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1 Chair of Algorithms in Bioinformatics, University of Tübingen, Tübingen, Germany, 2 Genes and Disease Program, Center for Genomic Regulation and Universitat

Pompeu Fabra, Barcelona, Spain, 3 Department of Plant Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Köln, Germany, 4 Department of
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Abstract

Motivation: Next Generation Sequencing (NGS) is a frequently applied approach to detect sequence variations between
highly related genomes. Recent large-scale re-sequencing studies as the Human 1000 Genomes Project utilize NGS data of
low coverage to afford sequencing of hundreds of individuals. Here, SNPs and micro-indels can be detected by applying an
alignment-consensus approach. However, computational methods capable of discovering other variations such as novel
insertions or highly diverged sequence from low coverage NGS data are still lacking.

Results: We present LOCAS, a new NGS assembler particularly designed for low coverage assembly of eukaryotic genomes
using a mismatch sensitive overlap-layout-consensus approach. LOCAS assembles homologous regions in a homology-
guided manner while it performs de novo assemblies of insertions and highly polymorphic target regions subsequently to
an alignment-consensus approach. LOCAS has been evaluated in homology-guided assembly scenarios with low sequence
coverage of Arabidopsis thaliana strains sequenced as part of the Arabidopsis 1001 Genomes Project. While assembling the
same amount of long insertions as state-of-the-art NGS assemblers, LOCAS showed best results regarding contig size, error
rate and runtime.

Conclusion: LOCAS produces excellent results for homology-guided assembly of eukaryotic genomes with short reads and
low sequencing depth, and therefore appears to be the assembly tool of choice for the detection of novel sequence
variations in this scenario.
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Introduction

Since the introduction of the first Next Generation Sequencing

(NGS) technology in 2005, the throughput and cost-efficiency of

sequencing has greatly increased and continues to do so. For

example, at present, the Illumina HiSeq 2000 yields up to 600 Gb

of sequencing data in one paired-end run taking about one week.

While the accuracy of new sequencing technologies is similar to

that of Sanger sequencing, the achievable read length has

decreased from 1 kb to around 150 bases or less for Illumina’s

GAIIx or HiSeq and Applied Biosystem’s SOLiD instruments, or

to less than 500 bases for the GS FLX Titanium instrument from

Roche/454 Life Sciences.

NGS technologies have many different applications, including

genome sequencing and resequencing, metagenome analysis,

transcriptome analysis and chromatin immunoprecipitation

(ChIP)-sequencing. To afford genome sequencing of hundreds to

thousands of individuals large-scale re-sequencing projects like the

Human 1000 Genomes Project utilize low coverage sequencing to a

depth of less than 56[1], followed by mapping of reads to a known

reference genome from the same species. This alignment-consensus

approach, used by e.g. SOAPsnp [2], VAAL [3], MAQ [4],

Pyrobayes [5], SHORE [6] or SHRiMP [7], is capable to detect

sequence variants like single-nucleotide polymorphisms (SNPs) or

small insertions or deletions (micro-indels) [8,9]. However, regions

with high divergence will not be discovered with the alignment-

consensus approach since the respective reads are mostly unalign-

able to the reference genome. Various approaches to estimate copy

number variants and other large rearrangements (commonly

referred to as structural variants) [4,6,10] from read quantity or

mate-pair data have been introduced but these strategies do not

reveal additional sequence information.

As de novo assembly does not rely on read alignments against a

reference genome, it appears to be better suited for studying

unknown or highly diverged regions. Unfortunately, de novo

assembly of short reads still poses unsolved issues for eukaryotic

genomes. Here, the size and complexity of the genomes place high

demands on computational power, which cannot be met by

standard servers. Typically, such assemblies also suffer from a high

number of short contigs. To cope with these problems, several

strategies have been proposed, e.g. reduced representation

libraries [10], gene-boosted assembly [11], transcriptome assembly

[12] or homology-guided assembly [13].
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In contrast to de novo assembly, homology-guided (or comparative)

assembly approaches are more appropriate to discover novel

sequence regions in eukaryotic genomes. Like the alignment-

consensus approach, homology-guided assembly approaches

exploit available reference genome assemblies from the same or

closely related species. One strategy to perform homology-guided

assembly starts with aligning short reads to a reference followed by

local assemblies of reads that are aligned within the same regions

(called blocks). We will refer to local assemblies based on alignment

information within a block as reassembly.

Reassembly can also benefit from incorporating reads that

cannot be aligned (i.e. left-over reads) as they often originate from

insertions or highly polymorphic regions, and therefore can

potentially elongate the reassembled sequence on either side.

Currently available assembly tools do not provide time-efficient

methods to incorporate left-over reads for consecutive execution of

multiple reassemblies. The set of left-over reads can be huge

compared to the set of reads belonging to one block of the

sequenced genome. Left-over reads consist not only of reads from

highly polymorphic regions but also of erroneous reads, which, in

our experience, can comprise about 5% to 20% of all reads from a

sample. Since existing assemblers do not distinguish between

aligned reads and left-over reads, they would have to assemble all

left-over reads for each block over and over, leading to an

unacceptable increase in runtime.

Genome resequencing is often performed at low read coverage

or sequencing depth. This results from a simple cost-benefit analysis:

even with a sequencing depth of 76, most of the reference genome

is covered by aligned reads, enabling the detection of most SNPs

and small indels. However existing short read assemblers based on

the de Bruijn graph paradigm such as VELVET [14], EULER-SR

[15] and ABySS [16] are not well suited for low sequencing depth

assembly as they typically require coverages of 206 to 306 [14].

Furthermore, de Bruijn graph assemblers rely on exact matches of

sub-regions (kmers) of reads and do not calculate overlap

alignments. Consequently, they cannot detect overlaps of reads

with a substantial number of mismatches. For low sequencing

depth assembly, however, it is necessary to include as many

overlaps as possible in order to assemble low-coverage regions.

We have developed a new assembly tool, LOCAS (LOw

Coverage Assembly Software), with two main goals in mind: 1)

allowing for de novo assembly at low sequence coverage, 2) support

whole genome homology-guided assembly approaches by incor-

porating left-over reads. Thus LOCAS is designed for assembling

short to medium sized reads either de novo or in a homology-guided

fashion using an overlap-layout-consensus approach. It explicitly

handles data of low sequencing depth by allowing mismatches in

the overlap calculation of reads. Further, to improve homology-

guided assembly, it optionally takes advantage of the given

alignment positions of reads relative to a reference sequence. An

extension of LOCAS, called SUPERLOCAS, efficiently handles

left-over reads. It calculates an overlap graph for the left-over

reads once and recruits relevant overlapping parts of this graph

during each reassembly quickly and efficiently. We show that

LOCAS and SUPERLOCAS produce assemblies that are often

better than those obtained by existing short read assemblers at

sequencing depth of 7.56as measured by N50 size and error rate.

Methods

LOCAS is based on the classical overlap-layout-consensus

approach. We extended the approach described by Kececioglu

and Myers [17,18], which was originally developed for assembling

Sanger reads. After calculating an approximation of all alignments

between all reads, an overlap graph is built. The graph is reduced

and transformed into a path graph in which the vertices represent

the unique paths of the overlap graph. Contigs are finally

generated by extraction of appropriate paths from the path graph.

To adjust this approach to short-read datasets of low sequencing

depth, we modified the algorithm that selects the final paths in the

path graph to handle a higher amount of single reads and a shorter

read length. The higher amount of reads increases the complexity

of the graph. Moreover, the shorter read lengths lead to shorter

overlap alignments, also contributing to the complexity of the

graph. In addition, more false overlap alignments are found for a

shorter alignment length. We modified the algorithm to handle the

increased number of false alignments and the larger graph as well

as the relative increase of branches in the graph. Paths are selected

in the path graph using a greedy strategy that aims at maximizing

the total coverage of used reads and the total quality of the

alignments used.

Overlap Detection and Overlap Alignment Graph
Pairs of potentially overlapping reads are detected with the help

of an enhanced suffix array as implemented by the SeqAn library

[19]. The suffix array is built for all reads followed by identification

of all pairs of reads sharing an identical kmer. Overlap alignments

are calculated for each pair with a minimal overlap length and a

maximal number of mismatches given as input parameters to the

assembly tool. The alignment information is represented by an

overlap graph.

Each vertex of the graph represents a read and each edge

represents an alignment between the reads of the connected

vertices. Two types of edge exist. An overlap edge corresponds to

an overlap alignment. A containment edge represents a global

alignment. Containment edges indicate that one read is aligned

over its full length to the other read. If the reads are not equally

long, then one read will be contained. A weight is assigned to each

edge that corresponds to the length of the alignment. Further, a

score is given that is equal to the alignment score describing the

quality of the alignment. In the next step, an exemplar vertex is

chosen for each set of vertices that are all connected to each other

by containment edges. The exemplar is the longest read with the

highest alignment score to the other reads in the set. For all other

vertices represented by the exemplar, all overlap edges are

removed. See Figure S3 for an illustration of the reduction.

Reduction and Path Graph
The overlap graph is reduced by removing all transitive edges.

Each edge et = (v1, v2) with a weight wt is transitive if two edges

e1 = (v1, w) and e2 = (w, v2) exist with weights w1 and w2,

respectively, where wt#w1 and wt#w2. See Figure S4 for an

illustration. Unique paths in the overlap graph are detected and

merged. This is done during a transformation of the overlap graph

into a path graph. Each unique path of maximal length in the

overlap graph is represented by two vertices and an inner edge in

the path graph. The two vertices in the path graph represent the

ends of the path or, more precisely, the outer ends of the first and

the last read sequence on the path. Further, we insert real edges

that represent the adjacencies between unique paths in the overlap

graph. A real edge is set for two vertices in the path graph if these

vertices represent different ends of the same read. This is

illustrated in Figure 1.

Solving Sequencing Errors and Repeat Structures
Sequencing errors and repeat structures correspond to cycles in

the path graph. They are called directed cycles if they represent

repeat structures and undirected cycles if the represent sequencing

LOCAS - A Low Coverage Assembler for Resequencing
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errors or false alignments (Figure S5). An algorithm is applied to

the path graph that calculates a spanning-treelike subgraph. The

algorithm works as follows. First, all real edges are placed

according to their score in a priority queue. This edge score

measures the average quality of the read alignments and the

average read coverage from reads underlying the edge vertices.

The edges of the subgraph are selected iteratively in the path

graph. In each step, the edge with the highest score is considered

for selection. If a directed cycle will not be introduced in the

subgraph if a certain edge were selected, the edge is selected. If the

candidate edge would introduce a directed cycle in the subgraph,

the edge is not selected, the cycle is cleaned of all short dangling

paths and then cut open at all remaining branch vertices. Next, the

remains of the opened directed cycle are recorded with its

branches, called repeat branches. See Figure S6 for an illustration

of the cutting operation.

If an undirected cycle with a similar sequence is introduced with

the selection of the candidate edge, then the edge is selected and

the whole cycle is marked in the subgraph. For the introduction of

an undirected cycle with a dissimilar sequence, the edge is not

selected. It is likely that some alignments are not detected due to

sequencing errors. In this case, the affected repeats are not

represented by directed cycles in the spanning-treelike subgraph.

In order to detect and solve these repeat structures, the algorithm

scans for fragmentary directed cycles. They correspond to paths in

the graph that link two branch vertices so that each of them is

Figure 1. Transformation of the overlap alignment graph into the path graph. In (A), an overlap graph is shown, and, for some read
sequences, the underlying alignment information is displayed. In (B), the corresponding path graph is displayed. For each unique path in the overlap
graph an inner edge is introduced in the path graph, represented by a solid line. For example, the unique path between b and d in the overlap graph
is represented by the inner edge (b90, d9) in the path graph. If two vertices in the path graph represent the two ends of the same read, then a real
edge is presented between them in the path graph. These real edges are shown as dashed lines. An example is the real edge (d9, d0). The vertices d9

and d0 represent the same read since they both correspond to vertex d in the overlap graph but they represent the two different ends of the read,
since the read of d overlaps with the read of b and e but at different ends, which is displayed in (A).
doi:10.1371/journal.pone.0023455.g001

Figure 2. Workflow of SUPERLOCAS. The figure shows the workflow of the algorithm of SUPERLOCAS. The initial steps are illustrated: the left-
over reads with the constructed left-over overlap graph, and the reads that are aligned against the reference sequence and partitioned into blocks.
Next, the steps that are executed consecutively for each block are shown: the construction of the overlap graph, the insertion of edges between both
graphs and the procedure until contigs are reported for the merged graph.
doi:10.1371/journal.pone.0023455.g002
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adjacent to at least one other short path. These branch vertices are

denoted as repeat branches, as in the case of directed cycles. The

repeat branches are detected in the spanning-treelike subgraph

and their real edges are cut.

With mate-pair information, it is possible to assign two repeat

branches to each other. In this case, the path in between can be

duplicated and re-linked in accordance with the mate-pair

information. Here, our strategy is similar to the one described

by Pevzner and Tang [20].

Path Extraction and Consensus Determination
All the longest paths are calculated for the given spanning-

treelike subgraph. For each leaf in the subgraph, the longest path is

determined. For the end-vertices of these longest paths, the longest

paths are again calculated. Then the resulting set of longest paths

is scanned for paths that share a subpath with each other. For

these paths, only the longest path is taken for the final set. Finally,

the consensus is determined for each path in the final set of longest

paths considering all overlap alignments and global alignments to

contained reads.

Algorithm to Integrate Left-Over Reads
SUPERLOCAS is an extension of LOCAS that explicitly takes

left-over reads into account when using LOCAS for local or

homology-guided assemblies (Figure 2). First, an overlap graph

for all left-over reads is built, called the left-over graph. Then, a

modified version of the basic assembly algorithm is applied to

each block of the genome, which also deals with the integration of

left-over reads. The extra step is applied after having built the

overlap graph: first, the relevant left-over reads are selected by

determining overlap alignments between local reads and left-over

reads. For the selected left-over reads, the induced subgraph of

the left-over graph is linked to the overlap graph of the local

assembly. By extending the overlap graph with parts of the left-

over graph, left-over reads are taken into account during the

following assembly steps and can substantially elongate the

resulting contigs.

Results

Assembly Algorithm and Extension for
Homology-Guided Assemblies

We have developed and implemented a new assembly algorithm

in a software tool called LOCAS. The approach is based on the

overlap-layout-consensus paradigm. Especially designed for data

of low sequencing depth in the context of resequencing projects,

LOCAS calculates alignment based overlaps instead of exact

matches between reads.

Furthermore, we have implemented an extension to LOCAS

called SUPERLOCAS to support our homology-guided assembly

approach. In this approach, the target genome is partitioned into

blocks of given length. Next, SUPERLOCAS assembles each set of

Figure 3. Performance comparison of low sequencing depth assembly. Illumina GAIIx reads were simulated at a sequencing depth of 7.56
for the first chromosome of A. thaliana Col-0. The reads were assigned to the reference sequence corresponding to their origin positions and
partitioned into blocks of a length of 10 kb. The avgN50 (average N50) is plotted against the avgERR (average error rate) for the assembly tools
LOCAS, EULER-SR, ABySS, VELVET and soapDeNovo. For each assembler, several runs are displayed corresponding to the different parameter settings.
The data points of ABySS are drawn in orange, EULER-SR in green, LOCAS in red, VELVET in blue and soapDeNovo in turquoise. Each point represents
one run.
doi:10.1371/journal.pone.0023455.g003
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reads aligning one of the blocks separately by incorporating high

quality left-over reads in the assembly. Thus, the tool can assemble

very long insertions of several kb located between two highly

homologous regions. In order to reduce the complexity of the

overlap graph, different alignment constraints can be set as a

function of the distance between reads in the reference genome.

Performance Evaluation
We evaluated the performance of LOCAS in three studies. The

first study simulated de novo assemblies of small genomic regions

and compared the performance of current NGS assemblers for

data with a low sequencing depth. For the second study, we

simulated a homology-guided assembly of a divergent strain of

Arabidopsis thaliana, again at low sequencing depth. For the third

study, we performed a homology-guided assembly using Illumina

reads from the Arabidopsis thaliana 1001 Genomes Project (http://

1001genomes.org/). For the first study, we compared LOCAS

with the publicly available short read assembly tools VELVET

[14], EULER-SR [15], ABySS [16,21] and SOAPdenovo [22]. In

the second and third studies, we compared SUPERLOCAS

(LOCAS extension for homology-guided assembly) only with

VELVET, since the other assemblers (ABySS, SOAPdenovo and

EULER-SR) did not perform well enough considering contig

length and error rate in the first study. Even though EDENA [23]

also uses an overlap-layout-consensus approach, we did not

consider it in our evaluation, because it does not utilize paired

read information, does not allow for mismatches in the overlap

calculation and produced insufficient results for low sequencing

depth assemblies.

Homology-guided assemblers like AMOScmp-shortReads (un-

published) and its predecessor AMOScmp [24] provide an

integrated solution using alignments to the reference in both the

overlap as well as the consensus and scaffolding step, while

LOCAS relies on pre-computed alignments from third party tools

and does not use homology information in the consensus or

scaffolding step of the assembly. Thus resulting contigs are hardly

comparable without further post-processing as for instance

implemented in the SHORE homology-guided assembly frame-

work [25] combining LOCAS and other short read assemblers

with the scaffolding tool BAMBUS [26] and quality assessment

based on re-alignments of original reads to novel contigs.

All datasets used for evaluation are available at http://www-ab.

informatik.uni-tuebingen.de/software/locas.

Evaluation of Low Sequencing Depth Assembly
We used the first chromosome of A. thaliana Col-0 for our

performance studies. First, we simulated Illumina GAIIx reads at a

sequencing depth of 7.56 using METASIM [21]. We chose this

particular sequencing depth since it is the lowest in which the

assemblers showed reasonable contig sizes. The reads were

assigned to reference sequence corresponding to their origin

positions and partitioned into blocks of 10 kb length. Assemblies of

Figure 4. Performance comparison of homology-guided assembly on simulated data. We simulated a resequencing study of an artificial A.
thaliana strain using a sequencing depth of 7.56. The simulated Illumina reads were aligned to the reference genome Col-0 and partitioned into
blocks of 25 kb using SHORE. The assembly tools SUPERLOCAS and VELVET were applied to assemble the mapped reads of the first chromosome and
the left-over reads. The avgN50 (average N50) is plotted against the avgERR (average error rate) for the assembly tools SUPERLOCAS and VELVET (in
left-over incorporation mode). SUPERLOCAS is displayed in red and VELVET in blue.
doi:10.1371/journal.pone.0023455.g004
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the blocks were performed separately using the assembly tools

LOCAS, ABySS, EULER-SR, VELVET and SOAPdenovo.

Besides other measures (see Methods), we primarily compared

the N50 size averaged over all local assemblies, denoted as avgN50,

and the average error rate of the contigs, denoted as avgERR. In

our study, the N50 size is defined as the length of the longest contig

such that all contigs of equal or longer length cover at least 50% of

the positions of the block sequence. For the calculation of avgN50,

we considered only valid contigs that have a global alignment to the

target sequence with at most 10% mismatches. The error rate is

the total number of errors divided by total length of all contigs.

The total number of errors comprises the number of mismatches

in the alignment of all valid contigs plus the lengths of other

contigs.

We ran all assemblers using a wide range of parameter settings

to show the achievable avgN50 and avgERR values with the

respective assembler (see Table S1). This is a common approach to

optimize the assembly. For example the method is implemented in

VelvetOptimizer to be used for VELVET.

The results are shown in Figure 3. For avgERR values lower

than 1.5%, LOCAS performed best with a maximum avgN50 size

of 4,558 bp. For an avgERR higher than 1.5%, VELVET

performed best with a maximum avgN50 size of 5,500 bp.

EULER-SR performed well with respect to avgN50 size, but had a

high avgERR of at least 5%. The avgERR values of ABySS were

with at most 1.2% very low, but the tool showed an avgN50 size of

at most 2,577 bp. The avgERR values were even lower for

SOAPdenovo, while its avgN50 size was the lowest for all

assemblers with a maximum of 1,991 bp. We also examined CPU

time and RAM needed to assemble the whole data set for each

tool. The best performing method regarding CPU time was

VELVET with 10 min in average, followed by LOCAS with

19 min, SOAPdenovo with 22 min and EULER-SR with

140 min. LOCAS and EULER-SR used only 18 MB of RAM,

VELVET used 87 MB and SOAPdenovo used 236 MB. (See

Figure S1 and S2 for results of this performance study with a

sequencing depth of 56 and for the fourth chromosome,

respectively.)

Evaluation of Homology-Guided Assembly
To evaluate performance in a homology-guided assembly

approach, we simulated a resequencing study of an artificial A.

thaliana strain using a sequencing depth of 7.56. First, we

artificially generated a target genome by introducing SNPs,

insertions and deletions into the reference sequence (see Text

S1). Then we used this target genome to simulate Illumina reads

similar to the previous study. Reads were aligned to the reference

genome and partitioned into blocks of 25 kb length using SHORE

[6], a short read analysis framework supporting several alignment

tools like BWA [27], Bowtie [28] and GenomeMapper. For this

study, we preferred GenomeMapper [29] to the other tools

because it allows for high edit distances including gaps and has a

high sensitivity thus improving homology information generated

by read alignments in highly diverged regions.

Figure 5. Number of detected insertion regions in homology-guided assembly on simulated data. For the artificial A. thaliana strain in
the simulated resequencing study, the total insertion regions in the target genome are plotted for different lengths of these regions. In addition, the
number of error-free regions assembled by VELVET and by SUPERLOCAS are shown.
doi:10.1371/journal.pone.0023455.g005
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Next, all left-over reads were pooled. Assemblies of the blocks

incorporating the left-over reads were performed applying the

assembly tools SUPERLOCAS and VELVET. As VELVET does

not provide a special mode for left-over incorporation, we used

VELVET as follows: each local assembly was given the complete

set of left-over reads as an additional input. We omitted EULER-

SR, SOAPdenovo and ABYSS due to their insufficient perfor-

mance shown in the first study on data with a low sequencing

depth.

In Figure 4, the resulting avgN50 size and avgERR are shown.

SUPERLOCAS performed robustly with different parameters and

overall outperformed VELVET in our study. We observed a

maximum avgN50 size of 3,132 bp and 2,446 bp for SUPER-

LOCAS and VELVET, respectively. The error rates range from

0.17% to 0.21% for SUPERLOCAS, and from 0.09% to 0.53%

for VELVET. The average maximal contig size of SUPER-

LOCAS was larger (with up to 17,821 bp) in comparison with

VELVET (up to 12,996 bp). (See Table S2 for more details.) The

CPU runtimes ranged from 3 h 12 min for SUPERLOCAS to 7 h

51 min for VELVET per run. SUPERLOCAS used 433 MB of

RAM while VELVET required 224 MB.

In addition, we examined the contigs of both tools regarding the

appearance of insertion regions. These regions are present in the

target genome but not in the reference genome. Most insertion regions

with a length of at least 100 bp could only be assembled with the help

of left-over reads. Figure 5 shows the number of insertion regions that

were assembled without errors by SUPERLOCAS and by VELVET,

respectively, separated by insertion length. Both tools performed this

task equally well, assembling a similar number of the insertions.

Real World Data
To test performance on real world data, we used sequence reads

from the first chromosome of A. thaliana strain Landsberg erecta

(Ler-1) produced within the 1001 Genomes Project [30]. Ler-1

was sequenced on the Illumina GAIIx with 80 bp paired-end

reads to a depth of ,76. Reads were aligned against the complete

reference sequence and all alignments on chromosome 1 have

been partitioned into subregions of at most 40 kb using

GenomeMapper [29] and SHORE [6]. We first applied LOCAS

and VELVET to the assembly of the reads in each block without

left-over reads. Instead of the avgERR, we estimated the average

relative dissimilarity to the reference sequence over all blocks,

denoted as avgDISS.

For avgDISS values higher than 1%, VELVET performed best

considering avgN50 size, while for avgDISS values lower than 1%,

LOCAS showed the best avgN50 sizes (Fig. 6). We observed a

maximum avgN50 size of 1,606 bp and of 1,526 bp for VELVET

and LOCAS, respectively.

We then applied SUPERLOCAS and VELVET. For VEL-

VET, each block was assembled with the complete set of left-over

reads as in the second study. Contigs were used for analysis if they

featured a similarity with the reference sequence of at least 75%.

We allowed this high percentage of dissimilarity since contigs that

Figure 6. Performance comparison of homology-guided assembly on real world data without utilizing left-over reads. Paired-end
reads were produced by Illumina GAIIx with a length of 80 bp to a depth of ,76 for the first chromosome of A. thaliana strain Ler-1. Reads were
aligned against the complete reference sequence (Col-0) and partitioned into blocks with SHORE of 25 kb. LOCAS and VELVET are applied in paired-
end mode for all blocks which contain reads that are aligned to the same region of the reference sequence. The x-axis shows the avgN50 (average
N50) and the y-axis the avgDISS (average dissimilarity). The runs of LOCAS produced with different parameter setting are drawn in red and those of
VELVET in blue.
doi:10.1371/journal.pone.0023455.g006
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are constructed with the use of left-over reads often belong to

insertion regions not represented in the reference genome. N50

sizes were higher for SUPERLOCAS with values consistently

about 1500 bp (Figure 7). N50 sizes of VELVET ranged between

901 bp and 1,435 bp, showing much higher sensitivity to

parameter choice. Furthermore, SUPERLOCAS performed best

regarding CPU runtime. For SUPERLOCAS, one run was on

average completed in 2 h 8 min, compared to 7 h 32 min for

VELVET. VELVET performed best considering RAM usage.

SUPERLOCAS used 3.99 GB of RAM while VELVET used only

1.73 GB. (See Table S3 and S4 for more details.).

Discussion

The assembly tool LOCAS is specifically designed for homology-

guided assembly approaches in resequencing studies of eukaryotic

genomes with short reads and low sequencing depth. In three

performance studies adjusted to these conditions, LOCAS achieved

usually better or at least similar results compared to existing short read

assemblers. SUPERLOCAS, an extension of LOCAS, proved to be

much faster than existing methods for the task of integrating left-over

reads in consecutive executions of local reassemblies. The perfor-

mance of SUPERLOCAS at low sequencing depth as measured by

avgN50 and avgERR compares favorably to all other tools.

LOCAS uses the overlap-layout-consensus approach because

we found it to be better suited for low sequencing depth assembly

in comparison to the de Bruijn paradigm used in VELVET,

EULER-SR and ABYSS. We optimized overlap alignments

between reads to span even very low covered regions. However,

the number of overlaps increases by calculating exact alignments

instead of submatches and often leads to a graph of higher

complexity compared to a Bruijn graph. Moreover the graph

cannot be reduced by using a coverage-based cutoff as typically

applied in de Bruijn graph approaches, since the insufficient

number of reads in low coverage assembly prevents the estimation

of a reasonable value for a coverage-based cutoff. Further, the

probability of using false overlaps increases for alignment

calculations that allow for several mismatches compared to exact

sub-matches, and the calculation of the overlap graph is slower

than the construction of the de Bruijn graph. Nevertheless, longer

contigs and a higher overall coverage of the sequenced genome are

the payoff for dealing with a more complex graph and an increase

in false alignments. In scenarios of high sequence coverage,

LOCAS often produces shorter contigs compared to de Bruijn

graph based de novo assemblers, which is a consequence of the

highly sensitive overlap detection of LOCAS and the resulting

overlap-graph of higher complexity.We believe that the method

implemented in SUPERLOCAS is a good compromise between

resource heavy de novo assembly and simple homology-guided

assembly approaches that do not incorporate left-over reads. The

integration of left-over reads allows for identification of polymor-

phic or inserted regions in a de novo assembly fashion. Additionally,

our assembly approach makes use of the exact positions of aligned

reads against a reference in order to reduce assembly complexity

and to reduce the number of false overlaps, as was formerly used

to improve overlap calculation of Sanger reads [31]. Further, we

Figure 7. Performance comparison of homology-guided assembly on real world data utilizing left-over reads. Illumina reads of the
first chromosome of A. thaliana strain Ler-1 were aligned against the reference sequence (Col-0) and partitioned into blocks with SHORE of 25 kb.
Local assemblies of reads are performed with SUPERLOCAS and VELVET in order to incorporate left-over reads. While SUPERLOCAS provides
algorithms specifically adjusted to this task, VELVET had to assemble each block with the complete set of left-over reads. A barplot is shown for the
avgN50 (average N50) size of both assemblers.
doi:10.1371/journal.pone.0023455.g007
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speculate that the assembly produced by our approach might be

less affected by repetitive regions than de novo assembly because

some repeats are already solved during the alignment step. Since

SUPERLOCAS explicitly treats left-over reads and aligned reads

differently, and can reuse the left-over graph in multiple local

assembly executions, the incorporation of left-over reads is more

reliable and much faster than for other short read assemblers.

We assume that in future, our method will gain from

improvements in sequencing technologies. Our overlap-layout-

consensus approach can benefit from longer reads as it is more

robust to sequencing errors at the end of reads. Computing

overlap alignments rather than using exact matches of sub-regions

(like de Bruijn graph methods do) in order to overlap the reads will

become more important as longer sub-matches have a higher

probability of containing sequencing errors. In addition, the

recruitment of left-over reads will become more reliable due to an

increased overlap length between reads. Finally, the potential of

homology-guided assemblies grows steadily with increasing

numbers of completely sequenced genomes.

Design and Implementation
The software is implemented in C++ and supported on Linux.

Availability
Source code and binaries are freely available from our website

http://www-ab.informatik.uni-tuebingen.de/software/locas.

Supporting Information

Figure S1 Performance comparison of assembly with a
sequencing depth of 56 for the first chromosome of A.
thaliana. Illumina reads with a sequencing depth of 56 were

simulated for the first chromosome of A. thaliana Col-0. The reads

were assigned to the reference sequence corresponding to their

origin positions and partitioned into blocks of a length of 10 kb.

The avgN50 (average N50) is plotted against the avgERR (average

error rate) for the assembly tools LOCAS, EULER-SR, ABySS,

VELVET and SOAPdenovo. For each assembler, several runs are

displayed corresponding to the different parameter settings. The

data points of ABySS are drawn in orange, EULER-SR in green,

LOCAS in red, VELVET in blue and SOAPdenovo in turquoise.

(DOC)

Figure S2 Performance comparison of assembly with a
sequencing depth of 7.56 for the fourth chromosome of
A. thaliana. Illumina reads were simulated for the fourth

chromosome of A. thaliana Col-0 with a sequencing depth of 7.56.

After the reads were assigned to their origin positions in the

reference sequence they were partitioned into blocks of a length of

10 kb. The avgN50 (average N50) is plotted against the avgERR

(average error rate) for the assembly tools LOCAS, EULER-SR,

ABySS, VELVET and SOAPdenovo. For each assembler, several

runs are displayed corresponding to the different parameter

settings and ech data point corresponds to such a run. The data

points of ABySS are drawn in orange, EULER-SR in green,

LOCAS in red, VELVET in blue and SOAPdenovo in turquoise.

(DOC)

Figure S3 Construction of the overlap graph. Eight

aligned reads are displayed on the left. Each read has an

alignment to all other reads. Most alignments are overlap

alignments, while the alignments among the reads 1 to 3 and 4

to 7 are global alignments. The alignment graph for the aligned

reads is shown on the right. For each read, a vertex is introduced

into the graph; for each overlap alignment, an overlap edge is

introduced; for each global alignment, a containment edge. Reads

1 and 4 are chosen as exemplar vertices. For all other reads, all

edges are deleted except those leading to the exemplars. The

deleted edges are shown as dashed lines; solid lines indicate the

edges that have been retained.

(DOC)

Figure S4 Transitive reduction of the overlap graph.
The edge (v, z) is transitive since two edges (v, w) and (w, z) exist

and their weights less than or equal to the weight of (v, z). A

transitive edge is then reduced.

(DOC)

Figure S5 Different cycle types in the path graph. (A) An

example of an undirected cycle is shown. If the consensus

sequences of both cycle branches are similar, the structure arises

from a sequencing error or an SNP. If the consensus sequences of

both branches are dissimilar a false alignment could be the reason.

(B) A directed cycle that usually arises from repeats is shown. (C) A

directed cycle that is connected with an undirected cycle is shown.

Such a structure can arise from several repeat copies.

(DOC)

Figure S6 Cutting a directed cycle in the path graph. (A)

A directed cycle with short dangling paths is displayed. (B) The

cycle is shown after all short paths have been cut off and the cycle

has been cut open at each branch vertex.

(DOC)

Table S1 Evaluation results of low sequencing depth
assembly with LOCAS, VELVET, EULER-SR and ABySS.
(DOC)

Table S2 Evaluation of homology-guided assembly on
simulated data with SUPERLOCAS and VELVET.
(DOC)

Table S3 Evaluation of homology-guided assembly on
real world data with LOCAS and VELVET (without
utilizing left-over reads).
(DOC)

Table S4 Evaluation of homology-guided assembly on
real world data with SUPERLOCAS and VELVET
(utilizing left-over reads).
(DOC)

Text S1 Supplementary Results and Methods. Results of

further assemblies for the first chromosome of A. thaliana at a

sequencing depth of 56 and for the fourth chromosome of A.

thaliana at a sequencing depth of 76 are shown. In addition, the

usage of LOCAS and SUPERLOCAS is described. In the Section

Methods the read simulation method, the simulation of a

homology-guided assembly and the assembly analysis are

described more precisely.

(DOC)
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