders with different sex (male and female) (Table S4, Supplementary Materials). When
comparing the genotype and allele frequencies of rs628031 (SLC22A1), rs2289669 (SLC47A1),
and rs8192675 (SLC2A2) variants in male and female responders and non-responders, we
did not find any significant differences. For the variant rs11212617 in ATM gene, we found
a statistically significant increase in the frequency of the CC genotype and C allele in the
female T2DM patients with glycemic response compared to the female non-responders
(p-value = 0.0190 and p-value = 0.0386, respectively). Significant differences in the allele
frequencies of the variant rs12208357 in SLC22A1 gene were also found between the groups
of male and female non-responders. The rare T allele was statistically more frequent in the
male non-responders in comparison with the female non-responders (p-value = 0.0425).

We also asked whether the genotypes of the studied variants, as well as the additional
phenotypic features, allowed for a prediction of the responses to metformin therapy in
our patients. To answer this question, we built several predictive models based on: (i) the
patient’s genotype at the rs12208357 variant in SLC22A1 (the only variant that showed an
association in the single variant tests); (ii) the genotypes at all of the tested variant sites;
and (iii) the genotypes at all of the variant sites, as well as additional parameters, such as
sex, age, BMI, WHR, plasma creatinine levels, and familial T2DM background. We also
built a model that included fasting glucose and HbA1c levels as a positive control, as these
variables should allow for a nearly complete discrimination between the cases and controls
(Figure 1a; Figure S3, Supplementary Materials). To evaluate the predictive performance of
the models, we used a permutation-based approach, with two scoring metrics described in
the Section 2.
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Figure 1. Prediction of response to metformin treatment using genotypes and additional phenotypic
features. (a) Area under receiver-operator (ROC) curve (AUC) values for different types of models
based on all parameters (including glycemic traits), rs12208357 genotype alone, all SNP genotypes
(SNPs), 11-parameter model (all features excluding glycemic traits), as well as the Lasso regression
model and a final 4-parameter model based on sex, rs12208357, WHR, and familial T2DM background.
The dashed line indicates an AUC = 0.54 threshold, corresponding to the performance of random
noise classification in case-shuffle test (see Materials and Methods section for details); (b) Scaled
importance of features in the Lasso regression model. Mean estimates across 1000 replicates are
shown. Error bars correspond to the t-based 95% confidence interval for the mean. The dashed line
represents a 10% scaled importance threshold.

All of the predictive models demonstrated a certain level of power to predict the
response to metformin treatment (Figures S3 and S4, Supplementary Materials). The
genotype at the rs12208357 variant in the SLC22A1 gene allowed the prediction of the
response to metformin with a median AUC = 0.572 (all of the values are given with respect
to the case-shuffling validation). A model that included all of the variant genotypes showed
a slight performance gain over a single-variant model; at the same time, a model based on all
of the genotypes and additional phenotypic features had a remarkably good performance
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(AUC = 0.772). As expected, a positive control model based on all of the 13 traits, including
glycemic ones, showed nearly absolute predictive power (median AUC = 0.982).

We next went on to identify a set of parameters that had the greatest importance for
the prediction of the response to metformin therapy. To do so, we decided to apply a
regularization (Lasso) approach to construct a logistic regression model with the minimum
necessary set of parameters. Similar to previous experiments, the Lasso fitting was per-
formed in 1000 permutations to estimate the performance of the model and the importance
of the model parameters. The Lasso approach successfully reduced the minimum necessary
number of variables (average across 1000 permutation replicates = 2.4, median across the
replicates = 2) while maintaining the general prediction accuracy. The analysis of the scaled
parameter importance clearly identified a set of four features that had the highest impact
on predictive power (Figure 1b): sex; rs12208357 genotype; familial T2DM background;
and WHR. In concordance with these findings, a logistic regression model based on these
four variables showed similar or better performance compared to the 11 parameter model
(Figure 1a), and was the best model when model evaluation was performed using cross-
validation (Figure S3, Supplementary Materials, AUC = 0.62). While such a score does not
make a high-accuracy model, it is notable that the four selected parameters allowed for a
certain predictive power, even when using a more rigorous validation approach.

4. Discussion

The glucose-lowering effect of metformin was previously shown to have a wide in-
terindividual variability, due to numerous causes including genetic factors [33]. The recent
progress in the identification of variants in the ATM, SLC22A1, SLC2A2, and SLC47A1
genes associated with the therapeutic response to metformin demonstrated their poten-
tial involvement in the metformin action mechanisms. However, these findings were
not replicated in some cohorts, while a number of studies even received controversial
results [11,12,19,20,26,27,34]. This inconsistency of the results can be explained by the
differences in the study design, including the size and characteristics of the cohort, type of
study, methods of analysis, and methods of estimation of the treatment effectiveness, as
previously discussed [35].

Firstly, to explore whether the variants rs11212617, rs628031, rs12208357, rs2289669,
and rs8192675 could be involved in the genetic susceptibility to T2DM in the Russian
population, we performed a comparative analysis for the allele and genotype frequencies
for all of the studied variants between the group of patients with T2DM and the sample of
healthy controls in the cohort with Russian ethnicity. The results of this study found no
association of the variants with T2DM development in Russia. Secondly, we analyzed the
independent association of each of the studied variants with the metformin response for the
patients categorized into four groups: (i) all responders vs. non-responders; (ii) metformin-
responding patients (taking monotherapy only) vs. non-responders; (iii) all responders
vs. non-responders (taking monotherapy only); and (iv) metformin-responding patients
(taking monotherapy only) vs. non-responders (taking monotherapy only). According
to the results of our study, no association was found between the variants in the ATM
(rs11212617), SLC22A1 (rs628031), SLC47A1 (rs2289669), and SLC2A2 (rs8192675) genes
and the therapeutic response to metformin in the Russian patients with T2DM. The same
results were obtained in the previous studies: for the rs11212617 variant in a set of studies
in different European and Asian populations [36–38]; for rs628031 in European and Ira-
nian populations [34,39]; for rs2289669 in European [40,41] and Indian populations [42,43];
for rs8192675–in the cohort of Action to Control Cardiovascular Risk in Diabetes (AC-
CORD) [38]. Based on the data that the association of these variants with the metformin re-
sponse were not confirmed in some ethnic cohorts, the certain genetic heterogeneity for the
polymorphic variants in the ATM (rs11212617), SLC22A1 (rs628031), SLC47A1 (rs2289669),
and SLC2A2 (rs8192675) genes between the different populations could be assumed. Our
results showed the statistically significant differences in the MAFs of rs12208357 (SLC22A1),
rs2289669 (SLC47A1), and rs8192675 (SLC2A2) between the Russian population and the



Genes 2022, 13, 1310 9 of 12

European cohorts, which also is supposed to be an argument in favor of the point about
the possible interethnic differences in the distribution of these gene alleles.

One of the studied genes, SLC22A1, is known to encode for a polyspecific organic
cation transporter 1 (OCT1), a member of the solute carrier 22 family of transporter proteins
which are involved in the absorption, distribution, metabolism, and excretion of several
organic cations. OCT1 is predominantly expressed in the liver, but it is also found in
other tissues [44,45]. It was shown to be essential for the uptake of metformin by the
hepatocytes [46]. OCT1 was figured out to be highly polymorphic in ethnically diverse
populations. As shown in our study, the carriers of TT genotype and T allele of rs12208357
(SLC22A1 gene) had a lower response to metformin therapy compared to the carriers
of the CC/CT genotypes and C allele (p-value = 0.0246, p-value = 0.0059, respectively).
Our data are consistent with the previously obtained results which determine this vari-
ant as affecting the treatment response, including that through the hepatic exposure of
metformin [12,47]. The genetic variability of the SLC22A1 gene was previously shown to
possibly influence the functioning of the OCT1 protein and, therefore, to modulate the
pharmacokinetics and therapeutic response to metformin. The rs12208357 in the SLC22A1
gene is a nonsynonymous missense variant located in exon 1 of the gene, which results in
the loss of the OCT1 protein function and causes the reduced uptake of metformin and
1-methyl-4-phenylpyridinium (MPP(+)) [12,48,49]. Thereby, according to our results, the
variant rs12208357 in the SLC22A1 gene might independently impact the glucose-lowering
effect of metformin in the Russian population.

In the present study, we next questioned whether the combinations of the genotyped
variants and other affecting factors (age, gender, BMI, WHR, creatinine level) were associ-
ated with the metformin response, and whether the patient’s genotype could be used to
predict the response to the metformin therapy. To answer these questions, we applied a
machine learning-based approach and constructed a series of classification models to pre-
dict the response to metformin treatment, either alone (monotherapy vs. non-responding
patients) or combined with other therapeutics (all metformin-responding patients vs. non-
responders). A model based on the data of all of the studied gene variants and phenotypic
parameters had the best performance, whereas the predictive power of the model includ-
ing only SNPs did not differ from the model based on a single variant rs12208357. This
may be caused by both the possibly large contribution of environmental factors or the
small influence of each specific genetic variant in the metformin response; additionally,
the population characteristics of the Russian cohort and insufficient sample size can be the
logical explanation for these results. Finally, we were able to construct an optimal model
demonstrating that a set of four parameters taken together (gender, rs12208357 genotype,
familial T2DM background, and WHR) had the greatest importance for the prediction of
the response to metformin therapy in Russian patients. According to the data obtained,
male gender, TT genotype of the variant rs12208357 (SLC22A1), familial T2DM background,
and increased WHR were found to be associated with the reduced metformin response in
our population.

Interestingly, the study also showed a gender-specific difference in response to met-
formin treatment for the carriers of the CC genotype of rs11212617 (ATM) and TT of
rs12208357 (SLC22A1). Some evidence was found for the potential effect of metformin
on blood glucose levels in a sex-dependent manner. Li and colleagues suggested a better
glycemic response during treatment in females compared with that of males in Chinese
patients. Moreover, an increase in the insulin secretion was determined in the same study
in the female patients, whereas the males displayed no significant change [50]. However,
the results of a large German study demonstrated that metformin treatment had differ-
ent effects on body weight and HbA1c between females and males. Women showed a
significantly higher reductions in body weight after treatment, whereas men displayed
significantly higher HbA1c-reductions after metformin monotherapy treatment [51]. In a
Chinese cross-sectional study that included metformin-treated patients with T2DM, the
association between the rs622342 variant and HOMA-IR and the association between
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rs11212617 variant and HOMA-BCF were gender-dependent [52]. Thus, gender may repre-
sent an important factor for the process of determining the individualized treatment goals
and the assessment of therapy results, but large-scale studies based on the estimation of
many genetic and phenotypic parameters are needed to understand gender differences in
action and the pharmacokinetics of metformin.

Thereby, our results demonstrate the utility of genotypic and phenotypic information
for predicting the response to metformin therapy, which could undoubtedly contribute
to the improvement of the treatment strategy of T2DM patients. Further studies of the
aforementioned factors and the other genotypic and phenotypic parameters in different,
large and ethnically homogeneous cohorts may be useful to confirm the findings and to
improve the predictive power of the model constructed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13081310/s1, Table S1: Primer sequences and PCR-RFLP
details; Table S2: Genotype and allele frequencies of studied variants in patients with T2DM and
control individuals; Table S3: MAFs of studied variants in European populations; Table S4: Genotype
and allele frequencies of studied variants in female and male patients with different glycemic response
to metformin treatment; Figure S1: A heatmap showing Pearson’s correlation coefficient between
variables used to fit predictive models of response to metformin therapy; Figure S2: Prediction of
response to metformin based on the different number of random noise variables used as predictors;
Figure S3: Prediction of response to metformin treatment using genotypes and additional phenotypic
features; Figure S4: Prediction of response to metformin treatment using genotypes and additional
phenotypic features.
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